## **Supporting Information**

# Designing Michaelases: Exploration of novel protein scaffolds for iminium biocatalysis

Alejandro Gran-Scheuch,<sup>a</sup> Stefanie Hanreich,<sup>a</sup> Iris Keizer,<sup>a</sup> Jaap Harteveld,<sup>a</sup> Eelco Ruitjer<sup>a</sup> & Ivana Drienovská<sup>a,\*</sup>

Biocatalysis is becoming a powerful and sustainable alternative for asymmetric catalysis. However, enzymes are often restricted to metabolic and less complex reactivities. This can be addressed by protein engineering, such as incorporating new-to-nature functional groups into proteins through the so-called expansion of the genetic code to produce artificial enzymes. Selecting a suitable protein scaffold is a challenging task that plays a key role in designing artificial enzymes. In this work, we explored different protein scaffolds for an abiological model of iminium ion catalysis, Michael addition of nitromethane into *E*-cinnamaldehyde. We studied scaffolds looking for open hydrophobic pockets and enzymes with described binding sites for the targeted substrate. The proteins were expressed and variants harboring functional amine groups — lysine, *p*-aminophenylalanine, or  $N^{6}$ -(*p*-prolyl)-*L*-lysine— were analyzed toward the model reaction. Among the newly identified scaffolds, a thermophilic ene-reductase from *Thermoanaerobacter pseudethanolicus* exhibited to be the most promising biomolecular scaffold for this reaction.

## Table of content

| Amino acid sequences of scaffolds | 2 |
|-----------------------------------|---|
| Schemes                           | 3 |
| Supporting table                  | 4 |
| Supporting figures                | 6 |

<sup>&</sup>lt;sup>a.</sup> Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands. \*E-mail: i.drienovska@vu.nl

## **Amino Acid Sequences of Selected Scaffolds**

#### LmrR (NCBI A2RI36)

GAEIPKEMLRAQTNVILLNVLKQGDNYVYGIIKQVKEASNGEMELNEATLYTIFDRLEQDGIISSYWGDESQGGRRKYYRLTEIGHENMRLAFE SWSRVDKIIENLEANKKSEAIKSRGGSGGSHHHHHH\*

#### BbmrR (NCBI WP\_171505753)

MDETLNNSDLVRG**S**IDTIILSVLLTGDNYGYQIIKEIYRKSQNRFELKEPTLYSSLRRLEKQKMIESYWGEETQGGRRKYYSITELGRELYRTN CAEWELARNLIDRLIRVEKDVEERLEHHHHHH\*

#### CdmrR (NCBI WP\_020156622)

MNGKISADLLRGHTDTIVLSILMQGDHYGYEIYKTILEKTEGLYELKEATLYSSYKRLEKEGCIIAYWGDETQGGRRKYYRITEKGRQQYYQNK ADWEFTKKILNKLLGEEQGLEHHHHHH\*

#### TbmrR (NCBI HHX23360)

MGNTISTDLIRGHTDTIILNVLRQGDSYGYEIYKKIIELSGNQYELKEATLYTAFRRLEQDGYVWSYWGDETQGGRRKYYRITDEGKKFYEQSK HAWDFAKGVLDKLIKGGLDNAKDLEHHHHHH\*

#### AtRegR (NCBI AtRegR)

MSRKEQIIEVAMKLFAEKGYHATSMQEIAEHSRLAKGSLYNYFKSKEEIVLSIFQYHYDQLFQQFARIASDRSLTAREKFLKQLSLQIEAFEKH KEIVQMHMGDHAQKVSEDVHALVLRIRSHLFDWYIQSFIDMYGERIRPFVLDCAIMLNGMLKEYLFFALFEKQSFPFQRLAPFLMERLDALVDS LQHDMPLIRHDAKAEKARALALIDEMIEEARDDHTMDLLKQLKEEMERDEPRKAIVEAFLLYLQQSDMRQFVPALRAALALLEHHHHHH\*

#### TmRegR (NCBI WP\_004080830)

MSSETRRKILEAARKAFSKYGYDGVSMEEIAREAGVKKALIYYYFPSKDKLFEEVWREALEELESHLFAVTEETNSYFAKIKKFLKSYVDFVLN KTVLNEIIEKEKSTVRFEEEKWSKLRERYESFIKRVEELIEEGKKQNYVYKDLDSRAAAELIVNSFGDVPKDKRLLQNIQEMILRGLLNVKTEE GRLEHHHHHH\*

#### VAO (NCBI P56216)

MSKTQEFRPLTLPPKLSLSDFNEFIQDIIRIVGSENVEVISSKDQIVDGSYMKPTHTHDPHHVMDQDYFLASAIVAPRNVADVQSIVGLANKFS FPLWPISIGRNSGYGGAAPRVSGSVVLDMGKNMNRVLEVNVEGAYCVVEPGVTYHDLHNYLEANNLRDKLWLDVPDLGGGSVLGNAVERGVGY PYGDHWMMHSGMEVVLANGELLRTGMGALPDPKRPETMGLKPEDQPWSKIAHLFPYGFGPYIDGLFSQSNMGIVTKIGIWLMPNPRGYQSYLIT LPKDGDLKQAVDIIRPLRLGMALQNVPTIRHILLDAAVLGDKRSYSSRTEPLSDEELDKIAKQLNLGRWNFYGALYGPEPIRRVLWETIKDAFS AIPGVKFYFPEDTPENSVLRVRDKTMQGIPTYDELKWIDWLPNGAHLFFSPIAKVSGEDAMMQYAVTKKRCQEAGLDFIGTFTVGMREMHHIVC IVFNKKDLIQKRKVQWLMRTLIDDCAANGWGEYRTHLAFMDQIMETYNWNNSSFLRFNEVLKNAVDPNGIIAPGKSGVWPSQYSHVTWKLLEHH HHHH\*

#### TOYE (NCBI 3KRU)

MSILHMPLKIKDITIKNRIMMSPMCMYSASTDGMPNDWHIVHYATRAIGGVGLIMQEATAVESRGRITDHDLGIWNDEQVKELKKIVDICKANG AVMGIQLAHAGRKCNISYEDVVGPSPIKAGDRYKLPRELSVEEIKSIVKAFGEAAKRANLAGYDVVEIHAAHGYLIHEFLSPLSNKRKDEYGNS IENRARFLIEVIDEVRKNWPENKPIFVRVSADDYMEGGINIDMMVEYINMIKDKVDLIDVSSGGLLNVDINLYPGYQVKYAETIKKRCNIKTSA VGLITTQELAEEILSNERADLVALGRELLRNPYWVLHTYTSKEDWPKQYERAFKKLEHHHHHH\*

#### EncP (NCBI AAF81735)

MTFVIELDMNVTLDQLEDAARQRTPVELSAPVRSRVRASRDVLVKFVQDERVI**Y**GVNTSMGGFVDHLVPVSQARQLQENLINAVATNVGAYLDD TTARTIMLSRIVSLARGNSAITPANLDKLVAVLNAGIVPCIPEKGSLGTSGDLGPLAAIALVCAGQWKARYNGQIMPGRQALSEAGVEPMELSY KDGLALINGTSGMVGLGTMVLQAARRLVDRYLQVSALSVEGLAGMTKPFDPRVHGVKPHRGQRQVASRLWEGLADSHLAVNELDTEQTLAGEMG TVAKAGSLAIEDAYSIKCTPQILGPVVDVLDRIGATLQDELNSSNDNPIVLPEEAEVFHNGHFHGQYVAMAMDHLNMALATVTNLANRRVDRFL DKSNSNGLPAFLCREDPGLRLGLMGGQFMTASITAETRTLTIPMSVQSLTSTADFQDIVSFGFVAARRAREVLTNAAYVVAFELLCACQAVDIR GADKLSSFTRPLYERTRKIVPFFDRDETITDYVEKLAADLIAGEPVDAAVAAHLEHHHHHH\*

## **Schemes**



#### Scheme S1. Staudinger reduction of pAzF to pAF using Tris(2-carboxyethyl)phosphine (TCEP).



Scheme S2. Synthetic route for the synthesis of Cbz-L-Lys-OMe.

### methyl (2s)-6-amino-2-(((benzyloxy)carbonyl)amino)hexanoate (Cbz-L-Lys-OMe)

Cbz-Lys-OH (25.00 g, 89.18 mmol, 1.00 eq) was dissolved in MeOH (270 mL, 0.33 M) and cooled to 0 °C. SOCl<sub>2</sub> (7.2 mL, 98.10 mmol, 1.10 eq) was added dropwise. The ice bath was removed, and the mixture was stirred at room temperature for 16 h. The reaction was monitored by TLC. After completion, the reaction mixture was concentrated to afford the crude product as a clear oil. The product was directly used in the next step without further purification.

\_\_\_\_

 Table S1. List of primers used in this study. Mutations are highlighted in red.

| Entry | Name                     | Oligo DNA sequence (5')                                 |
|-------|--------------------------|---------------------------------------------------------|
| 1     | LmrR_ <b>V15TAG</b> _fw  | GCT CAA ACC AAT TAG ATC CTG CTG AAT                     |
| 2     | LmrR_ <b>V15TAG</b> _rv  | ATT CAG CAG GAT <mark>CTA</mark> ATT GGT TTG AGC        |
| 3     | LmrR_ <b>M8TAG</b> _fw   | C CCG AAA GAA <mark>TAG</mark> CTG CGT GCT CAA AC       |
| 4     | LmrR_ <b>M8TAG_</b> rv   | CAG <mark>CTA</mark> TTC TTT CGG GAT TTC GGC ACC        |
| 5     | LmrR_ <b>M89TAG_</b> fw  | AC TAG CGC CTG GCG TTC GAA TCC                          |
| 6     | LmrR_ <b>M89TAG</b> _rv  | GC CAG GCG <mark>CTA</mark> GTT TTC ATG GCC GAT TTC     |
| 7     | LmrR_ <b>V15K</b> _fw    | GT GCT CAA ACC AAT <mark>AAA</mark> ATC CTG CTG AAT GTC |
| 8     | LmrR_ <b>V15K</b> _rv    | ATT GGT TTG AGC ACG CAG CAT TTC TTT CG                  |
| 9     | LmrR_ <b>M8K</b> _fw     | C CCG AAA GAA <mark>AAA</mark> CTG CGT GCT CAA ACC      |
| 10    | LmrR_ <b>M8K</b> _rv     | G CAG TTT TTC TTT CGG GAT TTC GGC ACC                   |
| 11    | LmrR_ <b>M89K</b> _fw    | C AAA CGC CTG GCG TTC GAA TCC TG                        |
| 12    | LmrR_ <b>M89K</b> _rv    | CGC CAG GCG TTT GTT TTC ATG GCC GAT TTC                 |
| 13    | BbmrR_ <b>S14TAG</b> _fw | GTT CGC GGG <mark>TAG</mark> ATA GAC ACA ATT ATT CTG    |
| 14    | BbmrR <b>_S14TAG</b> _rv | T <mark>CTA</mark> CCC GCG AAC TAA GTC GCT GTT ATT G    |
| 15    | BbmrR_ <b>S14K</b> _fw   | GTT CGC GGG <mark>AAA</mark> ATA GAC ACA ATT ATT CTG TC |
| 16    | BbmrR <b>_S14K</b> _rv   | T TTT CCC GCG AAC TAA GTC GCT GTT ATT GAG               |
| 17    | VAO_ <b>H61T</b> _fw     | CAC GAT CCA <mark>ACC</mark> CAC GTA ATG GAC CAA G      |
| 18    | VAO_ <b>H61T</b> _rv     | G <mark>GGT</mark> TGG ATC GTG GGT GTG AGT AGG          |
| 19    | VAO_ <b>D170TAG</b> _fw  | CCC TAG TTG GGC GGC GGG TCT G                           |
| 20    | VAO_ <b>D170TAG</b> _rv  | C GCC CAA <mark>CTA</mark> GGG TAC GTC TAA CCA AAG      |
| 21    | VAO_ <b>L171TAG</b> _fw  | C GAT <mark>TAG</mark> GGC GGC GGG TCT GTG              |
| 22    | VAO_ <b>L171TAG</b> _rv  | GCC GCC CTA ATC GGG TAC GTC TAAC                        |
| 23    | VAO <b>_Y187TAG_</b> fw  | G GTC GGT TAG ACC CCT TAC GGT GAC                       |
| 24    | VAO_ <b>Y187TAG</b> _rv  | G GGT CTA ACC GAC CCC ACG CTC                           |
| 25    | VAO_ <b>H422TAG</b> _fw  | C AAC GGA GCC TAG CTG TTC TTC TCT CC                    |
| 26    | VAO_ <b>H422TAG</b> _rv  | G <mark>CTA</mark> GGC TCC GTT GGG TAA CCA ATC G        |
| 27    | VAO_ <b>D170K</b> _fw    | CCCAAATTGGGCGGCGGGTCTG                                  |
| 28    | VAO_ <b>D170K</b> _rv    | CGCCCAATTTGGGTACGTCTAACCAAAG                            |
| 29    | VAO <b>_L171K</b> _fw    | CC GAT AAA GGC GGC GGG TCT GTG                          |
| 30    | VAO_ <b>L171K</b> _rv    | CC GCC TTT ATC GGG TAC GTC TAA CC                       |
| 31    | VAO <b>_Y187K</b> _fw    | G GTC GGT AAA ACC CCT TAC GGT GAC                       |
| 32    | VAO <b>_Y187K_</b> rv    | GG GGT TTT ACC GAC CCC ACG CTC                          |
| 33    | VAO_ <b>H422K</b> _fw    | C AAC GGA GCC AAA CTG TTC TTC TCT CC                    |
| 34    | VAO <b>_H422K_</b> rv    | G TTT GGC TCC GTT GGG TAA CCA ATC G                     |
| 35    | TOYE_ <b>Y27TAG</b> _fw  | G TAG AGC GCC AGT ACC GAT GGG ATG                       |
| 36    | TOYE_ <b>Y27TAG</b> _rv  | ACT GGC GCT <mark>CTA</mark> CAT ACA CAT GGG TGA C      |
| 37    | TOYE_ <b>I67TAG</b> _fw  | CGC GGT CGT <mark>TAG</mark> ACA GAT CAT GAT CTT GG     |

This journal is © The Royal Society of Chemistry 2024

| 38 | TOYE <b>_I67TAG_</b> rv  | T CTA ACG ACC GCG AGA TTC TAC TGC CGT TG              |
|----|--------------------------|-------------------------------------------------------|
| 39 | TOYE_Y168TAG_fw          | CG GCT CAC GGC <mark>TAG</mark> CTG ATA CAT GAA TTT C |
| 40 | TOYE_Y168TAG_rv          | G CTA GCC GTG AGC CGC ATG GAT TTC                     |
| 41 | TOYE <b>_Y27K</b> _fw    | G AAA AGC GCC AGT ACC GAT GGG ATG                     |
| 42 | TOYE <b>_Y27K_</b> rv    | ACT GGC GCT TTT CAT ACA CAT GGG TGAC                  |
| 43 | TOYE_ <b>I67K</b> _fw    | CGC GGT CGT <mark>AAA</mark> ACA GAT CAT GAT CTT GG   |
| 44 | TOYE_ <b>I67K</b> _rv    | T TTT ACG ACC GCG AGA TTC TAC TGC CGT TG              |
| 45 | TOYE <b>_Y168K_</b> fw   | CG GCT CAC GGC <mark>AAA</mark> CTG ATA CAT GAA TTT C |
| 46 | TOYE_ <b>Y168K</b> _rv   | G TTT GCC GTG AGC CGC ATG GAT TTC                     |
| 47 | EncP_ <b>Y54TAG</b> _fw  | GAA CGG GTA ATA <mark>TAG</mark> GGC GTA AAC ACA TCC  |
| 48 | EncP_Y54TAG_rv           | ATA TTA CCC GTT CAT CCT GTA CGA ATT TAA CCA AC        |
| 49 | EncP_ <b>N196TAG</b> _fw | G CAA GCG <mark>TAG</mark> CGT AGA TTG GTC GAT CG     |
| 50 | EncP_ <b>N196TAG</b> _rv | ACG CTA CGC TTG CAG CAC CAT TGT TCC                   |
| 51 | EncP_ <b>Y54K</b> _fw    | G CCG <mark>AAA</mark> TCA CAA GCG CGG CAG C          |
| 52 | EncP_ <b>Y54K</b> _rv    | GC TTG TGA TTT CGG CAC CAG ATG ATC AAC                |
| 53 | EncP_ <b>N196K</b> _fw   | G CAA GCG <mark>AAA</mark> CGT AGA TTG GTC GAT CG     |
| 54 | EncP_N196K_rv            | ACG TTT CGC TTG CAG CAC CAT TGT TCC                   |

## **Supporting Figures**



**Figure S1. Pocket-guided search of scaffolds**. LmrR and QacR were used as sequence templates. After an initial search, aberrant sequences were manually discarded. Redundant sequences were discarded with a 90% cut-off. Sequence diversity was analyzed by a cladogram. Templates are indicated with a blue arrow.

This journal is © The Royal Society of Chemistry 2024

## **Faraday Discussions**

## **SDS-PAGE** analysis

For SDS-PAGE analysis of all samples a PageRuler<sup>™</sup> Prestained Protein Ladder (Thermo Scientific<sup>™</sup>) marker from 10 to 180 kDa was used. For all SDS-PAGEs, abbreviations stands for: M, Marker; CE, cell-extract; CFE, cell-free extract; FT, flow-through; W, wash with 40 mM imidazole, E, elution fraction and C, concentrated sample, IP, input.



**Figure S2. SDS-PAGE of selected scaffolds**. Purifications of scaffolds were done by immobilized metal affinity chromatography (Ni<sup>+2</sup>-NTA) and affinity purification for LmrR (Strep-tag II). a) Proteins identified from pocket-guided search, BbmrR (MW 15 kDa), CdmrR (MW 15 kDa), AtRegR (MW 30 kDa), TmbrR (MW 15 kDa) and TmRegR (MW 30 kDa), 1: CE, 2: CFE, 3: insoluble fraction and 4: E. b) LmrR, MW 15 kDa, c) BbmrR MW 15 kDa, d) VAO\_H61T, MW 64 kDa, e) TOYE, MW 38 kDa and f) EncP\_R299K, MW 57 kDa.



**Figure S3. LC-MS analysis of selected scaffolds.** Mass spectrum of components (left panel) and deconvoluted ion set (right panel) of each purified scaffold. a) LmrR,  $M_{calc}$ : 15,102 Da;  $M_{obs}$ : 14,973 Da. Difference in mass corresponds to N-terminal methionine cleavage ( $\Delta$ 129 Da). b) BbmrR,  $M_{calc}$ : 15,181 Da;  $M_{obs}$ : 15,182 Da. c) VAO\_H61T,  $M_{calc}$ : 64,064 Da;  $M_{obs}$ : 63,934 Da. Difference in mass corresponds to N-terminal methionine cleavage ( $\Delta$ 129 Da). d) TOYE,  $M_{calc}$ : 39,238 Da;  $M_{obs}$ : 39,110. Difference in mass corresponds to N-terminal methionine cleavage ( $\Delta$ 129 Da). d) TOYE,  $M_{calc}$ : 57,453;  $M_{obs}$ : 57,320. Difference in mass corresponds to N-terminal methionine cleavage ( $\Delta$ 133 Da).



**Figure S4. Size-exclusion chromatography of BbmrR.** The oligomeric state of BbmrR (red line) was determined via analytical size-exclusion chromatography on a Superdex 200 10/300 gel filtration column. For comparison, LmrR (black line), described as dimer ca. 30 kDa,<sup>[21]</sup> was evaluated in the same conditions.



**Figure S5. Multiple sequence alignment.** Preliminary amino acidic sequence analysis was performed using the sequence of LmrR and a selected set of LmrR-like proteins. Analysis was performed MUltiple Sequence Comparison by Log-Expectation (MUSCLE) algorithm using Geneious Prime<sup>®</sup> 2021.2.2. with ClustalW and UPGMB iteration methods.



**Figure S6. SDS-PAGE of lysine and pAzF variants.** Purifications of scaffolds were done by immobilized metal affinity chromatography (Ni<sup>+2</sup>- NTA) and affinity purification for LmrR variants (Strep-tag II) a) LmrR variants ca. MW 15 kDa, b) BbmrR MW 15 kDa, c) VAO\_H61T, MW 64 kDa, d) EncP\_R299K, MW 57 kDa and TOYE, MW 38 kDa.



Figure S6. SDS-PAGE of lysine and pAzF variants. Continuation.







**Figure S8. LC-MS analysis of lysine and** *p***AF BbmrR variants.** Mass spectrum of components (left panel) and deconvoluted ion set (right panel) of each purified scaffold. BbmrR\_S14K.  $M_{calc}$ : 15,222 Da;  $M_{obs}$ : 15,219 Da. BbmrR\_S14*p*AF.  $M_{calc}$ : 15,256 Da ;  $M_{obs}$ : 15,283 Da. The difference in mass between the two peaks corresponds to an incomplete reduction of *p*AzF to *p*AF ( $\Delta$ 26 Da).



Figure S9. LC-MS analysis of lysine and *p*AF VAO\_H61T variants. Mass spectrum of components (left panel) and deconvoluted ion set (right panel) of each purified scaffold. a) VAO\_H61T\_L171K.  $M_{calc}$ : 64,079 Da;  $M_{obs}$ : 63,949 Da. Difference in mass corresponds to N-terminal methionine cleavage ( $\Delta$ 130 Da). b) VAO\_H61T\_Y187K.  $M_{calc}$ : 64,029 Da;  $M_{obs}$ : 63,899 Da. Difference in mass corresponds to N-terminal methionine cleavage ( $\Delta$ 130 Da). c) VAO\_H61T\_H422K.  $M_{calc}$ : 64,055 Da;  $M_{obs}$ : 63,925 Da. Difference in mass corresponds to N-terminal methionine cleavage ( $\Delta$ 130 Da). c) VAO\_H61T\_H422K.  $M_{calc}$ : 64,013 Da;  $M_{obs}$ : 63,983 Da. Difference in mass corresponds to N-terminal methionine cleavage ( $\Delta$ 130 Da). d) VAO\_H61T\_L171pAF.  $M_{calc}$ : 64,113 Da;  $M_{obs}$ : 63,983 Da. Difference in mass corresponds to N-terminal methionine cleavage ( $\Delta$ 130 Da). e) VAO\_H61T\_L171pAF.  $M_{calc}$ : 63932 Da;  $M_{obs}$ : 63,933 Da. VAO\_H61T\_H422pAF.  $M_{calc}$ : 64,089 Da;  $M_{obs}$ : 63,959 Da. Difference in mass corresponds to N-terminal methionine cleavage ( $\Delta$ 130 Da). e) VAO\_H61T\_Y187pAF.  $M_{calc}$ : 63932 Da;  $M_{obs}$ : 63,933 Da. VAO\_H61T\_H422pAF.  $M_{calc}$ : 64,089 Da;  $M_{obs}$ : 63,959 Da. Difference in mass corresponds to N-terminal methionine cleavage ( $\Delta$ 130 Da). e) VAO\_H61T\_Y187pAF.  $M_{calc}$ : 63932 Da;  $M_{obs}$ : 63,933 Da. VAO\_H61T\_H422pAF.  $M_{calc}$ : 64,089 Da;  $M_{obs}$ : 63,959 Da. Difference in mass corresponds to N-terminal methionine cleavage ( $\Delta$ 130 Da).

14 | J. Name., 2012, 00, 1-3



Figure S10. LC-MS analysis of lysine and pAF EncP\_R299K variants. Mass spectrum of components (left panel) and deconvoluted ion set (right panel) of each purified scaffold. a) EncP\_R299K\_Y54K.  $M_{calc}$ : 57,418 Da;  $M_{obs}$ : 57,290 Da. Difference in mass corresponds to N-terminal methionine cleavage ( $\Delta$ 128 Da). b) EncP\_R299K\_N196K  $M_{calc}$ : 57,467 Da;  $M_{obs}$ :57,339 Da. Difference in mass corresponds to N-terminal methionine cleavage ( $\Delta$ 128 Da). b) EncP\_R299K\_N196K  $M_{calc}$ : 57,467 Da;  $M_{obs}$ :57,339 Da. Difference in mass corresponds to N-terminal methionine cleavage ( $\Delta$ 128 Da).



Figure S11. LC-MS analysis of lysine and *p*AF TOYE variants. Mass spectrum of components (left panel) and deconvoluted ion set (right panel) of each purified scaffold. a) TOYE\_Y27K M<sub>calc</sub>: 39,203 Da; M<sub>obs</sub>: 39,075 Da. Difference in mass corresponds to N-terminal methionine cleavage ( $\Delta$ 128 Da). b) TOYE\_I67K M<sub>calc</sub>: 39,253 Da; M<sub>obs</sub>: 39,122 Difference in mass corresponds to N-terminal methionine cleavage ( $\Delta$ 131 Da). c) TOYE\_Y168K M<sub>calc</sub>: 39,203 Da; M<sub>obs</sub>: 39,077 Difference in mass corresponds to N-terminal methionine cleavage ( $\Delta$ 130 Da). d) TOYE\_Y27pAF M<sub>calc</sub>: 39,237 Da; M<sub>obs</sub>: 39,109 Da. Difference in mass corresponds to N-terminal methionine cleavage ( $\Delta$ 128 Da). e) TOYE\_I67pAF M<sub>calc</sub>: 39,287 Da; M<sub>obs</sub>: 39,154 Difference in mass corresponds to N-terminal methionine cleavage ( $\Delta$ 131 Da). f) TOYE\_Y168pAF M<sub>calc</sub>: 39,207 Da; M<sub>obs</sub>: 39,072 Difference in mass corresponds to N-terminal methionine cleavage ( $\Delta$ 131 Da). f) TOYE\_Y168pAF

16 | J. Name., 2012, 00, 1-3



**Figure S12**. **Preliminary small-scale conversion optimization.** a) Reactions were set at pH 5.5-11 in 50 mM HEPES 150 mM NaCl solution. b) Qualitative representation of reaction using 25  $\mu$ M of pyrrolidine or aniline as side-chain catalysts controls. Reactions were formulated with 1 mM *E*-cinnamaldehyde and 50 mM nitromethane.



**Figure S13. SDS-PAGE of DProK variants.** Purifications of scaffolds were done by immobilized metal affinity chromatography (Ni<sup>+2</sup>-NTA) and affinity purification for LmrR variants (Strep-tag II): a) LmrR variants ca. MW 15 kDa, b) TOYE variants MW 38 kDa, c) VAO\_H61T variants, MW 64 kDa and d) EncP\_R299K variants.

ARTICLE



**Figure S14. LC-MS analysis of DProK variants.** Mass spectrum of components (left panel) and deconvoluted ion set (right panel) of each purified scaffold. a) LmrR\_M8DProK, M<sub>calc</sub>: 15,196 Da; M<sub>obs</sub>: 15,060 Da. Difference in mass corresponds to N-terminal methionine cleavage (Δ134 Da). b) a) LmrR\_V15DProK, M<sub>calc</sub>: 15,155 Da; M<sub>obs</sub>: 14,748Da. Difference in mass corresponds to N-terminal methionine and 2x histidine cleavage (Δ407Da). c) LmrR\_M89DProK M<sub>calc</sub>: 15.196 Da; M<sub>obs</sub>: 15,060Da. Difference in mass corresponds to N-terminal methionine cleavage (Δ129 Da). d) VAO\_H61T\_L171DProK, M<sub>calc</sub>: 64,212 Da; M<sub>obs</sub>: 64,048 Da, difference in mass corresponds to N-terminal methionine cleavage (Δ129 Da). e) TOYE\_Y27DProK, M<sub>calc</sub>: 39,300 Da; M<sub>obs</sub>: 39,168, difference in mass corresponds to N-terminal methionine cleavage (Δ132 Da) f) TOYE\_I67DProK, M<sub>calc</sub>: 39,300 Da; M<sub>obs</sub>: 34,172 difference in mass corresponds to N-terminal methionine cleavage (Δ128 Da).



**Figure S15. TOYE as biocatalyst for Michael addition reaction.** Chromatograms of small-scale conversions were performed using 25 µM TOYE, a) and b) I67*D*ProK or c) and d) Y168 *D*ProK at pH 6.5 in 50 mM HEPES and 150 mM NaCl buffer. Reactions were set with 1 mM *E*-cinnamaldehyde and a) and c) 50 or b) and d) 100 mM nitromethane as nucleophile. Chromatograms were manually shifted to facilitate qualitative comparison.



**Figure S16.** Analysis of synthesized  $N^6$ -prolyl-*L*-lysine. Synthesis of ncAA *D*ProK was analysed by a) hydrogen and b) carbon NMR, d) LC-MS, and specific rotation (1 g 100 mL<sup>-1</sup> displayed +40 and +38).



**Figure S17. Analytics of substrate and product.** Synthesis of 4-nitro-3-phenylbutanal was performed using 5 µM DERA-MA enzyme as a biocatalyst in a 100 mL small-scale reaction. The reaction was formulated with 5 mM *E*-cinnamaldehyde, 50 mM nitromethane, in 50 mM HEPES, 150 mM NaCl, and 10% ethanol, pH 6.5. The product was obtained after flash chromatography with a 50% yield. The sample was analysed by a) GC and b) NMR. Calibration curves were used to calculate substrate depletion and *E*-cinnamaldehyde in the product sample. c) A calibration curve using commercial (Merck) *E*-cinnamaldehyde was used to calculate the remnant substrate obtained in the biosynthesis, then d) the calibration curve of the product was recalculated accordingly. Chromatograms for each concentration of substrate and product, and the residual plots of the calibration curves are shown.