Journal Name

ARTICLE TYPE

Cite this: DOI: 00.0000/xxxxxxxxx

Permutation Symmetry in Spin Adapted Many-Body Wave Functions

Maru Song,^a Ali Alavi,^{a,b} and Giovanni Li Manni^{*a}

Fig. 1 Absolute values of the GUGA CI vectors of a (6e, 6o) benzene cluster using (142536) and (132546) orderings. The cluster consists of localized $2p_z$ orbitals. CSFs are classified by their seniority and different seniority blocks are distinguished by vertical dashed lines. Within the seniority-4 block, the L_4 norms of (142536) and (132546) orderings are 0.3003 and 0.3243, respectively. The L_4 norms of (142536) and (132546) within the seniority-6 block are 0.3408 and 0.4823, respectively.

Table 1 Symmetry Non-Equivalent Site Orderings and Corresponding L_4 -Norms^{*a*} for two 4-Site Rhombus Clusters with $S_{loc} = 1/2$

Sym. Elem.		Symmetry Non-Equivalent Site Orderings											
Ε	1234	2314	2341	1243	1324	2413							
$C_2(z)$	3412	4132	4123	3421	3142	4231							
$C_2(\mathbf{y})$	1432	4312	4321	1423	1342	4213							
$C_2(x)$	3214	2134	2143	3241	3124	2431							
$L_4(S_{\text{tot}}=0)$	0.889	0.889	0.889	0.889	1.000	1.000							
$L_4(S_{\text{tot}}=1)$	0.847	0.847	0.889	0.889	0.863	1.000							

^b We use $J_{12} = J_{23} = J_{34} = J_{14} = -1.789$, $J_{13} = -1.000$, and $J_{24} = -2.000$.

* Corresponding Author: giovannilimanni@gmail.com, g.limanni@fkf.mpg.de

^a Electronic Structure Theory Department, Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany

^b Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom

Table 2 Symmetry Non-Equivalent Site Orderings and Corresponding L_4 -Norms^a for a 4-Site Kite Cluster with $S_{\mathsf{loc}} = 1/2$

Sym. Elem.	Symmetry Non-Equivalent Site Orderings												
$\frac{E}{C_2(z)}$	2314	3412	4132	1234	4123	1243	2341	3421	1324	3142	4231	2413	
	4312	3214	2134	1432	2143	1423	4321	3241	1342	3124	2431	4213	
$\overline{\begin{array}{c} L_4(S_{\rm tot}=0) \\ L_4(S_{\rm tot}=1) \end{array}}$	0.889	0.889	0.889	0.889	0.889	0.889	0.889	0.889	1.000	1.000	1.000	1.000	
	0.835	0.835	0.886	0.886	0.888	0.888	0.925	0.925	0.779	0.779	0.928	0.998	

 \overline{a} L₄-norm calculated from the CI eigenvectors for each site ordering. b We use $J_{12}=J_{14}=-1.638, J_{23}=J_{34}=-0.894, J_{13}=-0.741$, and $J_{24}=-1.000$.

Table 3 Symmetry Non-Equivalent Site Orderings and Corresponding L_4 -Norms^a for a 4-Site Irregular Tetrahedron Cluster with $S_{\mathsf{loc}} = 1/2$

Sym. Elem.	Symmetry Non-Equivalent Site Orderings												
$\frac{E}{\sigma}$	1342	1432	3142	4132	1324	1423	3124	4123	3412	4312	1234	1243	
	2341	2431	3241	4231	2314	2413	3214	4213	3421	4321	2134	2143	
$\overline{L_4(S_{\text{tot}}=0)}$ $L_4(S_{\text{tot}}=1)$	0.889	0.889	0.889	0.889	0.889	0.889	0.889	0.889	1.000	1.000	1.000	1.000	
	0.847	0.847	0.847	0.847	0.889	0.889	0.889	0.889	0.863	0.863	1.000	1.000	

 a L₄-norm calculated from the CI eigenvectors for each site ordering. b We use J₁₂ = -6.770, J₁₃ = J23 = -4.320, and J₁₄ = J₂₄ = J₃₄ = -3.140.

Table 4 Symmetry Non-Equivalent Site Orderings and Corresponding L_4 -Norms^a for a 4-Site Irregular Tetrahedron Cluster with $S_{loc} = 3/2$

Sym. Elem.	Symmetry Non-Equivalent Site Orderings												
$E \sigma$	1342	1432	3142	4132	1324	1423	3124	4123	3412	4312	1234	1243	
	2341	2431	3241	4231	2314	2413	3214	4213	3421	4321	2134	2143	
$\overline{\begin{array}{l} L_4(S_{\rm tot}=0)\\ L_4(S_{\rm tot}=1)\\ L_4(S_{\rm tot}=3) \end{array}}$	0.681	0.681	0.681	0.681	0.681	0.681	0.681	0.681	1.00	1.000	1.000	1.000	
	0.470	0.470	0.470	0.470	0.546	0.546	0.546	0.546	0.581	0.581	0.802	0.802	
	0.613	0.613	0.613	0.613	0.681	0.681	0.681	0.681	0.636	0.636	1.000	1.000	

 a L₄-norm calculated from the CI eigenvectors for each site ordering. b We use J₁₂ = -6.770, J₁₃ = J23 = -4.320, and J₁₄ = J₂₄ = J₃₄ = -3.140.

Sym. Elem.				Symme	etry Non-Equi	valent Site Or	derings			
Е	142536	143625	142563	143652	142365	143256	142356	143265	124536	125463
$\overline{L_4(S_{\text{tot}}=0)}$	0.291605	0.291605	0.291605	0.291605	0.416236	0.416236	0.416236	0.416236	0.416236	0.416236
$L_4(S_{\text{tot}}=1)$	0.219767	0.219767	0.219773	0.219773	0.276694	0.276694	0.278434	0.278434	0.318175	0.318175
$L_4(S_{\text{tot}}=2)$	0.192944	0.192944	0.192956	0.192956	0.208708	0.208708	0.213273	0.213273	0.280617	0.280617
$L_4(S_{\text{tot}}=3)$	0.189795	0.189795	0.189813	0.189813	0.187739	0.187739	0.194028	0.194028	0.272746	0.272746
$L_4(S_{\rm tot}=4)$	0.191527	0.191527	0.191607	0.191607	0.190432	0.190432	0.195471	0.195471	0.236338	0.236338
Ε	124563	125436	123645	126354	123654	126345	123465	126534	123456	126543
$L_4(S_{\rm tot}=0)$	0.416236	0.416236	0.431538	0.431538	0.431538	0.431538	0.468135	0.468135	0.468135	0.468135
$L_4(S_{tot}=1)$	0.318179	0.318179	0.292137	0.292137	0.293135	0.293135	0.331733	0.331733	0.324428	0.324428
$L_4(S_{tot}=2)$	0.280635	0.280635	0.224665	0.224665	0.227524	0.227524	0.265640	0.265640	0.245845	0.245845
$L_4(S_{\text{tot}}=3)$	0.272756	0.272756	0.201068	0.201068	0.205700	0.205700	0.232805	0.232805	0.213734	0.213734
$L_4(S_{\text{tot}} = 4)$	0.236554	0.236554	0.197559	0.197559	0.202504	0.202504	0.217486	0.217486	0.207280	0.207280
E	142635	143526	134652	136452	134625	136425	142653	143562	124356	125643
$L_4(S_{\text{tot}}=0)$	0.471383	0.471383	0.471383	0.471383	0.471383	0.471383	0.471383	0.471383	0.480340	0.480340
$L_4(S_{tot}=1)$	0.332913	0.332913	0.355124	0.355124	0.355128	0.355128	0.337523	0.337523	0.331241	0.331241
$L_4(S_{tot}=2)$	0.257797	0.257797	0.307266	0.307266	0.307280	0.307280	0.264773	0.264773	0.251096	0.251096
$L_4(S_{tot}=3)$	0.224646	0.224646	0.293867	0.293867	0.293879	0.293879	0.231316	0.231316	0.216035	0.216035
$L_4(S_{\rm tot}=4)$	0.219303	0.219303	0.278047	0.278047	0.278153	0.278153	0.224180	0.224180	0.206298	0.206298
Ε	124365	125634	134265	136245	124635	125364	124653	125346	134256	136254
$L_4(S_{\text{tot}}=0)$	0.480340	0.480340	0.632198	0.632198	0.632198	0.632198	0.632198	0.632198	0.632198	0.632198
$L_4(S_{tot}=1)$	0.339496	0.339496	0.423450	0.423450	0.427328	0.427328	0.459971	0.459971	0.430079	0.430079
$L_4(S_{tot}=2)$	0.270617	0.270617	0.311060	0.311060	0.312347	0.312347	0.365193	0.365193	0.325974	0.325974
$L_4(S_{tot}=3)$	0.235881	0.235881	0.268057	0.268057	0.257556	0.257556	0.309530	0.309530	0.281832	0.281832
$L_4(S_{\text{tot}}=4)$	0.217332	0.217332	0.258340	0.258340	0.238293	0.238293	0.269477	0.269477	0.267279	0.267279
Ε	132456	132654	123564	126435	132465	132645	123546	126453	134526	136524
$L_4(S_{\text{tot}}=0)$	0.648718	0.648718	0.648718	0.648718	0.648718	0.648718	0.648718	0.648718	0.762381	0.762381
$L_4(S_{tot}=1)$	0.437035	0.437035	0.439802	0.439802	0.443763	0.443763	0.468612	0.468612	0.527784	0.527784
$L_4(S_{tot}=2)$	0.319355	0.319355	0.321913	0.321913	0.338498	0.338498	0.369095	0.369095	0.392766	0.392766
$L_4(S_{\text{tot}}=3)$	0.268387	0.268387	0.264519	0.264519	0.291311	0.291311	0.311348	0.311348	0.324011	0.324011
$L_4(S_{\text{tot}}=4)$	0.253824	0.253824	0.242747	0.242747	0.269766	0.269766	0.270352	0.270352	0.296710	0.296710
Е	134562	136542	135426	135624	135462	135642	135246	135264	132546	132564
$\overline{L_4(S_{\text{tot}}=0)}$	0.762381	0.762381	0.903035	0.903035	0.903035	0.903035	0.903265	0.903265	0.942394	0.942394
$L_4(S_{\text{tot}}=1)$	0.547272	0.547272	0.631282	0.631282	0.631344	0.631344	0.631353	0.631353	0.650726	0.650726
$L_4(S_{\text{tot}}=2)$	0.424058	0.424058	0.470572	0.470572	0.470672	0.470672	0.470556	0.470556	0.473444	0.473444
$L_4(S_{\text{tot}} = 3)$	0.354116	0.354116	0.381139	0.381139	0.381073	0.381073	0.381019	0.381019	0.370511	0.370511
$L_4(S_{\text{tot}}=4)$	0.319076	0.319076	0.338540	0.338540	0.338478	0.338478	0.338517	0.338517	0.318171	0.318171

Table 5 Symmetry Non-Equivalent Site Orderings and Corresponding L_4 -Norms^a for a 6-Site Hexagon Cluster with $S_{loc} = 3/2$

 $\frac{1}{a} \frac{1}{L_4-norm} calculated from the CI eigenvectors for each site ordering.$ $\frac{1}{b} We use J_{12} = J_{23} = J_{34} = J_{45} = J_{56} = J_{16} = -6.700, J_{13} = J_{24} = J_{35} = J_{46} = J_{15} = J_{26} = -3.500, and J_{14} = J_{25} = J_{36} = -3.100.$