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Appendix A: ML-EFG model hyperparameter
optimization

All DFT calculations were performed with CASTEP
v22.1 [1] using the C19 pseudopotential set and PBE ex-
change correlation functional [2]. The individual compo-
nents of the EFG tensor, Vij , were converged to within
4×10−3 V/Å2 at a plane wave cutoff of 1200 eV and k-
point spacing of 0.03×2πÅ−1. The ML-EFG approach
uses λ-SOAP as the descriptor [3] which has hyperpa-
rameters l, n, rc, and σ. These describe the number of
angular components, number of radial components, cut-
off radius, and Gaussian width of the descriptor. These
hyperparameters were optimized using a combination of
a Box-Behnken [4] design-of-experiment approach with
5-fold cross validation across a training set of 11,391 Li
EFG tensors (80% of the total dataset). The optimal hy-
perparameters are l = 6, n = 6, rc = 6.0 and σ = 0.3,
which have a mean absolute error (MAE) of 7.4 kHz in
ωQ over the remaining 3057 Li environments (20% of the
total data set) in the test set, which was withheld from
cross validation. The MAE in CQ and η is given in Fig-
ure S1. There is good Pearson correlation in both cases
(r > 0.85) and low MAE (6.8 kHz MAE in CQ and 0.99
MAE in η).

FIG. S1. MAE over test set for CQ and η Histogram
and correlation plot for CQ and η evaluated over the 20%
separated test set of 2057 Li environments in the ML-EFG
model.

By testing the model using 11,391 Li EFG tensors on
four additional large-scale structures withheld from train-
ing (results shown in Figure S2), we show that the ML-
EFG model can be extended to the large LPS structures
in our β-LPS and am-LPS simulations. The MAE in ωQ

over four large structures extracted from the UFP-MD
trajectories is 9.2 kHz, which is within experimental ac-

curacy of 7Li SAE.

FIG. S2. MAE in ωQ for four large structures extracted
from the UFP-MD trajectories The left panel shows the
MAE and distribution of ωQ for a set of two β-LPS and two
am-LPS structures extracted from the 1 µs UFP-MD simu-
lations. Two of the structures are shown in the right panel,
with PS4 tetrahedra shown in purple (P) and yellow (S) and
Li atoms shown in green.

Appendix B: Calculating autocorrelation functions

For all autocorrelation function calculations of β- and
am-LPS, snapshots were extracted every 100 ps across
the full trajectory. For the 1 µs calculations, this resulted
in 10,000 total snapshots over which the 7Li EFG tensors
were predicted. The am-LPS structure has 576 atoms
total with the stoichiometry Li3PS4, so there are a total
of 216 Li atom trajectories in am-LPS over which the
⟨ACFωQ

⟩ is averaged. For β-LPS there are 144 Li atoms,
which ⟨ACFωQ

⟩ is averaged over, and for ⟨ACFCQ
⟩, the

average is taken over only the Li ions which hop during
the simulation (13 sites at 300 K and 102 sites at 350K).

Both ⟨ACFωQ
⟩ and ⟨ACFCQ

⟩ were calculated using a
sliding window averaging method in order to reduce the
numerical noise between ω̄Q or C̄Q at different timesteps,
ti. The sliding window average was 10 ns for ⟨ACFωQ

⟩
and 1 ns for ⟨ACFCQ

⟩. For the individual atom ACFCQ

shown in Figures 5 and S3, the window was 10 ns to
highlight the differences between LiS4 and LiS6. We
can justify the validity of using the sliding window av-
eraging through ergodicity, as averaging over a longer
timescale is equivalent to averaging over a larger num-
ber of Li atoms at a fixed time. In addition, in order to
account for the equilibration within the am-LPS struc-
ture, the initial ωQ(t0) used to reference the ⟨ACFωQ

⟩
was taken as the average over the first 100 frames, or
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⟨ωQ(t0), ωQ(t1), ...ωQ(t100)⟩. Finally, the ⟨ACFωQ
⟩ is

normalized between [0, 1].

Appendix C: Simulations at 350 K

Given the slow diffusion time in β-LPS, there are a low
number of hops (13 in total out of 144 Li atoms) at 300K,
and for that reason, we have included another trajectory
at 350K for β-LPS which has 102 hops in 1 µs. The
corresponding hopping rate at 350 K is 1.70×106 s−1, as
extracted from the ⟨ACFCQ

⟩ shown in Figure S3. This
is an order of magnitude faster than for β-LPS at 300 K,
which is the expected difference in hopping rates between
these two temperatures.

FIG. S3. ⟨ACFCQ⟩ for β-LPS at 350K The calculated
⟨ACFCQ⟩ for a 1 µs trajectory of β-LPS at 350K gives a
decay rate of 0.59 µs or a Li hopping rate of 1.70×106 s−1.
Of the total 144 Li atoms in the cell, 102 atoms experienced
a Li hopping event during the 1 µs simulation. The top panel
distinguishes hopping events based on the initial site the Li
atom was in at time t = 0. Initial LiS6 sites (green) and
initial LiS4 sites (blue). The ACFCQ of each hopping event
is labeled.

In addition to the ⟨ACFCQ
⟩ over the 1 µs simulation,

we also compare the angles θ and ϕ across the different
sites in β-LPS in Figure S4. In the top panel, we find
that for the Li atoms which remained in their original
site, the angles (θ, ϕ) were centered around (π/2, 0) for
LiS4 tetrahedra and (π/2±π/6, ±π/4) for LiS6. For the
Li sites which experience a hopping event at some point
during the 1 µs simulation, we separate these into Li-ions
which started out at a LiS4 and LiS6 site, respectively.
As expected, the distribution of angles is wider for the
hopping sites than for those that do not hop, but the
majority of the hopping sites are LiS6 sites which hop to
another LiS6 site. We can see this in the LiS6 hop his-
togram (bottom right Figure S4) which has the highest

density of (θ, ϕ) at (π/2±π/6, ±π/4), which are all LiS6

sites. Whereas, the LiS4 hopping sites have a distribu-
tion of angles at both (π/2±π/6, ±π/4), and (π/2, 0),
indicating that some ions from LiS4 sites hop into LiS6

sites. However, all of these hopping events are masked
in the ⟨ACFωQ

⟩, as in Figure 3, and are only shown here
in Figure S4 by decomposing the Li trajectories by their
angular components.

FIG. S4. Distribution of θ and ϕ in β-LPS MD at 350K
separated by local environment. The four heatmaps
show, qualitatively, the different angular environments ac-
cessed during the 1 µs simulation for sites which do not expe-
rience a hopping event (top) and sites which do experience a
hopping event (bottom) starting from either an LiS4 or LiS6

site. The histograms are colored by the number of Li sites
across the trajectory which have a given (θ,ϕ).

Appendix D: Technical details of the UFP fitting

The UFP-MD simulations for training are executed at
temperatures ranging from 300 K to 1000 K, using a time
step of 2 fs, and a simulation time of either 1 ns or 1 µs in
the NpT ensemble. All DFT reference calculations used
for generating the UFP are performed using FHI-AIMS
[5], the PBE exchange-correlation functional [6] and a
2×2×2 k-point sampling. Hyperparameter optimization
was performed and the results are shown in Table I. The
RDFs of β-LPS and am-LPS compared to AIMD from
[7, 8] are shown in Figure S5.

Finally, to compare the atom dynamics in the UFP ver-
sus another high quality machine learning potential for
LPS, we simulated a 1 ns trajectory at 500K for both β-
and am-LPS using the UFP [9] and TurboGAP [10]. The
resulting MSDs are shown in Figure S6, and we find that
for am-LPS the MSD is comparable between TurboGAP
and the UFP, and for β-LPS we have a five times faster
transport in the TurboGAP compared to UFP. This can
be explained by a insufficient barrier sampling in the ap-
proaches, as the fitting of the interatomic potentials is
done using snapshots from MD simulations. Those snap-
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TABLE I. Hyperparameters of the UFP
Description 2B 3B
cutoff 6 Å 5 Å
lower cutoff 1 Å 1 Å
spline distance 0.4 Å 0.4 Å
ridge regularisation 1e-5 1e-6
curvature regularisation 1e-5 1e-5
κ 0.1
leading trim 0
trailing trim 3

FIG. S5. Radial distribution functions of β-LPS and
am-LPS in comparison to AIMD references. β-LPS
(top) is compared to the AIMD RDF from Sadowski et al. [7]
and am-LPS (bottom) to the AIMD RDF from Smith et al
[8].

shots are strongly biased towards the minima and a bet-
ter estimate of the barrier height could be achieved by
including nudged elastic band [11] trajectories from DFT
into the training sets of both MLIPs.

Appendix E: Technical details of jump detection

For the discretization in order to detect jumps, we uti-
lize a hopping classification inspired by Smith et al. [8],

hi(t, a) = θ(|ri(t)− ri(t0)| − a), (S1)

FIG. S6. Mean square displacement of a 1 ns MD run
of β-LPS and am-LPS at 500K The MSD for β-LPS (left)
and am-LPS (right) is compared between 1 ns simulations
in TurboGAP [10] and UFP [9] in order to validate the Li
diffusion behavior in the UFP model.

where θ is the Heaviside function and a is a threshold
of square displacement. We set a to 3 Å and provide a
sensitivity analysis for this parameter (Figure S7). The
hopping detection method, Equation S1, is run over a
single Li trajectory until a hop is detected, and then re-
peated iteratively, using the detected hopping point as
a new starting point. Also an additional filter is used
which ensures a residence time of 0.5 ns to exclude jump
attempts from the detection. Examples of discretized Li
squared displacement trajectories of the β-LPS are shown
in Figure 2 (right).

We test the sensitivity of the calculated jump fre-
quency from MD simulations on the selected threshold
a from Equation S1 and show the result in Figure S7.
We find a plateau between 2.8 and 3.2 Å and thus select
a cutoff of 3 Å.

FIG. S7. Sensitivity of the computed jump frequency
on the selected threshold a of the absolute displace-
ment for am-LPS By varying the threshold distance, a for
computing a jump frequency we find a window in which the
jump frequency is stable (between 2.8 and 3.2 Å) and use this
to select the optimal threshold distance, 3.0 Å.
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