Nafion Coated Nanopore Electrode for Improving Electrochemical Aptamer-Based Biosensing

Grayson F. Huldin^{1,2}, Junming Huang¹, Julius Reitemeier¹, Kaiyu X. Fu^{1, 3}*

¹ Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States of America

² Materials Science and Engineering Program, University of Notre Dame, Notre Dame, Indiana 46556, United States of America

³ Berthiaume Institute for Precision Health, University of Notre Dame, Notre Dame, Indiana 46556, United States of America

* Correspondence to kfu@nd.edu

Supporting Information

Figure S1. Effect of SWV frequency on the current levels and signal changes of n-npAu upon the addition of 100 μ M DOX (n=3).

Figure S2. The Nafion thickness measurement of the membrane prepared by spin coating at various speeds from 1000 rpm to 8000 rpm (n=3).

Figure S3. SEM images of npAu (r.t.), npAu (300 °C), npAu (400 °C) from left to right,

respectively. (D), (E), (F) are enlarged view of (A), (B), (C).

Figure S4. Cross-sectional view of SEM image for n-npAu (dip coating).

Figure S5. The current levels on the left y-axis and the signal changes on the right y-axis of n-npAu (no waiting), n-npAu (10 minutes waiting) upon the addition of 100 μ M DOX, respectively (n=3).