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S1 Short reminder about the theory of curvature elasticity
In the framework of curvature elasticity, we use a coarse-grained description of the membrane in terms of a
smoothly curved surface, to which we can apply the concepts of differential geometry. Thus, the geometry of
the membrane is described in terms of its principal curvatures, C1 and C2, which define the mean curvature M
and the Gaussian curvature G via

M ≡ 1
2 (C1 +C2) and G ≡C1C2 . (S1)

Curvature energy. Furthermore, the fluid membrane is now viewed as a thin elastic sheet, the behavior
of which can be described by a few curvature-elastic parameters. We will focus here on the spontaneous
curvature model1–4 which has been shown to apply to GUV membranes with one or several phospholipids and
cholesterol5,6.

In the spontaneous curvature model, the curvature-elastic energy is equal to

Ecu = Ebe +
∫

dAκG G (S2)

and the bending energy has the form

Ebe = 2κ

∫
dA(M−m)2 . (S3)

Both Ecu and Ebe are given by integrals over the membrane area A and involve both the (local) mean curvature
M and the (local) Gaussian curvature G of the membrane. Inspection of Eqs (S2) and (S3) shows that the
curvature-elastic energy Ecu depends only on three curvature-elastic parameters: the bending rigidity κ, the
spontaneous curvature m, and the Gaussian curvature modulus κG.

Furthermore, for the closed membrane surface of a vesicle, the area integral over the Gaussian curvature G
depends only on the membrane topology, which can be characterized by the Euler characteristic χ or, equiva-
lently, by the topological genus g= 1− 1

2 χ. As a consequence, the Gaussian curvature energy is equal to

EG ≡
∫

dAκG G = 2πχκG = 2π(2−2g)κG (S4)

as follows from the Gauss-Bonnet theorem of differential geometry7. Thus, in the absence of topological trans-
formations, the Gaussian curvature energy contributes a topological constant that does not affect the vesicle
shape. As a consequence, we are then left with two curvature-elastic parameters, the bending rigidity κ and the
spontaneous curvature m.

Shape functional for vesicle shapes In order to determine the shapes of giant vesicles, one has to impose
additional constraints on the vesicle volume V and membrane area A. These constraints are taken into account
via two Lagrange multiplier, ∆P and Σ′, which are conjugate to volume V and area A. The vesicle shape is then
obtained by minimization of the elastic shape functional

Fel =−∆PV +Σ
′A+Ebe (S5)

for fixed volume V and fixed area A. Both Lagrange multipliers have a simple physical interpretation. The
Lagrange multiplier ∆P is equal to the pressure difference

∆P = Pin −Pex (S6)

between the interior pressure Pin within the vesicle compartment and the exterior pressure Pex in the external
compartment. Furthermore, it turns out that the Langrange multiplier Σ′ is equal to the mechanical membrane
tension Σ, that is,8

Σ
′ = Σ = KA(A−A0)/A0 (S7)

where we used the expression for the mechanical tension Σ in Eq (1) of the main text. This identity holds for
all stable vesicle shapes as described by local minima of the shape functional Fel and for all saddle points of Fel.
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Shape parameters and morphology diagram. The shape functional Fel in Eq (S5) depends (i) on two
curvature-elastic parameters, the bending rigidity κ and the spontaneous curvature m, which determine the
elastic bending energy Ebe in Eq (S3), as well as (ii) on two geometric parameters, the vesicle volume V and the
membrane area A. Using the vesicle size Rve as defined by

Rve ≡
√

A/(4π) (S8)

as the unit of length and the bending rigidity κ as the unit of energy, we obtain two dimensionless shape
parameters as given by the volume-to-area ratio

v̄ ≡ V
4π

3 R3
ve

= 6
√

π
V

A3/2 (S9)

and by the rescaled spontaneous curvature
m̄ ≡ mRve . (S10)

The volume-to-area ratio v̄ is limited to the range 0< v̄≤ 1 where the upper limit v̄= 1 corresponds to a spherical
shape as follows from the isoperimetric inequality.9,10 Any vesicle shape can now be specified in terms of the
two shape parameters v̄ and m̄, which define the morphology diagram.

Measurement of curvature-elastic tension. Micropipette aspiration of tubulated vesicles as in Fig S1 a can
be used to measure the curvature-elastic tension σ = 2κm2 defined in Eq (5). Experimental data for giant vesi-
cles enclosed by POPC membranes and doped with the glycolipid (or ganglioside) GM1 are shown in Fig S1 b.
These micropipette experiments are challenging because they require very low aspiration pressures.
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Figure S1 (a-d) Tube retraction from a tubulated GUV (red) by micropipette aspiration: (a) The spherical vesicle comes into
contact with a micropipette of radius Rpip; (b) With increasing suction pressure, some of the nanotubes are retracted, the vesicle
develops a tongue that has the form of a spherical cap with radius Rto, and the large spherical membrane segment outside of the
pipette attains the radius Rlss; (c) When the suction pressure reaches a critical value, the cap-like tongue becomes a hemisphere
with radius Rto = Rpip, and the vesicle membrane starts to flow into the micropipette; (d) Depending on the membrane area
stored in the nanotubes, the flow within the membrane stops as soon as all nanotubes have been retracted (d, top) or continues
until the vesicle is completely aspirated into the pipette (d, bottom); and (e) Direct measurement of the curvature-elastic tension
σ = 2κm2: Aspiration pressure ∆P versus curvature difference ∆C = 2/Rto −2/Rlss for 2 and 4 mole % GM1. The data are well
fitted by the linear relation ∆P ≈ σ∆C, leading to σ = (8.33±0.76)Pa µm and σ = (22.2±1.5)Pa µm for 2 and 4 mole % GM1,
respectively.11
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S2 Shape fluctuations of interfaces and membranes
Liquid-liquid interfaces and fluid membranes are two-dimensional surfaces embedded in three spatial dimen-
sions. The scaling properties of these fluctuations can be understood from simple scaling arguments, which
distinguish between “humps” of rough and “blobs” of crumpled surfaces as in Fig S2 . From a conceptual point
of view, it is useful to generalize the surface geometry and to consider (d − 1)-dimensional “surfaces” in d-
dimensions. For d = 2, we then have one-dimensional domain boundaries governed by line tension (Fig S2 a)
or flexible chain molecules of intrinsic length Lin (Fig S2 b).]]

Figure S2 (a) One-dimensional domain bound-
ary, which is, on average, parallel to the horizon-
tal dashed line. A boundary segment of projected
length L∥ forms an anisotropic “hump” of perpen-

dicular extension L⊥ ∼ Lζ

∥ with roughness exponent
ζ = 1/2; and (b) Flexible chain molecule of intrinsic
length Lin forms an isotropic “blob” of linear exten-
sion L∥ ∼ L⊥ ∼ Lν

in with the Flory exponent ν = 3/4
in two dimensions.
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Statistical weight of shape fluctuations. Now, consider a two-dimensional surface with projected area A∥ =
L2
∥. In the absence of shape fluctuations, such a surface attains a planar or flat state. The shape fluctuations

of this surface are parametrized by z = h(x1,x2) = h(⃗x) with the height variable h, which represents the local
displacements of the surface from its flat state with h(⃗x) = 0. This Monge parametrization implicitly assumes
that the surface does not fold back on itself and that such overhangs of the surface can be ignored. This
assumption is fulfilled as long as the gradients of h, corresponding to ∂h/∂x1 and ∂h/∂x1, are small.

For small gradients of h, the excess surface area arising from the shape fluctuations of the planar surface
leads to the excess energy

∆E{h}=
∫

dA∥

[
1
2 Σ′ (∇h)2 + 1

2 κ ′ (∇2h
)2
]

(S11)

which depends on the tension parameter Σ′ and the rigidity parameter κ ′. For a fluid membrane with Σ′ = Σ and
κ ′ = κ, this excess energy corresponds to the small gradient approximation of the shape functional in Eq (S5)
with zero pressure difference, ∆P = 0, and zero spontaneous curvature, m = 0. For a liquid-liquid interface, the
tension parameter Σ′ is equal to the interfacial tension Σint, which is positive as required by the thermodynamic
stability of the planar interface. Furthermore, we take κ ′ = 0 for a liquid-liquid interface.

Scaling properties of shape fluctuations. Using the Boltzmann factor ∝ exp[−∆E{h}/(kBT )] with ∆E{h} as
in Eq (S11), the perpendicular excursions of the surface humps can be estimated from the expectation value
⟨(h−⟨h⟩)2⟩= ⟨h2⟩. A Fourier decomposition of the displacement field h(⃗x) then leads to

⟨(h−⟨h⟩)2⟩= ⟨h2(⃗x)⟩=
∫ d2q

(2π)2
kBT

Σ′q2 +κ ′q4 =
∫ dq

2π
q

kBT
Σ′q2 +κ ′q4 (S12)

The q-integral involves two cutoffs, qmax ∝ 1/ℓ and qmin ∝ 1/L∥, with the molecular length scale ℓ and the linear
extension L∥ of the projected surface area. For a liquid-liquid interface with Σ′ = Σint and κ ′ = 0, one obtains12

⟨(h−⟨h⟩)2⟩=
∫ dq

2π

kBT
Σ′

intq
≈ kBT

Σint

1
2π

ln(L∥/ℓ) (S13)

where the asymptotic equality holds in the limit of large L∥. This relationship implies interface humps with
L2
⊥ ∼ ln(L∥/ℓ). On the other hand, for a tensionless membrane with Σ′ = 0 and κ ′ = κ, the expression in

Eq (S12) becomes13

⟨(h−⟨h⟩)2⟩=
∫ dq

2π

kBT
κq3 ≈ kBT

4πκ

1
q2

min
∼ kBT

κ
L2
∥ , (S14)
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which implies membrane humps with L2
⊥ ∼ L2

∥.
The overall gradient of the surface humps scales as (L⊥/L∥).14 Thus, the overall gradient of a two-dimensional

interface with L⊥ ∼
√

ln(L∥/ℓ) decreases as
√

ln(L∥/ℓ)/L∥ for large L∥. On the other hand, the overall gradient

of a two-dimensional fluid membrane with L⊥ ∼ L∥ behaves as L⊥/L∥ ∼ L0
∥ which does not decrease for large

L∥. Additional insight into the large-scale behavior of membrane humps can be obtained from the correlation
function for the normal vectors as determined in the next paragraph.

Correlation function of membrane’s normal vectors. The normal vector n̂ to the membrane surface at point
[⃗x,h(⃗x)] has the form

n̂(⃗x) = (−h1,−h2,1)/
√

1+h2
1 +h2

2 with hi ≡
∂h
∂xi

∣∣∣⃗
x
. (S15)

For small hi, the three-dimensional normal vector n̂ reduces to

n̂(⃗x)≈ (−h1,−h2,1) (S16)

and the normal-normal correlation function Cn ≡ 1
2 ⟨ [n̂(⃗x)− n̂(⃗0)]2 ⟩ attains the form

Cn(x)≈ 1
2 ⟨[∇h(⃗x)−∇h(⃗0) ]2⟩= ⟨[∇h(⃗0)]2 −∇h(⃗x)∇h(⃗0) ]⟩ . (S17)

For a tensionless membrane, the Fourier decomposition of the displacement field h then leads to

Cn(x)≈ kBT
∫ d2q

(2π)2
1− ei⃗q·⃗x

κq2 =
kBT
2πκ

∫
dq

1− J0(qx)
q

(S18)

where J0(y) is a Bessel function15 with y = qx = |⃗q| |⃗x|. The correlation function Cn as given by Eq (S18) was
studied by De Gennes and Taupin16 in the context of tensionless interfaces in microemulsions and led to their
proposal of a finite persistence length for such interfaces.

For tensionless membranes as considered here, a finite persistence length was observed in Monte Carlo sim-
ulations of dynamically triangulated surfaces.17 Above the persistence length, the membranes attain crumpled
states as displayed in Fig S3 for two different values of the rescaled bending rigidity κ/(kBT ). The scaling
behavior of these crumpled states has been analyzed in analogy to the scaling behavior of branched polymers.

Figure S3 Crumpled states of vesicle membranes in their fluid state with linear dimensions that exceed the peristence length ξp

in Eq (6). The membranes are discretized as dynamically triangulated surfaces with rescaled bending rigidity κ/(kBT ) = 0.35 in
(a) and κ/(kBT ) = 2.4 in (b). Both configurations in (a) and (b) belong to the parameter regime, in which the scaling behavior
of the vesicle membranes is analogous to the behavior of branched polymers. It is interesting to note that the membrane
configuration in (b) resembles a multispherical vesicle with open necks. Reused with permission from ref. 17, Americal Physical
Society, 1995.
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S3 Bilayer and leaflet tensions of planar bilayers
For a planar bilayer, the stress profile, denoted by s = s(z), depends on the coordinate z perpendicular to the
bilayer. The mechanical tension Σ of the planar bilayer is then obtained by

Σ =
∫ +∞

−∞

dzs(z) , (S19)

that is, by integrating the whole stress profile s(z) over z. In practise, the stress profile s(z) decays rather fast
away from the bilayer, which implies that one can restrict the integration by some cut-off values zmin and zmax.

In order to decompose the bilayer tension Σ into the two leaflet tensions, we now distinguish the lower
from the upper leaflet by the subscripts ll and ul and denote the corresponding leaflet tensions by Σll and Σul.
The lower leaflet occupies a certain range of z-values, which lie below the z-values for the upper leaflet. The
molecular interface between these two leaflets defines the midplane of the planar bilayer at z = zmid.18–20 The
leaflet tensions are then obtained from

Σll =
∫ zmid

−∞

dzs(z) and Σul =
∫ +∞

zmid

dzs(z) (S20)

which imply the bilayer tension Σ = Σll +Σul. Each leaflet tension can be negative, zero, or positive and then
leads to a compressed, tensionless, or stretched leaflet as schematically shown in Fig S4 .

00
00

LL and UL tensionless

LL compressed, UL stretched

LL stretched, UL compressed

LL and UL compressed LL and UL stretched

Figure S4 Both the lower leaflet (LL) and the upper leaflet (UL) of a planar lipid bilayer can be compressed, tensionless, or
stretched, when its leaflet tension is negative, zero, or positive. As indicated by the arrows, a compressed leaflet is subject to a
negative leaflet tension whereas a stretched leaflet experiences a positive leaflet tension. For the elastic state in the middle, both
leaflets experience zero leaflet tensions and are, thus, tensionless, which defines the reference state of the bilayer with optimal
area per lipid and optimal volume per lipid. The distinction between compressed, tensionless, and stretched leaflets also applies
to vesicle bilayers. It is important to note that, in contrast to a lipid bilayer, a soap film is enclosed by two liquid-gas interfaces,
both of which have a positive interfacial tension. Thus, if one wants to draw an analogy between a lipid bilayer and a soap film,
this analogy is restricted to the elastic state on the right, for which both leaflets are stretched.

S4 Elastic deformations of symmetric bilayers
First, let us consider a planar and symmetric bilayer consisting of N lipids, with N/2 lipids assembled in each
leaflet. For simplicity, we will focus on a one-component bilayer. If the bilayer contains several lipid components,
the bilayer is symmetric if both leaflets have the same uniform composition. A planar and symmetric bilayer is
subject to equal leaflet tensions, Σul = Σll, corresponding to the red data points in Fig 3 of the main text. By
increasing the projected area A∥ which is the base area of the simulation box, we also increase the relative area
dilation

∆a ≡ (A∥−A0)/A0 = (a−a0)/a0 (S21)
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where we introduced the area per lipid, a ≡ 2A∥/N, and the optimal area per lipid, a0. The relative area dilation
∆a of a symmetric bilayer determines the mechanical tension Σ via Σ = KA ∆a as in Eq (1) of the main text.

Figure S5 Elastic ELT deformations of a symmetric planar bilayer with 841 lipids in each leaflet: Simulation snapshots of such
a bilayer for three different base areas of the simulation box corresponding to (a) a compressed, (b) the tensionless, and (c) a
stretched bilayer. respectively.21 The volume of the simulation box has the same value in all three cases. The resulting leaflet
tension Σle = Σll = Σul is displayed in Fig S6 as a function of area per lipid and volume per lipid.

It is useful to introduce the area compressibilities of the individual leaflets via

Σll = Kll
all −a0

a0
and Σul = Kul

aul −a0

a0
(S22)

where we took into account that the tensionless lower and the tensionless upper leaflet have the same area per
lipid, a0. A symmetric bilayer is also characterized by all = aul and Kll = Kul. The bilayer tension Σ = Σll +Σul of
a planar and symmetric bilayer is then governed by the area compressibility KA = Kll +Kul = 2Kll = 2Kul.

Alternatively, we may describe the elastic response of the planar bilayer in terms of volume per lipid, v,
as determined by Voronoi tesselation and introduce the lateral volume compressibilities Bll and Bul of the two
leaflets by21

Σll = Bll
vll − v0

v0
and Σul = Bul

vul − v0

v0
, (S23)

where the tensionless lower and the tensionless upper leaflet have the same volume per lipid, v0. A symmetric
bilayer is also characterized by vll = vul and Bll = Bul. It then follows from Σ = Σll +Σul that the lateral volume
compressibility Bsy of a planar and symmetric bilayer satisfies Bsy = Bll +Bul = 2Bll = 2Bul.

For the geometry of planar bilayers, both the area per lipid, a, and the volume per lipid, v, can be defined
in a unique manner. This equivalence no longer applies for vesicle bilayers. Indeed, in order to define an area
per lipid for vesicle bilayers, one necessarily has to project the curved leaflets onto some auxiliary surfaces. The
deduced area per lipid depends on the ambiguous choice of these auxiliary surfaces. In contrast, the volume
per lipid is uniquely defined by means of Voronoi tessellation, as illustrated in Fig S7 for planar bilayers.

One should note that the simple relationships KA = Kll +Kul and Bsy = Bll +Bul between the bilayer com-
pressibilities and the leaflet compressibilities do not hold for planar and asymmetric bilayers with all ̸= aul and
vll ̸= vul. Likewise, these relationships do not apply to vesicle bilayers, see Sect 4 of the main text.
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(a)                                                                           (b)                                                                                

Figure S6 Leaflet tension Σle = Σll = Σul of a planar and symmetric planar bilayer versus projected area per lipid in (a) and
versus volume per lipid in (b).21 The volumes per lipid were determined by Voronoi tesselation as in Fig S7 . Slope and intercept
of the linear fit define the values of the area compressibility and the lateral volume compressibility as follows from Eqs (S22)
and (S23).

(a)                               (b)                                          (c)                              (d)

Figure S7 Three-dimensional Voronoi tessellation of the molecular model built up from different types of beads: (a) Confor-
mation of a planar and symmetric bilayer with Nll = Nul = 841 and tensionless leaflets. The lipids in the lower leaflet have green
head groups and blue chain beads; the lipids in the upper leaflet have red head groups and yellow chain beads; (b) Typical
conformation of a single lipid molecule within the upper leaflet in ball-and-stick representation; (c) Voronoi cells assigned to
each bead of the bilayer in panel a; and (d) Voronoi cells assigned to each bead of the lipid molecule in panel b.21
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Figure S8 Cumulative distribution function
Pcdf versus time t, for planar and tension-
less bilayers with Nul lipids in the upper
leaflet and Nll = 1682−Nul lipids in the lower
leaflet.22 Three sets of data for Nul = 986
(black circles), Nul = 1015 (red squares), and
Nul = 1073 (blue diamonds). These data sets
are well fitted, using least squares, by an
exponential distribution (broken lines) Inset:
Monotonic increase of the flip-flop rate ωpl

with the absolute value |∆Σ| = |Σul −Σll | of
the stress asymmetry.
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Figure S9 Structural instability and self-healing of a tensionless and asymmetric planar bilayer.22 At time t = 0, the bilayer is
initially assembled from Nul = 986 red-green lipids in the compressed upper leaflet and from Nll = 696 purple-blue lipids in the
stretched lower leaflet: (a) At t = 200ns, the metastable bilayer bulges towards the upper leaflet; (b) At t = 1000ns, a globular
micelle has been formed from about 100 red-green lipids that were expelled from the upper leaflet; (c) At t = 1120ns, red-green
lipids move towards the stretched lower leaflet along the contact line between micelle and bilayer; and (d) This lipid exchange
leads to a self-healing process of the bilayer that is completed at t = 1700ns. At this time point, 93 red-green lipids have moved
from the upper to the lower leaflet. The restored bilayer remains stable without flip-flops until the end of the simulations at
t = 12.5 µs.
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S5 Relaxation of leaflet tensions via frequent lipid flip-flops
Consider a tensionless planar bilayer with opposite leaflet tensions and several lipid components, including
one component that undergoes frequent flip-flops. These flip-flops act to reduce the magnitude of the leaflet
tensions and to move the bilayer towards the relaxed reference state with tensionless leaflets. Such a relaxation
process has been observed in molecular dynamics simulations of a lipid bilayer that contained the phospholipid
POPC and the glycolipid (ganglioside) GM1, both of which do not undergo flip-flops, and, in addition, a model
cholesterol, which moved frequently from one leaflet to the other, as schematically shown in Fig. S10 .23

Figure S10 (Top) Bilayer membrane with two lipid components (blue and red) that do not undergo flip-flops from one leaflet
to the other. The bilayer tension Σ = Σll +Σul is (close to) zero, with a compressed upper leaflet and a stretched lower leaflet;
(Middle) Cholesterol (orange) is added as a third component to both leaflets so that they initially contain the same number
of cholesterol molecules; and (Bottom) After the cholesterol has been redistributed by flip-flops, both leaflets have attained a
tensionless state as indicated by the relaxed springs.23

Figure S11 Fluctuation spec-
tra S(q) of symmetric and ten-
sionless bilayers with two lipid
components as a function of
wavenumber q. The different
panels belong to different lipid
mole fractions φle of one lipid
component, which has the same
value in both leaflets. For all
mole fractions, the low-q part of
the spectrum behaves as S(q)∼
kBT/(κq4) with composition-
dependent κ-values. These
bending rigidities κ satisfy the
relationship κ = KAℓ

2
me/48 for

all lipid compositions with the
area compressibility modulus KA

and the membrane thickness
ℓme, as determined by indepen-
dent analysis.24
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Figure S12 Cumulative distribution function Pcdf versus time t for tensionless vesicle bilayers with Nol lipids in the outer and
Nil = 2875−Nol lipids in the inner leaflets. Three sets of data are displayed with Nol = 2105 (black circles), Nol = 2125 (red
squares), and Nol = 2150 (blue diamonds) lipids in the outer leaflet, which belong to the left instability regime in Fig 6 of the
main text. Each cumulative distribution has a sigmoidal shape and can be fitted to a Weibull distribution with dimensionless
shape parameter k > 0 and rate paramter ωve.22 Inset: Monotonic increase of the rate parameter ωve with the absolute value
|∆Σve| of the stress asymmetry.

Figure S13 Stress-induced instability and self-healing of a vesicle bilayer that consists of Nol +Nil = 2875 lipids in both leaflets.22

At time t = 0, the bilayer is assembled from Nol = 2105 and Nil = 770 lipids and the vesicle volume is adjusted in such a way
that the outer leaflet is compressed by the negative leaflet tension Σol = −1.97kBT/d2 and the inner leaflet is stretched by
the positive leaflet tension Σil = +1.94kBT/d2: (a) At t = 780ns, the compressed outer leaflet leads to some kinky bilayer
deformations; (b) At t = 1720ns, a cylindrical micelle has been formed from about 180 red-green lipids that were expelled from
the outer leaflet; (c) At t = 2160ns, lipids move towards the stretched inner leaflet along the contact line between micelle and
bilayer; and (d) At t = 2710ns, the self-healing process via stress-induced lipid exchange has been completed and 111 red-green
lipids have moved to the inner leaflet. The restored bilayer undergoes no further flip-flops until the end of the simulations.
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Figure S14 Fusion probability for nanovesicles interacting with planar bilayers versus rescaled area per lipid, ā ≡ a/d2, for
vesicles with a diameter of 14 nm in (a) and a diameter of 28 nm in (b). In both cases, the fusion probability, which represents
the fraction of fusion attempts that lead to fusion within 20 µs, exhibits a maximum at āmax with 1.45 < āmax < 1.5 in (a)
and āmax ≃ 1.5 in (b) corresponding to the bilayer tensions Σ̄ ≡ Σd2/kBT ≃ 3.36 and Σ̄ ≃ 4.25, respectively. At higher tensions,
fusion becomes less likely because of membrane rupture; at lower tensions, fusion is more and more replaced by adhesion or
hemifusion. A linear extrapolation of the data to smaller values of ā indicates a fusion threshold for area per lipid and, thus, for
bilayer tension, Σ̄th. Reused with permission from ref. 25, Elsevier, 2009.

S6 General properties of multispherical vesicle shapes
Local shape equation for spherical membrane segments. The local shape equation is obtained by mini-
mizing the elastic shape functional Fel in Eq (3) of the main text. In general, this local shape equation is quite
difficult to solve but becomes much simpler for spherical membrane segments. Indeed, for a spherical segment
with constant mean curvature M = Msp, this mean curvature satisfies the quadratic equation

∆P = 2ΣtotMsp −4κmM2
sp (S24)

with the total membrane tension
Σtot ≡ Σ+2κm2 . (S25)

A detailed case-by-case analysis26 shows that there are only two physically acceptable roots to the quadratic
shape equation in Eq (S24). For positive spontaneous curvature, one obtains two positive roots for this equation
with the mean curvature Msp = Ml = 1/Rl > 0 of large spheres with radius Rl and the mean curvature Msp = Ms =
1/Rs > 0 of small spheres with radius Rs ≤ Rl. The degenerate case with Rs = Rl = R∗ corresponds to several
equally sized spheres. For negative spontaneous curvature, one obtains one positive root and one negative root,
corresponding to the positive mean curvature Msp = Ml = 1/Rl > 0 of one large spherea with radius Rl and the
negative mean curvature Msp = Ms =−1/Rs < 0 for one or several small spheres of radius Rs.

Geometry of multispheres. The geometry of a multispherical shape, consisting of large and small spheres
connected by closed membrane necks, depends only on one shape parameter, the volume-to-area ratio v̄ but is
independent of the second shape parameter as provided by the spontaneous curvature m̄ = mRve. [lipo412] To
derive this property, it is convenient to introduce the dimensionless sphere radii rl and rs via

rl ≡ Rl/Rve and rs ≡ Rs/Rve (S26)

with the vesicle size Rve =
√

A/(4π) as defined by Eq (S8).
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Now, consider a membrane of area A, which forms a multisphere with Nl large and Ns small spheres. When
expressed in terms of the dimensionless sphere radii rl and rs, the total area A of the multisphere leads to the
area relation

Nlr2
l +Nsr2

s = 1 . (S27)

Note that this relation between rl and rs depends only on the sphere numbers Nl and Ns but does not involve
any other parameter. Furthermore, the volume V of the same (Nl +Ns)-sphere leads to the volume relation

Nlr3
l ±Nsr3

s = v̄ (S28)

where the ± sign applies to positive and negative multispheres, respectively. The two relations as given by
Eqs (S27) and (S28) explicitly show that the multisphere geometry depends only on the sphere numbers Nl and
Ns as well as on the volume-to-area ratio v̄.

S7 Positive two-sphere shapes with out-buds
S7.1 Stability regime for positive two-sphere shapes.

For positive spontaneous curvature, the two-sphere shapes in Fig 10a,b of the main text involve a positive ls-
neck between the large and the small sphere. The condition for this ls-neck to be stably closed is given by the
inequality4

m ≥ Meff
ls = 1

2 (Ml +Ms) =
1
2

(
1
Rl
+ 1

Rs

)
> 0 . (S29)

In the limiting case, in which this inequality becomes an equality, we obtain the neck closure condition that
determines the line of limit shapes Lpos

1+1, see the upper boundary line of the stability regime in Fig 11 of the
main text. The lower boundary line of the stability regime in this figure is provided by another line of limit
shapes, which are provided by two equally sized spheres with radius Rl = Rs = R∗ = Rve/

√
2 and are denoted by

L2∗. In the morphology diagram, the latter line is located at v̄ = 1/
√

2 and m̄ ≥ m̄∗ =
√

2.
The two lines of limit shapes, Lpos

1+1 and Lpos
2∗ , meet at the corner point with v̄ = 1/

√
2 and m̄ = m̄∗ =

√
2. The

corresponding limit shape consists of two equally sized spheres with Ml = Ms = M∗ = m∗, which implies that the
bending energy Ebe as given by Eq (S3)† vanishes for the two-sphere limit shape at the corner point.

As discussed in Sect 5.2 of the main text, the stability regime for positive two-spheres is divided up into
several subregimes. The first subregime with positive mechanical tension, Σ > 0, is located between the line of
limit shapes Lpos

1+1 and the dashed red line in Fig 11 of the main text. The second subregime with negative me-
chanical tension, Σ < 0, is located between this dashed red line and the line of limit shapes L2∗ with m̄ > 2

√
2.

Furthermore, the small sphere transforms into a small prolate4 for sufficiently large spontaneous curvatures
with m̄ > 13.29, which is located to the right of the stability regime in Fig 11.

S7.2 Division of out-budded two-sphere vesicles

Within the stability regime for positive two-sphere shapes as displayed in Fig 12 of the main text, the vesicle
shapes are stable against the opening of the closed neck. In addition, the closed neck is subject to a constriction
force, which acts to compress the closed neck. For positive two-spheres, the constriction force f pos has the form4

f pos = 8πκ
(
m−Meff

ne
)

for m ≥ Meff
ne (S30)

with the effective mean curvature Meff
ne = Meff

ls for an ls-neck and Meff
ne = Meff

∗∗ = 1/R∗ for two equally sized spheres
with radius R∗ along the Lpos

2∗ -line. The force f pos vanishes at the Lpos
1+1-line with m = Meff

ls , including the corner
point with m =

√
2/Rve, see Fig 12 of the main text, and attains a finite and positive value when the spontaneous

curvature m exceeds the neck mean curvature Meff
ne .

The constriction force f pos as given by Eq (S30) increases when we increase the spontaneous curvature m.
For sufficiently large values of m, the constriction force f pos cleaves the closed membrane neck and divides the
two-sphere vesicle into two daughter vesicles. Such a division process has been experimentally demonstrated
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GUV label B′ C′ D† E† F†

Rve [µm] 2.7 4.2 6.16 4.60 4.10
v̄ 0.83 0.73 0.93 0.70 0.71
Meff

ne [µm−1] 0.204 0.340 0.441 0.308 0.345
X [nM] 7.8 7.8 31.2 39 15.6
mol% NTA 0.1 0.1 0.1 0.1 1
Γ [GFPs/µm2] 53.8 53.8 216 269 1076
m [µm−1] 1.45 1.45 5.81 7.26 29
m−Meff

ne [µm−1] 1.246 1.11 5.37 6.95 28.7
f pos [pN] 6.14 5.47 26.5 34.2 141
Σ [10−4mN/m] - 5.92 - 4.38 - 112 -189 - 3218

Table S1 Experimentally determined parameters for five two-sphere GUVs, denoted by B′, C′, D†, E†, and F† in Ref 6. The
geometric parameters in the first three rows are the vesicle size Rve, the volume-to-area ratio v̄, and the positive effective mean
curvature Meff

ne of the closed neck connecting the two spheres. The next four rows are the nanomolar GFP concentration X in
the exterior compartment and the mol% of NTA anchor lipids added to the membranes, which together determine the coverage
Γ of the membrane by the GFP molecules as well as the spontaneous curvature m. The last two rows display the constriction
force f pos as given by Eq (S30), which is positive and increases from D† to F†, as well as the mechanical tension Σ, which
becomes more and more negative from D† to F†, as follows from Eq (25) in the main text.

for GUVs by exposing the outer leaflet of the GUV membranes to His-tagged GFPs that bind to NTA anchor lipids
within these membranes.6 In the latter study, a two-step procedure was used to generate two-sphere shapes of
vesicles. First, the GUVs were osmotically deflated to obtain prolate shapes; second, the spontaneous curvature
was increased by increasing the GFP concentration in the exterior solution, until the vesicles formed two-sphere
shapes as in Fig S15 .

The two-sphere vesicles B′ and C′ in Fig S15 represent two-sphere shapes that were stable on the exper-

(a)                                                                       (b)

without GFP      + GFP

Figure S15 (a) Morphology diagram for giant vesicles as a function of rescaled spontaneous curvature m̄ and volume-to-area
ratio v̄. Two-sphere vesicles with positive membrane necks are stable between the two dashed lines of limit shapes L1+1 and
L2∗ (blue). The latter subregion contains the dash-dotted line, at which the spherical out-bud becomes unstable and transforms
into a prolate out-bud. The shapes denoted by A, B, and C correspond to three GUVs in the absence of GFP. Adding GFP to
the exterior solution, the three GUVs transform into the dumbbell shapes A′, B′, and C′; and (b) Confocal images of the three
vesicle shapes A′, B′, and C′ with closed membrane necks (white arrows).6
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imentally accessible time scales. The corresponding geometric and curvature-elastic parameters are given in
the first two columns of Table S1. The last three columns of this table provide the parameters of three GUVs,
denoted by D†, E†, and F† which were exposed to an increased GFP concentration X in the exterior solution,
see 4th row of Table S1, which induced a strongly increased spontaneous curvature m, see 7th row of Table S1.
As a consequence, the constriction force f pos became sufficiently large, see 8th row in the table, to cleave the
membrane neck and to divide the vesicle. Somewhat surprisingly, the GUVs were observed to undergo division
for relatively low coverages Γ as follows from the 5th row of Table S1. Based on the values for the constriction
force f pos in the 8th row of Table S1 one may conclude that vesicle division requires a constriction force that
exceeds a threshold value of about 25 pN.

Compared to Ref 6, Table S1 has been reordered and supplemented by the last row with the mechanical
tension Σ within the GUV membranes. Inspection of this last row reveals that all GUV membranes experienced
a negative mechanical tension. In addition, vesicle division was observed when the negative membrane tension
exceeds the threshold value Σth ≃−10−2 mN/m.

S8 Negative two-sphere shapes with in-buds
Stability regime of negative two-sphere shapes. For negative spontaneous curvature, the two-sphere shape
consists of a large sphere that encloses a small inverted sphere, connected by a negative ls-neck, see Fig 10e in
the main text. The stability condition for the negative ls-neck is given by the inequality4

m ≤ Meff
ls = 1

2 (Ml +Ms) =
1
2

(
1
Rl
− 1

Rs

)
< 0 . (S31)

In the limiting case, in which this inequality becomes an equality, we obtain the neck closure condition, m=Meff
ls ,

that determines the line of limit shapes Lneg
1+1, see the upper boundary line of the stability regime in Fig S16 . The

lower boundary line of the stability regime is provided by another line of limit shapes, denoted by Lneg
2∗ , which

consist of two equally sized spheres with radii r1 = r2 = r∗ = 1/
√

2 and volume-to-area ratio v̄ = 0.
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Figure S16 Stability regime (light blue) for negative (1+1)-spheres with negative spontaneous curvature m̄. This stability
regime is again bounded by two lines of limit shapes, Lneg

1+1 and Lneg
2∗ , which meet at the corner point (m̄, v̄) = (0,0). The

persistent (1+1)-spheres along the red dashed line are characterized by tensionless membranes with mechanical tension Σ = 0;
this tension is negative below the red dashed line and positive above this line. The inset displays a persistent (1+1)-shape that
remains unchanged when we vary the spontaneous curvature along the horizontal dashed line (orange). This shape invariance
is a direct consequence of the area and volume relations in Eqs (S27) and (S28). Along the red solid line, the spherical in-bud
becomes unstable with respect to the spherical harmonics Y20 and transforms into a small prolate. The end point of the red
solid line is located at (m̄, v̄) = (−3/

√
2,0) (purple star).
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Mechanical membrane tension of negative two-spheres. Along the line of limit shapes Lneg
1+1 in Fig S16 , the

neck closure condition Ml +Ms = 2Meff
ls = 2m as given by Eq (S31) implies the positive mechanical tension

Σ = 2κm2 = 2κ
(
Meff

ls
)2

for all limit shapes Lneg
1+1 (S32)

as follows from Eq (25) in the main text. One should note that the geometry of the limit shape Lneg
1+1 changes

with the spontaneous curvature m because the effective mean curvature Meff
ls = m of the ls-neck becomes more

negative with decreasing spontaneous curvature, m < 0. It also follows from Eq (25) in the main text that

Σ = 0 for m = Ml +Ms , (S33)

which applies to the persistent shapes along the red dashed line in Fig S16 . This red dashed line extends up to
the corner point (m̄, v̄) = (0,0) with two nested spheres of equal size and opposite mean curvature which implies
Ml +Ms = 0.

Along the line of limit shapes Lneg
2∗ with m̄ < 0 and v̄ = 0, the negative (1+ 1)-sphere corresponds to two

nested spheres of equal size and opposite mean curvature Ml = 1/R∗ and Ms = −1/R∗. As a consequence, the
mechanical tension is given by

Σ =−2κm2 for the limit shapes Lneg
2∗ . (S34)

For m̄ < −3/
√

2 (purple star in Fig S16 ), the inner sphere of the two nested spheres would like to transform
into a prolate but this shape transformation is suppressed by the outer sphere enclosing the inner one.

The relationships for the mechanical tension Σ as given by Eqs (S32) – (S34) can be summarized as follows.
The stability regime for negative two-spheres is divided up into several subregimes. The first subregime with
positive mechanical tension, Σ > 0, is located between the line of limit shapes Lneg

1+1 and the dashed red line in
Fig S16 . The second subregime with negative mechanical tension, Σ < 0, is located between the dashed red
line and the line of limit shapes Lneg

2∗ . The mechanical tension is equal to Σ = +2κm2 along the Lneg
1+1-line and

to Σ =−2κm2 along the Lneg
2∗ -line. Furthermore, the mechanical tension Σ varies in a continuous manner across

the corner point (m̄, v̄) = (0,0), where Σ = 0.

Possible division of in-budded two-sphere vesicles. The closed membrane neck of a negative two-sphere
vesicle is subject to the constriction force

f neg = 8πκ
(
Meff

ne −m
)

for m ≤ Meff
ne < 0 (S35)

with the effective mean curvature Meff
ne = Meff

ls for an ls-neck and Meff
ne = Meff

∗∗ =−1/R∗ for two equally sized and
nested spheres with radius R∗ along the Lneg

2∗ -line in Fig S16 . The force f neg vanishes along the Lneg
1+1-line with

m = Meff
ls , including the corner point with m = 0, see Fig S16 , and attains a finite and positive value when the

negative spontaneous curvature m is smaller than the negative effective mean curvature Meff
ne .

The constriction force f neg as given by Eq (S35) increases when we decrease the negative spontaneous
curvature m towards more negative values. For sufficiently large and negative values of m, the constriction force
f pos will cleave the closed membrane neck and divide the negative two-sphere vesicle into two nested daughter
vesicles. So far, such a division process has not been observed experimentally but should become accessible
to GUV experiments when the inner rather than the outer leaflet of the GUV membranes is exposed to His-
tagged GFPs that bind to NTA anchor lipids within these membranes. In this way, one will be able to generate
a large negative spontaneous curvature that first leads to in-budded two-sphere vesicles and subsequently to
neck cleavage and vesicle division. Alternatively, the division of negative two-spheres with in-buds should also
be accessible to experiment when cationic peptides bind to anionic lipid headgroups within the inner leaflets of
GUVs as recently proposed in Ref 27.
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S9 Aqueous two-phase system of PEG and dextran
Phase diagram and interfacial tension. One aqueous two-phase system that has been studied in some detail
is provided by aqueous solutions of PEG and dextran. The phase diagram of this system is displayed in Fig S17 a
as a function of the weight fractions wd and wp of dextran and PEG. This phase diagram includes a broad
two-phase coexistence region where the liquid mixture undergoes phase separation into a PEG-rich phase α

and a dextran-rich phase β . The phase diagram exhibits a critical demixing point, which is located at room
temperature on the binodal line with wd = 0.0451 and wp = 0.0361.
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(a)                                                                      (b)
Figure S17 Aqueous two-phase systems formed by PEG and dextran: (a) Phase diagram at room temperature in terms of the
weight fractions wd and wp of dextran and PEG. The binodal line (black and red data points) separates the one-phase region
at low weight fractions from the two-phase region at higher weight fractions. The critical demixing point is at wd = 0.0451
and wp = 0.0361. The green dashed lines represent tie lines in the two-phase region. The solution phase separates into
a PEG-rich phase α (red ∇-symbols) and a dextran-rich phase β (blue ∆-symbols); and (b) Interfacial tension Σαβ of the
liquid–liquid interface between the PEG-rich phase α and the dextran-rich phase β as a function of the polymer concentration
∆c ≡ (c− ccr)/ccr where ccr denotes the concentration at the critical demixing point. Reused with permission from ref. 28,
American Chemical Society, 2012.

The interface between the condensate droplet and the surrouding liquid phase can be characterized by the
interfacial tension Σαβ . For aqueous two-phase systems arising from PEG-dextran solutions, this interfacial
tension has been measured over four orders of magnitude as shown in Fig S17 b. In this figure, the red data
are well-fitted by the power-law behavior Σαβ ∼ ∆cµ with the critical exponent µ close to the mean value29

µ = 3/2. For comparison, the dashed red line corresponds to µ = 1.26 based on the hyper-scaling relation30

µ = 2ν where ν is the critical exponent of the correlation length. It is important to note that the interfacial
tension Σαβ provides a new tension scale for the vesicle-droplet systems.

Wetting of GUV membranes by PEG-dextran solutions. Phase separation of PEG-dextran solutions within
GUVs can lead to partial or complete wetting of the GUV membranes as schematically shown in Fig S18 . Panel
(a) of this figure displays the phase diagram of the liquid mixture as in Fig S17 a but with the coexistence region
of this mixture being divided up into two subregions. Close to the critical point, the membranes are completely
wetted by the PEG-rich α phase while they are partially wetted further away from this point. The corresponding
wetting morphologies are depicted in Fig S18 b and c.
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Figure S18 Wetting behavior of aqueous PEG-dextran solutions within giant vesicles, with the PEG-rich phase α and the
dextran-rich phase β : (a) Schematic phase diagram of PEG-dextran solutions at room temperature. The phase diagram
exhibits (i) a one-phase region (white) at low weight fractions wd and wp of the dextran and PEG polymers as well as (ii) a
two-phase region (light red and light blue) at higher weight fractions. The boundary between the one-phase and two-phase
regions defines the binodal line which contains the critical demixing point (CP, orange). The two-phase region above the binodal
is divided up into two subregions, a complete wetting (CW) subregion (light red) close to the critical point and a partial wetting
(PW) subregion (light blue), which are separated by a certain tie line (dashed purple line). The endpoints of this tie line divide
the binodal line up into a red and two blue segments; (b) CW morphology and (c) PW morphology of the vesicle-droplet system
corresponding to complete wetting of the vesicle membrane by the PEG-rich phase α and to partial wetting by both phases α

and β .31
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