Electronic Supplementary Material (ESI) for Food & Function. This journal is © The Royal Society of Chemistry 2024

Supplementary file

Core Fucosylation of Maternal Milk N-Glycans Imparts Early-life Immune Tolerance through Gut Microbiota-dependent Regulation on RORγt⁺ Treg Cells

Yuyuan Li, Xixi Ning, Zihui Zhao, Xi He, Qidi Xue, Manlin Zhou, Wenzhe Li, and

Ming Li

MATERIAL AND METHODS

Milk protein extraction and lectin blotting analysis

Each milk sample was defatted via centrifugation at 8000 g at 4°C for 30 min. Then the whey protein of the skim milk was quantitated by a bicinchoninic acid protein assay (Takara Bio, Otsu, Japan). Then, the whey proteins were subjected to 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by transfer to polyvinylidene difluoride membranes (Millipore, Bedford, MA, USA). The membranes were blocked with 5% bovine serum albumin in TBST overnight at 4°C and then incubated with 0.5 g/mL biotinylated Aleuria aurantia lectin (AAL), which preferentially recognizes fucosylated glycans, in TBST for 1 h at room temperature. After washing with TBST four times, lectin-reactive protein bands were then visualized by using an ECL kit (Beyotime).

Figure S1

Fig. 1. Comparison of core fucosylation levels of milk N-glycans and the gut microbiota between Fut8+/- and WT maternal mice. (A) Comparison of AAL binding levels of milk N-glycans between Fut8+/- and WT maternal mice. (B) Analysis of α diversity of the gut microbiota in maternal mice. (C) Relative abundance of the gut microbiota between Fut8+/- and WT maternal mice at the genus level. (D) Comparison between Fut8+/- and WT maternal mice based on the T test. (E) The comparison based on the T test at the species level. AAL: Aleuria aurantia lectin; CBB: Coomassie brilliant blue. *, p < 0.05. Mean and SEM of one independent experiment with n = 3 mice per group is displayed.