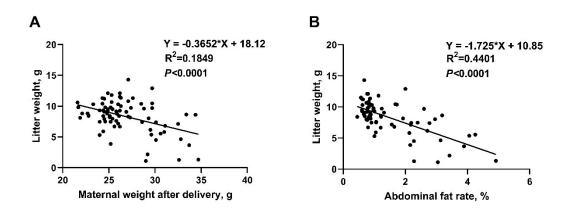
Electronic Supplementary Material (ESI) for Food & Function. This journal is © The Royal Society of Chemistry 2024

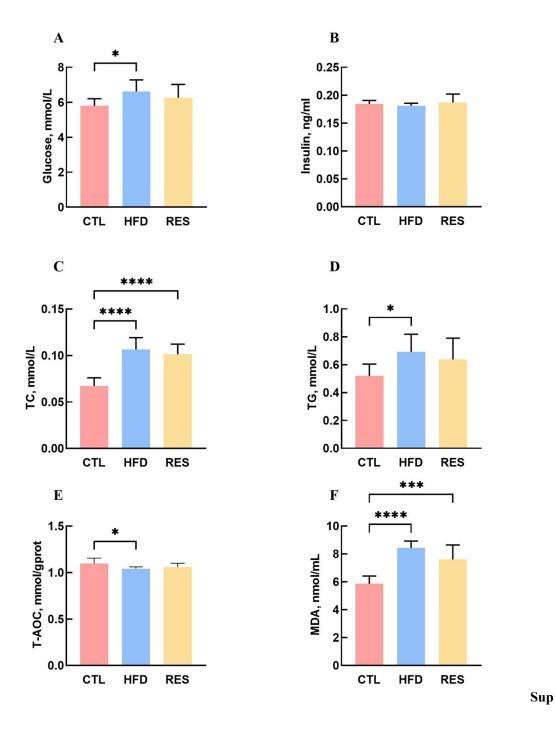

1 Supplementary Materials

2 Supplementary Table 1. Composition of the experimental diets

Item		CTL		HFD	
		gm%	kcal%	gm%	kcal%
Protein		19.2	20	26.2	20
Carbohydrate		67.3	70	26.3	20
Fat		4.3	10	34.9	60
	Total		100		100
	kcal/gm	3.85		5.24	
Ingredient		gm	kcal	gm	kcal
Casein, 30 Mesh		200	800	200	800
L-Cystine		3	12	3	12
Corn Starch		506.2	2024.8	0	0
Maltodextrin 10		125	500	125	500
Sucrose		68.8	275.2	68.8	275.2
Cellulose, BW200		50	0	50	0
Soybean Oil		25	225	25	225
Lard*		20	180	245	2205
Mineral Mix S10026		10	0	10	0
DiCalcium Phosphate		13	0	13	0
Calcium Carbonate		5.5	0	5.5	0
Potassium Citrate, 1H2O		16.5	0	16.5	0
Vitamin Mix V10001		10	40	10	40
Choline Bitartrate		2	0	2	0
FD%C Yellow Dye #5		0.04	0	0	0
FD&C Blue Dye #1		0.01	0	0.05	0
Total		773.85	4057	773.85	4057

^{3 *}Typical analysis of cholesterol in lard = 0.72 mg/gram.

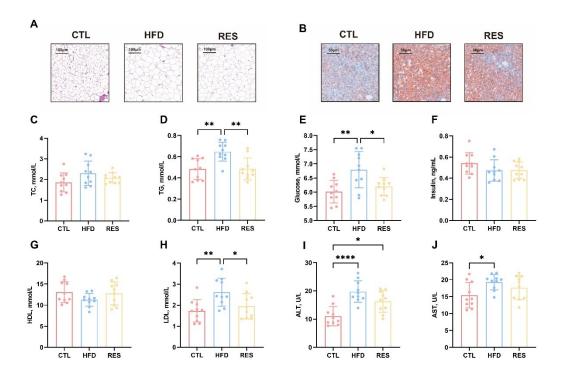
⁵ Cholesterol (mg)/kg = 279.6

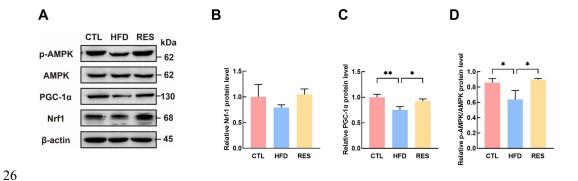


6 Supplementary Fig 1. Linear regression analysis of maternal weight and litter weight, abdominal

⁴ Cholesterol (mg)/4057 kcal = 216.4

- 7 fat rate and litter weight after delivery. The linear regression analysis of maternal weight after
- 8 delivery and litter weight (A), abdominal fat rate and litter weight (B). *P<0.05, **P<0.01,
- 9 ****P*<0.001, *****P*<0.0001.


10


11 **plementary Fig 2.** Effect of resveratrol on serum biochemical indicators in short-term high-fat diet

induced mice. Serum levels of glucose (A), insulin (B), total cholesterol (TC) (C), triglyceride (TG)

13 (D), the total antioxidant capacity (T-AOC) (E) and malondialdehyde (MDA) (F) in short-term high14 fat diet induced mice. CTL, a control group; HFD, a high-fat diet; RES, a high-fat diet containing
15 500 mg/kg resveratrol. *P<0.05, **P<0.01, ****P<0.001, ****P<0.0001. n=9.

Supplementary Fig 3. Effect of resveratrol on fat deposition and serum biochemical indicators in long-term high-fat diet induced mice. Effect of resveratrol on fat deposition and serum biochemical indicators of long-term high-fat diet induced mice. The abdominal fat HE staining (A) and oil red O staining (B) in long-term high-fat diet induced mice, serum levels of total cholesterol (TC) (C), triglyceride (TG) (D), glucose (E), insulin (F), low-density lipoprotein (LDL) (G), high-density lipoprotein (HDL) (H), alanine aminotransferase (ALT) (I), and aspartate aminotransferase (AST) (J) in long-term high-fat diet induced mice. CTL, a control group; HFD, a high-fat diet; RES, a high-fat diet containing 500 mg/kg resveratrol. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001.

Supplementary Fig 4. Effect of resveratrol on mitochondrial biogenesis, function and energy metabolism in uterus of short-term high-fat diet induced mice. Effect of resveratrol on mitochondrial biogenesis, function, and energy metabolism in uterus of short-term high-fat diet induced mice. Effect of resveratrol on the protein expression levels of phosphorylated adenosine 5'-monophosphate (AMP)-activated protein kinase (p-AMPK), peroxisome proliferator-activated receptor γ coactivator-1 α (PGC-1 α), and nuclear respiratory factors-1 (Nrf-1) (A-D) in short-term high-fat diet induced mice uterus. CTL, a control group; HFD, a high-fat diet; RES, a high-fat diet containing 500 mg/kg resveratrol. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. n=3.