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Fig. S1. AGEs content in HA and LA diet. a) Potential AGEs formatted in diet, including Nε-

(carboxymethyl)-L-lysine (CML), Nε-(carboxyethyl)-L-lysine (CEL), formyline, pyrraline (Pyrr), 

maltosine, glyoxal hydroimidazolones (GH), methylglyoxal hydroimidazolones (MGH-1-3), 

carboxymethylarginine (CMA), carboxyethylarginine (CEA), dihydroxyimidazolidine (MGH-DH), 

argpyrimidine (APY), tetrahydropyrimidine (THP) and etc. b) The UV absorption spectrum of the 

β-casein and glycated β-casein in the LA and HA diet, respectively. c) The fluorescence 

spectroscopy of the β-casein and glycated β-casein in the LA and HA diet, respectively. d) Bar 

plot showing CML content in the LA and HA diet. Significance determined using one-way 

ANOVA with Tukey post hoc analysis and expressed as mean ± SEM. ***P < 0.001. 
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CM modification. E.g. Entry 2. K43 (C2O2H2) 

 

Pyrr modification. E.g. Entry 3. K44 (C6H4O2) 

 

CE modification. E.g. Entry 5. K144 (C3H4O2) 

 

 



AP modification. E.g. Entry 9. R137 (C5H4O) 

 

GO modification. E.g. Entry 9. R137 (C2O) 

 

MGO modification. E.g. Entry 11. R198 (C3H2O) 

 

Fig. S2. The typical MS2 spectrum of the modifications in peptide mapping



   

LOD: 0.1 ng/mL 

LOQ:250 ng/mL 

Fig. S3. The standard curve of CML measured by LC-MS/MS. 
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CML of small intestine 

 

 

CML of colon 
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Fig. S4. Row data of western blot. 



 

Fig. S5. Dynamic changes in the relative abundance of microbial taxa at the phylum level 

of LA group. 
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Fig. S6. Relative abundance (%) of the genera Lactobacillus, Alloprevotella, 

Faecalibaculum, Parasutterella, and Akkermansia. Significance determined using one-way 

ANOVA with Tukey post hoc analysis and expressed as mean ± SEM. *P < 0.05, ***P < 0.001. 
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Fig. S7. Predicting potential host functional changes resulting from differential 

microbiota-metabolite interactions induced by HA diet. 
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Fig. S8. Fecal Metabolomics Changes with Varied LA Diet Intake Periods. a) Principal 

component analysis (PCA) plot comparing the effects of the LA diet intake periods on fecal 

metabolite distribution. b) Metabolites that significantly change in the same direction (blue) or 

opposite direction (red) at LA diet intake days 7 and 28 compared to 0 d are plotted as loading 

coefficients, as they contribute to PLSR scores of the fecal metabolome. Each metabolite is 

represented by a dot. c) Volcano plot depicting the significance of differences between fecal 

metabolomes of LA diet intake days 1, 7, and 28 compared to 0 d. 



Table S1. Composition of the experimental diets. 

Component 
Unit calorific value 
(kcal/g) 

LA 
(g/kg) 

Calories 
(kcal) 

13C-HA 
(g/kg) 

Calories 
(kcal) 

HA 
(g/kg) 

Calories 
(kcal) 

Soyabean oil 9 100 900 100 900 100 900 

Casein 4 200 800     

13C-labeled glycated casein 4   200 800   

Glycated casein 4     200 800 

Methionine 4 3 12 3 12 3 12 

Maize starch 4 630 2520 630 2520 630 2520 

Salt mixture* 1.6 35 56 35 56 35 56 

Vitamin mixture† 3.9 10 39 10 39 10 39 

Methyl cellulose 0 31 0 31 0 31 0 

Choline chloride 0 1 0 1 0 1 0 

Total  1010 4327 1010 4327 1010 4327 

LA, low-AGEs diet; HA, high-AGEs diet.  

* The salt mixture contained the following (mg/g): calcium phosphate diabasic, 500; sodium 

chloride, 74; potassium sulfate, 52; potassium citrate monohydrate, 20; magnesium oxide, 24; 
manganese carbonate, 3.5; ferric citrate, 6; zinc carbonate, 1.6; curpric carbonate, 0.3; 

potassium iodate, 0.01; sodium selenite, 0.01; chromium potassium sulfate, 0.55. 
† The vitamin mixture contained the following (mg/g): thiamin hydrochloride, 0.6; riboflavin, 0.6; 

pyridoxine hydrochloride, 0.7; nicotinic acid, 3; calcium pantothenate, 1.6; D-biotin, 0.05; 

cyanocobalamin, 0.001; retinyl palmitate, 1.6; DL-a-tocopheryl acetate, 20; cholecalciferol, 
0.25; menaquinone, 0.005. 



Table S2. AGE modifications in β-casein measured by peptide mapping. 

Site Entry 11-mer 
Sequence LA (13C-) HA 

R40 1 EESITRINKKI  CM; MG-H 

K43 2 ITRINKKIEKF CM CM; CE 

K44 3 TRINKKIEKFQ CE CM; Pyrr 

K47 4 NKKIEKFQSEE CE CE; Pyrr 

K114 5 GVSKVKEAMAP  CM; CE 

K120 6 EAMAPKHKEMP CM; CE CM; CE 

K122 7 MAPKHKEMPFP CM; CE CM; CE 

K128 8 EMPFPKYPVEP CM; CE CE 

R137 9 EPFTERQSLTL CE; GO-H; MG-H; AP CE; GO-H; AP 

K191 10 LPVPQKAVPYP CM; CE CM 

R198 11 VPYPQRDMPIQ CM; CE; GO-H; AP CM; CE; GO-H; MG-H 

Carboxymethylation (CM), carboxyethylation (CE), pyrrolization (Pyrr), arginine derived 

pyrimidine (AP), glyoxal derived hydroimidazolone (GO-H), and methylglyoxal derived 

hydroimidazolone (MG-H). Modifications that form CML are shown in bold.



Supplementary Methods 

Orbitrap-MS/MS-Based Peptide Mapping. 

Glycation sites of Two types of glycated casein were analyzed using a proteomics method 

described by Sjoblom et al. 1 with some modifications. Briefly, protein samples were treated by 

DTT, followed by hydrolyzed by sequencing grade modified trypsin (Sigma-Aldrich, USA). The 

Ultimate 3000 RSLC nanosystem (Thermo Scientific, USA) was connected to an AdvanceBio 

Peptide column (2.7 μm, 2.1 x 150 mm, Agilent, USA). Orbitrap Fusion (Thermo Scientific, USA) 

was used to detect the MS/MS of the peptide at the mode of positive ion. Fragmentation energy 

was applied at a slope of 3.6 V/100 Da and -4.8 V offset, and at a slope of 3.0 V/100 Da and 2 V 

offset. Analysis was completed using Proteome Discover 1.4 software as follows: 

carboxymethylation (Lys and Arg, C2H2O2), carboxyethylation (Lys and Arg, C3H4O2), 

pyrrolization (Lys, C6H4O2), furanization (Lys and Arg, C6H4O2), arginine derived pyrimidine (Arg, 

C5H4O), glyoxal derived hydroimidazolone (Arg, C2O), and methylglyoxal derived 

hydroimidazolone (Arg, C3H2O) were set as variable modification.  
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