Figure S1 Fecal bacterial composition of C57_Chow, C57_HFD, *Apoe^{-/-}*_Chow, and *Apoe^{-/-}*_HFD mice under *ad libitum* conditions. (A) Principal-coordinates analysis (PCoA) of fecal microbiota among C57_Chow, C57_HFD, *Apoe^{-/-}*_Chow, and *Apoe^{-/-}*_HFD mice; PCoA was performed based on the Bray–Curtis metric. Relative variable importance (R2) and significance (*P*) were calculated by PERMANOVA (Adonis) analysis; (B) α -diversity of the fecal microbiota among C57_Chow, C57_HFD, *Apoe^{-/-}*_Chow and *Apoe^{-/-}*_HFD mice; (C) Barplot of fecal microbiota at the phylum level. Each bar represents an individual mouse and each color an individual phylum; (D) Barplot of fecal microbiota at the genus level. Each bar represents an individual mouse and each color is an individual genus. C57_Chow, C57BL/6 mice with standard diet; C57_HFD, *Apoe^{-/-}*_HFD, *Apoe^{-/-}*_MFD, *Apoe^{-/-}*_HFD, *Apoe^{-/-}*_HFD, *Apoe^{-/-}*_HFD, *Apoe^{-/-}*_HFD, *Apoe^{-/-}*_HFD, *Apoe^{-/-}*_HFD, C57BL/6 mice with high-fat, high-cholesterol diet; *Apoe^{-/-}*_Chow, *Apoe^{-/-}*_mice with standard diet; *Apoe^{-/-}*_HFD, *Apoe[*]

*Apoe^{-/-}*Chow, and *Apoe^{-/-}*HFD mice at different time points. (A, C, E, G) Barplot of fecal microbiota at the phylum at ZT5, ZT11, ZT17, and ZT23. (B, D, F, H) Barplot of fecal microbiota at the genus at ZT5, ZT11, ZT17, and ZT23. ZT, zeitgeber; * indicates P < 0.05, ** indicates P < 0.01, *** indicates P < 0.001; n=6.

Figure S3 Dynamic change of α-diversity and β-diversity of fecal microbiota of C57_Chow, C57_HFD, *Apoe^{-/-}_***Chow and** *Apoe^{-/-}_***HFD mice.** (A, C, E, G) Dynamic change in α-diversity of fecal microbiota in C57_Chow, C57_HFD, *Apoe^{-/-}_*Chow and *Apoe^{-/-}_*HFD mice; (B, D, F, H) Dynamic change in β-diversity of fecal microbiota in C57_Chow, C57_HFD, *Apoe^{-/-}_*Chow and *Apoe^{-/-}_*HFD mice; (B, D, F, H) Dynamic change in β-diversity of fecal microbiota in C57_Chow, C57_HFD, *Apoe^{-/-}_*Chow and *Apoe^{-/-}_*HFD mice; (B, D, F, H) Dynamic change in β-diversity of fecal microbiota in C57_Chow, C57_HFD, *Apoe^{-/-}_*Chow and *Apoe^{-/-}_*Chow and *Apoe^{-/-}_*HFD mice; Relative variable importance (R2) and significance (P) were calculated by PERMANOVA (Adonis) analysis. * indicates P < 0.05, ** indicates P < 0.01; n=6.

Figure S4 Daily fluctuation of microbial functions of C57_Chow, C57_HFD, *Apoe^{-/-}_Chow, and Apoe^{-/-}_HFD mice.* (A-D) PCoA of fecal microbial function at ZT5, ZT11, ZT17, and ZT23. Relative variable importance (R2) and significance (P) were calculated by PERMANOVA (Adonis) analysis. (E-H) Heatmap depicting the relative abundance of rhythmic KEGG level3 of fecal microbial function C57_Chow, C57_HFD, *Apoe^{-/-}_Chow, and Apoe^{-/-}_HFD, respectively.* PICRUSt2 was used to predict changes in microbial functions that might be associated with changes in OTU abundance detected through 16S sequencing. The rhythmicity analysis was finished by non-parametric JTK analysis. n=6.

Figure S5 Differences in the relative abundance of species among four groups of mice at ZT5, ZT11, ZT17, and ZT23, respectively. Relative abundance was expressed as mean \pm standard error. * indicates P < 0.05, ** indicates P < 0.01, *** indicates P < 0.001; n=6.

Figure S6 OTU counts of fecal microbiota in C57_Chow, C57_HFD, *Apoe^{-/-}*_Chow, and *Apoe^{-/-}*_HFD mice at different time points within a day. (A) ZT5; (B) ZT11; (C) ZT17; (D) ZT23. Filter out OTUs within the group that have an OTU count of 0 for more than half of their occurrences within the same group. The cyan columns represent OTU belonging to Firmicutes.

Figure S7 Daily differences in microbial functions of C57_Chow, C57_HFD, Apoe^{-/-}_Chow, and Apoe^{-/-}_HFD mice. (A) C57_Chow mice; (B) C57_HFD mice; (C) Apoe^{-/-}_Chow mice; (D) Apoe^{-/-}_HFD mice. Relative abundance was expressed as mean \pm standard error. * indicates P < 0.05, ** indicates P < 0.01, *** indicates P < 0.001; n=12.

Figure S8 *B.Coccoides* intervention significantly improved the colon barrier function of *Apoe^{-/-}* mice with HCHFD. (A) *B.Coccoides* intervention significantly inhibits the expression level of NF- κ B; (B) *B.Coccoides* intervention significantly increased the expression levels of ZO-1 and Claudin1. Relative abundance was expressed as mean ± standard error. * indicates *P* < 0.05, ** indicates *P* < 0.01, *** indicates *P* < 0.001; n=4.