Supplementary Material

Lyophilized ash gourd (*Benincasa hispida* (Thunb.) Cogn.) juice alleviates diet-induced prediabetes in rat model

A. S. Athira ^{1,2}, Balan Abhijith^{2,4}, P. K. Sruthi ³, Achuthan C Ragavamenon ³, Ravi S Lankalapalli^{2,4}, M.V. Reshma ^{1,2*}

¹Agro-processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram, Kerala, India

²Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India

³Department of Biochemistry, Amala Cancer Research Centre, Amala Nagar, Thrissur-680555, Kerala, India

⁴Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, Kerala, India

*Corresponding Author: mvreshma@niist.res.in

Fig. S1: Experimental design **S2 Table S1: Composition of normal diet S**3 Table S2: Composition of high-fat diet **S4** Fig. S2: Food intake, water intake, and weight change of control and HFD group **S5** Fig. S3: Comparison of control and HFD groups hepatic redox imbalance as indicated by **S6** A. reduced glutathione B. catalase, superoxide dismutase, glutathione peroxidase, glutathione S-transferase C. thiobarbituric acid-reactive substances, and D. hydroxyproline Fig. S4: Effect of LAGJ on body weight, FBS, food and water intake of prediabetic rats **S7** Table S3: Effect of LAGJ on relative organ weight of prediabetic rats **S8** Table S4: Scoring of hepatosteatosis in various groups of experimental rats **S9** Fig. S5: Picrosirius red staining of hepatic tissues A) control, B) HFD, C) PUC, D) PC, E) **S10** LD, F) MD, and G) HD, scale bar = $50 \mu m$ Fig. S6: ¹H NMR of compound 1 in CDCl₃ **S11** Fig. S7: ¹³C NMR of compound 1 in CDCl₃ **S12** Fig. S8: HR-ESI-MS of compound 1 **S13** Fig. S9: ¹H NMR of peracetylated derivative of compound 2 in CDCl₃ **S14** Fig. S10: ¹³C NMR of peracetylated derivative of compound 2 in CDCl₃ **S15** Fig. S11: HR-ESI-MS of peracetylated derivative of compound 2 **S16** Fig. S12: ¹H NMR of peracetvlated derivative of compound 3 in CDCl₃ **S17** Fig. S13: ¹³C NMR of peracetylated derivative of compound 3 in CDCl₃ **S18** Fig. S14: HR-ESI-MS of peracetylated derivative of compound 3 **S19**

Table of Contents

Fig. S1 Experimental design (FBS; Fasting blood sugar, LAGJ; Lyophilized ash gourd juice, LD; Low dose, MD; Medium dose, HD; High dose)

Table S1.	Normal	rat chow	composition
-----------	--------	----------	-------------

Ingredient	g/100g		
Protein	18.0		
Corn starch	62.0		
Potato Starch	-		
Fat	7.0		
Vitamin	1.5		
Mineral	3.5		
Fibre	3.0		
Moisture	5.0		
Energy	3.8 cal/g		

Ingredient	g/100g
Casein	11.5
Milk powder	25
Fructose	13.8
Potato starch	15
Lard	1
Coconut oil	8.4
Sunflower oil	4
Vitamin mineral mix	9
Deoxycholic acid sodium salt	1
L-cysteine	1
Cellulose	10
Energy	3.8 cal/g

Composition of vitamin and mineral mixture: The mineral mixture contained the following (Nutritional value/kg):vitaminA,700000I.U;vitaminD3,70000I.U;vitaminE,250 mg; cobalt,150mg, copper,1200mg;

iodine,325mg;iron,1500mg;magnesium,6000mg;potassium100mg;sodium,5.9mg;manganese,1500mg; sulphur,0.72%;zinc,9600mg;DL-methionine–1000mg; calcium,25.5%,phosphorus,12.75%.

Fig. S2 A. Food intake **B**. water intake and **C**. weight change of control and HFD group over 16 weeks. Values were analyzed by independent sample t-test and expressed as the mean \pm SD of 5 rats/group; different letters indicate the significant difference between the samples at p \leq 0.05 (HFD; High-fat diet)

Fig. S3 Comparison of control and HFD groups hepatic redox imbalance as indicated by **A.** GSH **B.** SOD, catalase, GPx, GR and GST **C.** TBARS and **D.** Hyp. Values were analyzed by independent sample t-test and expressed as the mean \pm SD of 5 rat/group, different letters indicate the significant difference between the sample at $p \le 0.05$ (HFD; high-fat diet, GSH; reduced glutathione, SOD; superoxide dismutase, GPx; glutathione peroxidase, GR; glutathione reductase, GST; glutathione S-transferase, TBARS; thiobarbituric acid-reactive substances, Hyp; hydroxyproline)

Fig. S4 Effect of LAGJ on **A.** Food intake, **B**. water intake, **C**. Body weight **D**. FBS, of PUC, PC, LD, MD, and HD groups. Values were analyzed by 1-way ANOVA and expressed as the mean \pm SD of 5 rats/group; different letters indicate the significant difference between the samples at p \leq 0.05 (LAGJ; lyophilized ash gourd juice powder, FBS; fasting blood sugar; PUC; prediabetic untreated control, PC; positive control, LD; low dose, MD; medium dose; HD; high dose)

	PUC	РС	LD	MD	HD
Pancreas (%)	$0.28{\pm}0.08^{a}$	0.33±0.07ª	0.38±0.12ª	0.38±0.13ª	0.47±0.14ª
Liver (%)	2.78±0.40 ^a	2.94±0.46ª	$2.74{\pm}0.27^{a}$	$2.61{\pm}0.98^{a}$	$2.68{\pm}0.58^{a}$
Kidney (%)	0.61 ± 0.01^{a}	0.66±0.11ª	$0.60{\pm}0.09^{a}$	0.61 ± 0.14^{a}	0.60±0.11ª
Heart (%)	$0.34{\pm}0.05^{a}$	0.35±0.03ª	0.36±0.02ª	$0.31{\pm}0.08^{a}$	$0.34{\pm}0.70^{a}$

Table S3. Effect of LAGJ on relative organ weight of prediabetic rats

Table S4. Scoring of hepatosteatosis in various groups of experimental rats

Characteristics	Contro l	HFD	PUC	PC	LD	MD	HD
Macro vesicular steatosis	0	2	0	0	0	0	0
Hepatocellular ballooning	0	1	0	0	0	0	0
Portal tract inflammation	0	2	2	0	0	0	0
Glycogenated nuclei	0	1	0	0	0	0	0
Sinusoidal dilation and nuclear vacuolation	0	0	2	1	1	1	1
Fibrosis and lipogranulomas	0	1	1	1	0	0	0

Scoring indicates 0–3 based on extent of damage in the hepatocytes, where 0 is none; 1 mild; 2 is moderate; 3 is severe (PUC; prediabetic untreated control, PC; positive control, LD; low dose, MD; medium dose; HD; high dose)

Fig. S5 Picrosirius red staining of hepatic tissues **A**) control, **B**) HFD, **C**) PUC **D**) PC **E**) LD, **F**) MD, and **G**) HD, scale bar = 50 μ m (HFD; high-fat diet, PUC; prediabetic untreated control, PC; positive control, LD; low dose, MD; medium dose; HD; high dose)

Fig. S6 ¹H NMR of compound 1 in CDCl₃

Fig. S7 ¹³C NMR of compound 1 in CDCl₃

Fig. S8 HR-ESI-MS of compound 1

Fig. S9 ¹H NMR of peracetylated derivative of compound 2 in CDCl₃

Fig. S10 13 C NMR of peracetylated derivative of compound 2 in CDCl₃

Fig. S11 HR-ESI-MS of peracetylated derivative of compound 2

Fig. S12 ¹H NMR of peracetylated derivative of compound 3 in CDCl₃

Fig. S13 ¹³C NMR of peracetylated derivative of compound 3 in CDCl₃

Fig. S14 HR-ESI-MS of peracetylated derivative of compound 3