Umbrella Review of Dietary Associations with Hepatocellular Carcinoma Risk

Content

Supplement Figure 1. Methodological quality of the included papers using AMSTAR-2.

Supplement Table 1. Search strategy.

Supplement Table 2. The criteria for the quality of evidence classification.

Supplement Table 3. Excluded studies by full-text reviewing.

Supplement Table 4. Important confounders considered of each primary study included in the meta-analyses.

Supplement Table 5. Statistical analyses of quality evaluating criteria for all associations.

Supplement Table 6. Quality Assessment Using the GRADE Framework of Each Pooled Analysis Assessing Associations Between diet and the risk of hepatocellular carcinoma.

Supplement Figure 1. Methodological quality of the included papers using AMSTAR-2

AMSTAR-2 Items

*1. Did the research questions and inclusion criteria for the review include the components of *PICO*?

*2. Did the report of the review contain an explicit statement that the review methods were established prior to the conduct of the review and did the report justify any significant deviations from the protocol?

*3. Did the review authors explain their selection of the study designs for inclusion in the

review?

*4. Did the review authors use a comprehensive literature search strategy?

*5. Did the review authors perform study selection in duplicate?

*6. Did the review authors perform data extraction in duplicate?

*7. Did the review authors provide a list of excluded studies and justify the exclusions?

*8. Did the review authors describe the included studies in adequate detail?

*9. Did the review authors use a satisfactory technique for assessing the risk of bias (RoB) in individual studies that were included in the review?

*10. Did the review authors report on the sources of funding for the studies included in the review?

*11. If meta-analysis was performed, did the review authors use appropriate methods for statistical combination of results?

*12. If meta-analysis was performed, did the review authors assess the potential impact of RoB in individual studies on the results of the meta-analysis or other evidence synthesis?

*13. Did the review authors account for RoB in primary studies when interpreting/discussing the results of the review?

*14. Did the review authors provide a satisfactory explanation for, and discussion of, any heterogeneity observed in the results of the review?

*15. If they performed quantitative synthesis did the review authors carry out an adequate investigation of publication bias (small study bias) and discuss its likely impact on the results of the review?

*16. Did the review authors report any potential sources of conflict of interest, including any funding they received for conducting the review?

Rating overall confidence in the results of the review (Quality):

High: No or one non-critical weakness: the systematic review provides an accurate and comprehensive summary of the results of the available studies that address the question of interest.

Moderate: More than one non-critical weakness: the systematic review has more than one weakness but no critical flaws. It may provide an accurate summary of the results of the available studies that were included in the review.

Low: One critical flaw with or without non-critical weaknesses: the review has a critical flaw and may not provide an accurate and comprehensive summary of the available studies that address the question of interest.

Critically low: More than one critical flaw with or without non-critical weaknesses: the review has more than one critical flaw and should not be relied on to provide an accurate and comprehensive summary of the available studies.

Notes:

1) The bold items are AMSTAR-2 critical domains.

2) In the reliability classification of quality evaluation, ' Partial Yes ' is not considered as weakness.

PubM	ed	
	Search term	Search results
#1	"Diet" [Mesh]	342,247
#2	"Drinking" [Mesh]	14,896
#3	"Eating" [Mesh]	82,269
#4	"diet*"[Title/Abstract]OR"drink*"[Title/Abstract]OR"eating"[Title/Abstract]OR"food*"[Title/Abstract]OR"nutrition*"[Title/Abstract]VOR"consumption*"[Title/Abstract]VOR	2,014,855
#5	#1 OR #2 OR #3 OR #4	2,107,432
#6	"Carcinoma, Hepatocellular"[Mesh]	110,589
#7	"liver" OR "hepatocellular" [Title/Abstract]	1,363,170
#8	"adenocarcinoma*"[Title/Abstract]OR"cancer*"[Title/Abstract]OR"malign*"[Title/Abstract]OR"tumo*"[Title/Abstract]OR	4,329,627
#9	#7 AND #8	360,627
#10	#6 OR #9	375,740
#11	"meta-analysis" [Publication Type] OR "Meta-Analysis as Topic" [MeSH Terms] OR "meta-analys*" [Title/Abstract] OR "systematic review*" [Title/Abstract] OR "systematic overview*" [Title/Abstract]	509,317
#12	#5 AND #10 AND #11	482
EMBA	ASE	
	Search term	Search results
#1	'diet'/exp	453,494
#2	'drinking'/exp	29,909

Supplement Table 1. Search strategy

#3	'eating'/exp	44,462
#4	'diet*':ab,ti OR 'drink*':ab,ti OR 'eating':ab,ti OR 'food*':ab,ti OR 'nutrition*':ab,ti OR 'consumption*':ab,ti OR 'intake*':ab,ti	2,515,859
#5	#1 OR #2 OR #3 OR #4	2,595,581
#6	'liver cell carcinoma'/exp	224,991
#7	'liver':ab,ti OR 'hepatocellular':ab,ti	1,437,549
#8	'adenocarcinoma*':ti,ab OR 'cancer*':ti,ab OR 'carcino*':ti,ab OR 'malign*':ti,ab OR 'neoplas*':ti,ab OR 'tumo*':ti,ab	5,863,153
#9	#7 AND #8	457,790
#10	#6 OR #9	508,850
#11	'meta analysis'/exp	324,593
#12	'meta-analys*':ab,ti OR 'systematic review*':ab,ti OR 'systematic overview*':ab,ti	587,259
#13	#11 OR #12	635,397
#14	#5 AND #10 AND #13	609
Cochr	ane	
#1	(("Diet"):ti,ab,kwOR("drink*"):ti,ab,kwOR("eating"):ti,ab,kwOR("food*"):ti,ab,kwOR("nutrition*"):ti,ab,kw)OR("food*"):ti,ab,kwOR	155571
#2	("consumption*"):ti,ab,kw OR ("intake*"):ti,ab,kw	127216
#3	#1 OR #2	228198
#4	("liver"):ti,ab,kw OR ("hepatocellular"):ti,ab,kw	68348
#5	("adenocarcinoma*"):ti,ab,kw OR ("cancer*"):ti,ab,kw OR ("carcino*"):ti,ab,kw OR ("malign*"):ti,ab,kw OR ("neoplas*"):ti,ab,kw (Word variations have been searched) OR ("tumor"):ti,ab,kw	243406
#6	MeSH descriptor: [Carcinoma, Hepatocellular] explode all trees	2740
#7	#4 AND #5	17349

#8	#6 OR #7	18288
#9	("meta-analys*"):ti,ab,kw OR ("systematic review*"):ti,ab,kw	9456
	OR ("systematic overview*"):ti,ab,kw	
#10	MeSH descriptor: [Meta-Analysis as Topic] explode all trees	1624
#11	#9 OR #10	10885
#12	#3 AND #8 AND #11	28

Supplement Table 2. The criteria for the quality of evidence classification

Category	Criteria
Convincing, class I	• No. of cases >1000
	• P-value $< 1 \times 10^{-6}$
	• I ² < 50%
	• 95% prediction interval excluding the null
	• No small-study effects
	• No excess significance bias
Highly suggestive, class II	• No. of cases >1,000
	• P-value $< 1 \times 10^{-6}$
	• Largest study with a statistically significant effect
Suggestive, class III	• No. of cases >1,000
	• P-value $< 1 \times 10^{-3}$
Weak, class IV	• P-value < 0.05
Nonsignificant	• P-value > 0.05

Supplement Table 3. Excluded studies by full-text reviewing.

Reason	Reference
Not meta-analysis (n=45)	[1-45]
Number of cohorts < 2 (n=15)	[46-60]
Not outcome of interest (n=25)	[61-85]
Not the largest data study (n=49)	[86-134]
Full-text not available (n=1)	[135]
Not in English (n=1)	[136]

1. Abe SK, Inoue M. Green tea and cancer and cardiometabolic diseases: a review of the current epidemiological evidence. European Journal of Clinical Nutrition 2021;75:865-876.

2. Alicandro G, Tavani A, La Vecchia C. Coffee and cancer risk: A summary overview. European Journal of Cancer Prevention 2017;26:424-432.

3. Ansary J, Giampieri F, Forbes-Hernandez TY, et al. Nutritional Value and Preventive Role of Nigella sativa L. and Its Main Component Thymoquinone in Cancer: An Evidenced-Based Review of Preclinical and Clinical Studies. Molecules (Basel, Switzerland) 2021;26.

 Arab L. Epidemiologic evidence on coffee and cancer. Nutrition and Cancer 2010;62:271-283.

5. Bøhn SK, Blomhoff R, Paur I. Coffee and cancer risk, epidemiological evidence, and molecular mechanisms. Molecular nutrition & food research 2014;58:915-930.

6. Conway DI. Alcohol consumption and the risk for disease. Is there a dose-risk relationship between alcohol and disease? Evid Based Dent 2005;6:76-77.

7. De Greef D, Barton EM, Sandberg EN, et al. Anticancer potential of garlic and its bioactive constituents: A systematic and comprehensive review. Seminars in Cancer Biology 2021;73:219-264.

8. DeLaCruz M, Momi N, Weinstein J, Wali RK, Roy HK. The anti-proliferative effects of caffeine: A novel chemopreventive agent for hepatocellular carcinoma (HCC). Gastroenterology 2014;146:S98-S99.

9. Donato F, Gelatti U, Limina RM, Fattovich G. Southern Europe as an example of interaction between various environmental factors: A systematic review of the epidemiologic

evidence. Oncogene 2006;25:3756-3770.

10. Fan JH, Wang JB, Jiang Y, et al. Attributable causes of liver cancer mortality and incidence in china. Asian Pacific journal of cancer prevention : APJCP 2013;14:7251-7256.

11. Gandini S, Gnagnarella P, Serrano D, Pasquali E, Raimondi S. Vitamin D receptor polymorphisms and cancer. Adv Exp Med Biol 2014;810:69-105.

12. George ES, Sood S, Broughton A, et al. The association between diet and hepatocellular carcinoma: A systematic review. Nutrients 2021;13:1-23.

13. Grevers X, Ruan Y, Poirier AE, et al. Estimates of the current and future burden of cancer attributable to alcohol consumption in Canada. Preventive Medicine 2019;122:40-48.

14. Grundy A, Poirier AE, Khandwala F, et al. Cancer incidence attributable to alcohol consumption in Alberta in 2012. CMAJ Open 2016;4:E507-e514.

15. Haas SL, Ye W, Löhr JM. Alcohol consumption and digestive tract cancer. Current Opinion in Clinical Nutrition and Metabolic Care 2012;15:457-467.

16. Hatami Marbini M, Amiri F, Sajadi Hezaveh Z. Dietary glycemic index, glycemic load, insulin index, insulin load and risk of diabetes-related cancers: A systematic review of cohort studies. Clinical Nutrition ESPEN 2021;42:22-31.

17. Jayedi A, Shab-Bidar S. Fish Consumption and the Risk of Chronic Disease: An Umbrella Review of Meta-Analyses of Prospective Cohort Studies. Advances in nutrition (Bethesda, Md.) 2020;11:1123-1133.

18. Jin X, Zheng RH, Li YM. Green tea consumption and liver disease: A systematic review. Liver International 2008;28:990-996.

19. Jurek J, Owczarek M, Godos J, et al. Fish and human health: an umbrella review of observational studies. International journal of food sciences and nutrition 2022;73:851-860.

20. Key TJ, Schatzkin A, Willett WC, et al. Diet, nutrition and the prevention of cancer. Public Health Nutrition 2004;7:187-200.

21. Kim TL, Jeong GH, Yang JW, et al. Tea Consumption and Risk of Cancer: An Umbrella Review and Meta-Analysis of Observational Studies. Advances in nutrition (Bethesda, Md.) 2020;11:1437-1452.

22. Laguna JC, Alegret M, Roglans N. Simple sugar intake and hepatocellular carcinoma: Epidemiological and mechanistic insight. Nutrients 2014;6:5933-5954.

23. Lee KH, Seong HJ, Kim G, et al. Consumption of Fish and ω-3 Fatty Acids and Cancer

Risk: An Umbrella Review of Meta-Analyses of Observational Studies. Advances in nutrition (Bethesda, Md.) 2020;11:1134-1149.

24. Lippi G, Mattiuzzi C, Cervellin G. Meat consumption and cancer risk: A critical review of published meta-analyses. Critical Reviews in Oncology/Hematology 2016;97:1-14.

25. Michels N, De Backer F, Dimakopoulou M, et al. Eating disorders and the risk of developing cancer: a systematic review. Eating and Weight Disorders 2021;26:1021-1035.

26. Park S, Shin HR, Lee B, et al. Attributable fraction of alcohol consumption on cancer using population-based nationwide cancer incidence and mortality data in the Republic of Korea. BMC Cancer 2014;14.

27. Petrick JL, Campbell PT, Koshiol J, et al. Tobacco smoking, alcohol use and risk of hepatocellular carcinoma and intrahepatic cholangiocarcinoma: The Liver Cancer Pooling Project. Cancer Research 2017;77.

28. Poole R, Kennedy OJ, Roderick P, et al. Coffee consumption and health: umbrella review of meta-analyses of multiple health outcomes. BMJ (Clinical research ed.) 2017;359:j5024.

29. Queiroz Júnior JRAD, Costa Pereira JPD, Pires LL, Maia CS. The Dichotomous Effect of Thiamine Supplementation on Tumorigenesis: A Systematic Review. Nutrition and Cancer 2022;74:1942-1957.

30. Rahadini A, Prabaswari NP, Effendi GB, Widodo B. Expanding the potential benefits of vitamin e in nafld patients: A meta-analysis of randomized controlled trials. Hepatology International 2020;14:S335.

31. Saab S, Mallam D, Cox GA, Tong MJ. Impact of coffee on liver diseases: A systematic review. Liver International 2014;34:495-504.

32. Scheideler JK, Klein WMP. Awareness of the link between alcohol consumption and cancer across the world: A review. Cancer Epidemiology Biomarkers and Prevention 2018;27:429-437.

33. Schwingshackl L, Hoffmann G. Does a Mediterranean-Type Diet Reduce Cancer Risk? Curr Nutr Rep 2016;5:9-17.

34. Shakeel K, Rabail R, Iahtisham Ul H, et al. Camel milk protectiveness toward multiple liver disorders: A review. Front Nutr 2022;9:944842.

35. Stevens RG. Iron and the risk of cancer. Med Oncol Tumor Pharmacother 1990;7:177-181.

36. Tajik N, Tajik M, Mack I, Enck P. The potential effects of chlorogenic acid, the main

phenolic components in coffee, on health: a comprehensive review of the literature. Eur J Nutr 2017;56:2215-2244.

37. Takata Y, Zhang Z, Garzotto M, et al. Phytanic acid in dairy products and risk of cancer: Current evidence and future directions. FASEB Journal 2017;31.

38. Tanaka H. Advances in cancer epidemiology in Japan. International Journal of Cancer 2014;134:747-754.

39. Tanaka K, Tsuji I, Wakai K, et al. Alcohol drinking and liver cancer risk: An evaluation based on a systematic review of epidemiologic evidence among the Japanese population. Japanese Journal of Clinical Oncology 2008;38:816-838.

40. Teibo JO, Ayinde KS, Olaoba OT, et al. Functional foods' bioactive components and their chemoprevention mechanism in cervical, breast, and liver cancers: A systematic review. Functional Foods in Health and Disease 2021;11:559-585.

41. Zhao LG, Li ZY, Feng GS, et al. Coffee drinking and cancer risk: An umbrella review of meta-analyses of observational studies. BMC Cancer 2020;20.

42. Zheng J, Zhao L, Dong J, et al. The role of dietary factors in nonalcoholic fatty liver disease to hepatocellular carcinoma progression: A systematic review. Clinical Nutrition 2022;41:2295-2307.

43. Glanville JM, Brown S, Shamir R, Szajewska H, Eales JF. The scale of the evidence base on the health effects of conventional yogurt consumption: findings of a scoping review. Front Pharmacol 2015;6:246.

44. Alberts CJ, Clifford GM, Georges D, et al. Worldwide prevalence of hepatitis B virus and hepatitis C virus among patients with cirrhosis at country, region, and global levels: a systematic review. Lancet Gastroenterol Hepatol 2022;7:724-735.

45. Archer AJ, Phillips J, Subhani M, et al. Proactive case finding of alcohol-related liver disease in high-risk populations: A systematic review. Liver Int 2024;44:1298-1308.

46. Abbasalizad Farhangi M, Vajdi M. Dietary Total Antioxidant Capacity (TAC) Significantly Reduces the Risk of Site-Specific Cancers: An Updated Systematic Review and Meta-Analysis. Nutrition and Cancer 2021;73:721-739.

47. Accardi G, Shivappa N, Di Maso M, et al. Dietary inflammatory index and cancer risk in the elderly: A pooled-analysis of Italian case-control studies. Nutrition 2019;63-64:205-210.

48. Choi Y, Giovannucci E, Lee JE. Glycaemic index and glycaemic load in relation to risk of diabetes-related cancers: A meta-analysis. British Journal of Nutrition 2012;108:1934-1947.

49. Crawley DJ, Holmberg L, Melvin JC, et al. Serum glucose and risk of cancer: A metaanalysis. BMC Cancer 2014;14.

50. He F, Sha Y, Wang B. Relationship between alcohol consumption and the risks of liver cancer, esophageal cancer, and gastric cancer in China: Meta-analysis based on case–control studies. Medicine (United States) 2021;100.

51. Jaruvongvanich V, Sanguankeo A, Klomjit N, Upala S. Effects of caffeine consumption in patients with chronic hepatitis C: A systematic review and meta-analysis. Clinics and Research in Hepatology and Gastroenterology 2017;41:46-55.

52. Li Y, Guo L, He K, Huang C, Tang S. Consumption of sugar-sweetened beverages and fruit juice and human cancer: A systematic review and dose-response meta-analysis of observational studies. Journal of Cancer 2021;12:3077-3088.

53. Li Y, Yang H, Cao J. Association between alcohol consumption and cancers in the chinese population-a systematic review and meta-analysis. PLoS ONE 2011;6.

54. Luo Aj, Wang Fz, Luo D, et al. Consumption of vegetables may reduce the risk of liver cancer: Results from a meta-analysis of case-control and cohort studies. Clinics and Research in Hepatology and Gastroenterology 2014.

55. Parohan M, Sadeghi A, Khatibi SR, et al. Dietary total antioxidant capacity and risk of cancer: a systematic review and meta-analysis on observational studies. Critical Reviews in Oncology/Hematology 2019;138:70-86.

56. Reng Q, Zhu LL, Feng L, et al. Dietary meat mutagens intake and cancer risk: A systematic review and meta-analysis. Front Nutr 2022;9:962688.

57. Schwingshackl L, Hoffmann G. Adherence to Mediterranean diet and risk of cancer: An updated systematic review and meta-analysis of observational studies. Cancer Medicine 2015;4:1933-1947.

58. Schwingshackl L, Schwedhelm C, Galbete C, Hoffmann G. Adherence to Mediterranean Diet and Risk of Cancer: An Updated Systematic Review and Meta-Analysis. Nutrients 2017;9.

59. Singhavi HR, Singh A, Bhattacharjee A, et al. Alcohol and cancer risk: A systematic review and meta-analysis of prospective Indian studies. Indian journal of public health 2020;64:186-190.

60. Leelakanok N, D'Cunha RR, Sutamtewagul G, Schweizer ML. A systematic review and meta-analysis of the association between vitamin A intake, serum vitamin A, and risk of liver

cancer. Nutr Health 2018;24:121-131.

61. Bahrami A, Khalesi S, Ghafouri-Taleghani F, et al. Dietary acid load and the risk of cancer: a systematic review and dose-response meta-analysis of observational studies. Eur J Cancer Prev 2022;31:577-584.

62. Chen CJ, Wang LC, Kuo HT, Fang YC, Lee HF. Significant effects of late evening snack on liver functions in patients with liver cirrhosis: A meta-analysis of randomized controlled trials. Journal of Gastroenterology and Hepatology (Australia) 2019;34:1143-1152.

63. Chen L, Chen Y, Wang X, et al. Efficacy and safety of oral branched-chain amino acid supplementation in patients undergoing interventions for hepatocellular carcinoma: A meta-analysis. Nutrition Journal 2015;14.

64. Chen Y, Li X, Wu S, Ye W, Lou L. Metabolic syndrome and the incidence of hepatocellular carcinoma: A meta-analysis of cohort studies. OncoTargets and Therapy 2018;11:6277-6285.

65. Chen Y, Wang X, Wang J, Yan Z, Luo J. Excess body weight and the risk of primary liver cancer: An updated meta-analysis of prospective studies. European Journal of Cancer 2012;48:2137-2145.

66. Chuang SC, Lee YC, Wu GJ, Straif K, Hashibe M. Alcohol consumption and liver cancer risk: a meta-analysis. Cancer Causes Control 2015;26:1205-1231.

67. Chuncharunee L, Yamashiki N, Thakkinstian A, Sobhonslidsuk A. Alcohol Relapse and Its Predictors after Liver Transplantation for Alcoholic Liver Disease: A Systematic Review and Meta-Analysis. Gastroenterology 2018;154:S-1098-S-1099.

68. Connolly G, Clark CM, Campbell RE, et al. Poultry Consumption and Human Health: How Much Is Really Known? A Systematically Searched Scoping Review and Research Perspective. Advances in nutrition (Bethesda, Md.) 2022;13:2115-2124.

69. Darand M, Alavian SM, Hekmatdoost A. Nigella sativa and non-alcoholic fatty liver disease: A review of the current evidence. Hepatitis Monthly 2018;18.

70. Ding J, Zhang Y. Associations of Coffee Consumption with the Circulating Level of Alanine Aminotransferase and Aspartate Aminotransferase. A Meta-Analysis of Observational Studies. Journal of the American College of Nutrition 2021;40:261-272.

71. Fardet A, Boirie Y. Associations between diet-related diseases and impaired physiological mechanisms: A holistic approach based on meta-analyses to identify targets for preventive nutrition. Nutrition Reviews 2013;71:643-656.

72. Jin S, Je Y. Dairy Consumption and Total Cancer and Cancer-Specific Mortality: A Meta-Analysis of Prospective Cohort Studies. Advances in nutrition (Bethesda, Md.) 2022;13:1063-1082.

73. Koretz RL. Nutritional support in liver disease - an updated systematic review. Current Opinion in Gastroenterology 2023;39:115-124.

74. Mansour-Ghanaei F, Pourmasoumi M, Hadi A, Ramezani-Jolfaie N, Joukar F. The Efficacy of Vitamin D Supplementation against Nonalcoholic Fatty Liver Disease: A Meta-Analysis. Journal of dietary supplements 2020;17:467-485.

75. Nguyen TN, Eng D, Kawasumi M. 278 Caffeinated or decaffeinated coffee consumption and risk of cancers: A meta-analysis. Journal of Investigative Dermatology 2021;141:S49.

76. Uehara Y, Kiyohara C. Alcohol consumption and lung cancer risk among Japanese: a meta-analysis. Fukuoka igaku zasshi = Hukuoka acta medica 2010;101:101-108.

77. Xu R, Tao A, Zhang S, Deng Y, Chen G. Association between vitamin E and non-alcoholic steatohepatitis: A meta-analysis. International Journal of Clinical and Experimental Medicine 2015;8:3924-3934.

78. Zhang YB, Pan XF, Chen J, et al. Combined lifestyle factors, incident cancer, and cancer mortality: a systematic review and meta-analysis of prospective cohort studies. British Journal of Cancer 2020;122:1085-1093.

79. Shu W, Liu L, Jiang J, Yao Q. Dietary patterns and hepatocellular carcinoma risk: a systematic review and meta-analysis of cohort and case-control studies. Nutr Metab (Lond) 2024;21:47.

80. Buzzetti E, Linden A, Best LM, et al. Lifestyle modifications for nonalcohol-related fatty liver disease: a network meta-analysis. Cochrane Database Syst Rev 2021;6:Cd013156.

81. Fardet A, Boirie Y. Associations between food and beverage groups and major diet-related chronic diseases: an exhaustive review of pooled/meta-analyses and systematic reviews. Nutr Rev 2014;72:741-762.

82. Fernández T, Viñuela M, Vidal C, Barrera F. Lifestyle changes in patients with nonalcoholic fatty liver disease: A systematic review and meta-analysis. PLoS One 2022;17:e0263931.

83. Fonseca-Nunes A, Jakszyn P, Agudo A. Iron and cancer risk--a systematic review and meta-analysis of the epidemiological evidence. Cancer Epidemiol Biomarkers Prev 2014;23:12-31.

84. Asbaghi O, Rezaei Kelishadi M, Larky DA, et al. The effects of green tea extract supplementation on body composition, obesity-related hormones and oxidative stress markers: a grade-assessed systematic review and dose-response meta-analysis of randomised controlled trials. Br J Nutr 2024;131:1125-1157.

85. Chen K, Yang F, Zhu X, et al. Association between pro-inflammatory diet and liver cancer risk: a systematic review and meta-analysis. Public Health Nutr 2023;26:2780-2789.

86. Bagnardi V, Blangiardo M, La Vecchia C, Corrao G. Alcohol consumption and the risk of cancer: a meta-analysis. Alcohol research & health : the journal of the National Institute on Alcohol Abuse and Alcoholism 2001;25:263-270.

87. Bagnardi V, Blangiardo M, La Vecchia C, Corrao G. A meta-analysis of alcohol drinking and cancer risk. Br J Cancer 2001;85:1700-1705.

88. Bagnardi V, Rota M, Botteri E, et al. Light alcohol drinking and cancer: A meta-analysis. Annals of Oncology 2013;24:301-308.

89. Bagnardi V, Rota M, Botteri E, et al. Alcohol consumption and site-specific cancer risk: A comprehensive dose-response meta-analysis. British Journal of Cancer 2015;112:580-593.

90. Bai K, Cai Q, Jiang Y, Lv L. Coffee consumption and risk of hepatocellular carcinoma: A meta-analysis of eleven epidemiological studies. OncoTargets and Therapy 2016;9:4369-4375.

91. Bhurwal A, Rattan P, Yoshitake S, et al. Inverse association of coffee with liver cancer development an updated systematic review and meta-analysis. Journal of Gastrointestinal and Liver Diseases 2020;29:421-428.

92. Bhurwal A, Yoshitake S, Pioppo L, et al. INVERSE ASSOCIATION OF COFFEE AND
HCC DEVELOPMENT : A SYSTEMATIC REVIEW AND META-ANALYSIS.
Gastroenterology 2020;158:S-1397-S-1398.

93. Bravi F, Bosetti C, Tavani A, et al. Coffee drinking and hepatocellular carcinoma risk: A meta-analysis. Hepatology 2007;46:430-435.

94. Bravi F, Bosetti C, Tavani A, Gallus S, La Vecchia C. Coffee reduces risk for hepatocellular carcinoma: An updated meta-analysis. Clinical Gastroenterology and Hepatology 2013;11:1413-1421.

95. Corrao G, Bagnardi V, Zambon A, Arico S. Exploring the dose-response relationship between alcohol consumption and the risk of several alcohol-related conditions: A meta-analysis. Addiction 1999;94:1551-1573.

96. Corrao G, Bagnardi V, Zambon A, La Vecchia C. A meta-analysis of alcohol consumption

and the risk of 15 diseases. Preventive Medicine 2004;38:613-619.

97. Dennert G, Zwahlen M, Brinkman M, et al. Selenium for preventing cancer. Cochrane database of systematic reviews (Online) 2011;5:CD005195.

98. Filippini T, Malavolti M, Borrelli F, et al. Green tea (Camellia sinensis) for the prevention of cancer. Cochrane Database of Systematic Reviews 2020;2020.

99. Fon Sing M, Yang WS, Gao S, Gao J, Xiang YB. Epidemiological studies of the association between tea drinking and primary liver cancer: a meta-analysis. Eur J Cancer Prev 2011;20:157-165.

100. Gao M, Sun K, Guo M, et al. Fish consumption and n-3 polyunsaturated fatty acids, and risk of hepatocellular carcinoma: systematic review and meta-analysis. Cancer Causes and Control 2015;26:367-376.

101. Godos J, Micek A, Marranzano M, et al. Coffee consumption and risk of biliary tract cancers and liver cancer: A dose–response meta-analysis of prospective cohort studies. Nutrients 2017;9.

102. Guo XF, Shao XF, Li JM, et al. Fruit and vegetable intake and liver cancer risk: a metaanalysis of prospective cohort studies. Food & function 2019;10:4478-4485.

103. Huang RX, Duan YY, Hu JA. Fish intake and risk of liver cancer: A meta-analysis. PLoS ONE 2015;10.

104. Jin X, Che DB, Zhang ZH, et al. Ginseng consumption and risk of cancer: A meta-analysis. Journal of Ginseng Research 2016;40:269-277.

105. Larsson SC, Wolk A. Coffee Consumption and Risk of Liver Cancer: A Meta-Analysis. Gastroenterology 2007;132:1740-1745.

106. Li M, Duan Y, Wang Y, et al. The effect of Green green tea consumption on body mass index, lipoprotein, liver enzymes, and liver cancer: An updated systemic review incorporating a meta-analysis. Crit Rev Food Sci Nutr 2022:1-9.

107. Lin Y, He F, Lian S, et al. Selenium Status in Patients with Chronic Liver Disease: A Systematic Review and Meta-Analysis. Nutrients 2022;14.

108. Luo J, Yang Y, Liu J, et al. Systematic review with meta-analysis: Meat consumption and the risk of hepatocellular carcinoma. Alimentary Pharmacology and Therapeutics 2014;39:913-922.

109. Park H, Shin SK, Joo I, et al. Systematic review with meta-analysis: Low-level alcohol

consumption and the risk of liver cancer. Gut and Liver 2020;14:792-807.

110. Sang LX, Chang B, Li XH, Jiang M. Consumption of coffee associated with reduced risk of liver cancer: A meta-analysis. BMC Gastroenterology 2013;13.

111. Shimazu T, Sasazuki S, Wakai K, et al. Alcohol drinking and primary liver cancer: A pooled analysis of four Japanese cohort studies. International Journal of Cancer 2012;130:2645-2653.

112. Sing MF, Yang WS, Gao S, Gao J, Xiang YB. Epidemiological studies of the association between tea drinking and primary liver cancer: A meta-analysis. European Journal of Cancer Prevention 2011;20:157-165.

113. Tamura T, Hishida A, Wakai K. Coffee consumption and liver cancer risk in Japan: a meta-analysis of six prospective cohort studies. Nagoya journal of medical science 2019;81:143-150.

114. Tanaka K, Tamakoshi A, Sugawara Y, et al. Coffee, green tea and liver cancer risk: An evaluation based on a systematic review of epidemiologic evidence among the Japanese population. Japanese Journal of Clinical Oncology 2019;49:972-984.

115. Turati F, Galeone C, Gandini S, et al. High glycemic index and glycemic load are associated with moderately increased cancer risk. Molecular nutrition & food research 2015;59:1384-1394.

116. van Dijk AM, Bruins Slot AS, Portincasa P, et al. Systematic review with meta-analysis: Branched-chain amino acid supplementation in liver disease. European Journal of Clinical Investigation 2023;53.

117. Wang CB, Fu QX, Liu HY, Wang R. Fish consumption doesn't reduce the risk of hepatocellular carcinoma. International Journal of Clinical and Experimental Medicine 2015;8:10825-10834.

118. Yang LS, Yan LJ, Meng GX, et al. The Association of Glycemic Index, Glycemic Load, and Daily Carbohydrates Intake with the Risk of Hepatocellular Carcinoma: A Systematic Review and Meta-Analysis. Nutrition and Cancer 2023;75:461-469.

119. Yang Y, Zhou J, Yang Y, Chen Z, Zheng X. Systematic review and meta-analysis: dairy consumption and hepatocellular carcinoma risk. Journal of Public Health (Germany) 2017;25:591-599.

120. Yin X, Yang J, Li T, et al. The effect of green tea intake on risk of liver disease: A meta analysis. International Journal of Clinical and Experimental Medicine 2015;8:8339-8346.

121. Yu C, Cao Q, Chen P, et al. An updated dose-response meta-analysis of coffee consumption and liver cancer risk. Scientific reports 2016;6:37488.

122. Yu F, Jin Z, Jiang H, et al. Tea consumption and the risk of five major cancers: A doseresponse meta-analysis of prospective studies. BMC Cancer 2014;14.

123. Yu X, Bao Z, Zou J, Dong J. Coffee consumption and risk of cancers: A meta-analysis of cohort studies. BMC Cancer 2011;11.

124. Zhang YF, Xu Q, Lu J, et al. Tea consumption and the incidence of cancer: A systematic review and meta-analysis of prospective observational studies. European Journal of Cancer Prevention 2015;24:353-362.

125. Zhao Q, He Y, Wang K, et al. Dairy Consumption and Liver Cancer Risk: A Systematic Review and Dose–Response Meta-Analysis of Observational Studies. Nutrition and Cancer 2021;73:2821-2831.

126. Ng CS, Ong XJ, Au M, et al. ALDH2 polymorphism, alcohol intake and the attributable burden of cancer in East Asia: systematic review, meta-analysis, and modeling study. Ann Epidemiol 2023;85:113-120.e120.

127. Yu J, Liang D, Li J, et al. Coffee, Green Tea Intake, and the Risk of Hepatocellular Carcinoma: A Systematic Review and Meta-Analysis of Observational Studies. Nutr Cancer 2023;75:1295-1308.

128. Guo WP, Zhang HY, Liu LX. Risk factors of hepatocellular carcinoma in non-alcoholic fatty liver disease: a systematic review and meta-analysis. Eur Rev Med Pharmacol Sci 2023;27:11890-11903.

129. Li M, Duan Y, Wang Y, et al. The effect of Green green tea consumption on body mass index, lipoprotein, liver enzymes, and liver cancer: An updated systemic review incorporating a meta-analysis. Crit Rev Food Sci Nutr 2024;64:1043-1051.

130. Heckley GA, Jarl J, Asamoah BO, U GG. How the risk of liver cancer changes after alcohol cessation: a review and meta-analysis of the current literature. BMC Cancer 2011;11:446.

131. Kennedy OJ, Roderick P, Buchanan R, et al. Coffee, including caffeinated and decaffeinated coffee, and the risk of hepatocellular carcinoma: a systematic review and dose-response meta-analysis. BMJ Open 2017;7:e013739.

132. Wang A, Wang S, Zhu C, et al. Coffee and cancer risk: A meta-analysis of prospective observational studies. Sci Rep 2016;6:33711.

133. Poorolajal J, Mohammadi Y, Fattahi-Darghlou M, Almasi-Moghadam F. The association between major gastrointestinal cancers and red and processed meat and fish consumption: A systematic review and meta-analysis of the observational studies. PLoS One 2024;19:e0305994.

134. Li M, Zhang X, Chen K, et al. Alcohol Exposure and Disease Associations: A Mendelian Randomization and Meta-Analysis on Weekly Consumption and Problematic Drinking. Nutrients 2024;16.

135. Vecchia CL. Alcohol drinking and cancer risk, with focus on moderate drinking. Alcohol and Alcoholism 2017;52:i4.

136. Contreras García E, Zaragoza-Martí A. [Influence of food or food groups intake on the occurrence and/or protection of different types of cancer: systematic review]. Nutr Hosp 2020;37:169-192.

Study	Dietary factor	Comparison	Cohort study, n	Study	Study year	Confounders
Bravi 2017	Coffee	Highest vs. lowest	11	Hu	2008	Age, sex, study period, alcohol drinking, tobacco smoking, education, history of diabetes mellitus and CLD, BMI
				Lai	2013	Age, intervention arm, alcohol drinking, BMI, education, marital status, diabetes mellitus, tobacco smoking, tea drinking, serum cholesterol
				Bamia	2015	Stratified by age and study center; adjusted for sex, diabetes mellitus, education, BMI, tobacco smoking, alcohol drinking, physical activity, energy intake
				Setiawan	2015	Age, sex, ethnicity, education, BMI, alcohol drinking, tobacco smoking, diabetes mellitus
				Petrick	2015	Age, sex, alcohol drinking, tobacco smoking, race, education, BMI
				lnoue	2005	Age, sex, study center, tobacco smoking, alcohol drinking, BMI, diabetes mellitus, tea drinking, serum ALT level, HCV infection, HBV infection

Supplement Table 4. Important confounders considered of each primary study included in the meta-analyses

				Kurozawa	2005	Age, sex, education, diabetes mellitus and liver disease, tobacco smoking, alcohol drinking
				Shimazu	(2005) cohort1	Age, sex, history of liver disease, tobacco smoking, alcohol drinking
				Shimazu	(2005) cohort2	Age, sex, history of liver disease, tobacco smoking, alcohol drinking
				lnoue	2009	Age, sex, study center, tobacco smoking, alcohol drinking, BMI, diabetes mellitus, tea drinking, serum ALT level, HCV infection, HBV infection
				Johnson	2011	Age, sex, dialect group, study period, BMI, education, alcohol drinking, tobacco smoking, tea drinking, diabetes mellitus
Di Maso 2021	Caffeinated Coffee	Yes vs. no	2	Petrick	2015	Age, sex, race, study of origin, BMI, smoking, and alcohol
				Setiawan	2015	Age, sex, race, education, BMI, smoking, alcohol, and personal history of diabetes
Farvid 2021	Processed meat	Highest vs. lowest	6	Freedman	2010	Age, sex, education, marital status, race, BMI, smoking, diabetes, physical activity, energy intake, alcohol intake, fruit

					and vegetable intake, white meat intake
			Fedirko	2013	Age, sex, non-alcohol energy, alcohol intake, intake of other types of meat, smoking, physical activity, diabetes status, BMI, fiber intake, coffee intake
			Ma	2019	Age, sex, race, physical activity, BMI, smoking, type 2 diabetes, aspirin use, alcohol intake, energy intake
			Ma	2019	Age, sex, race, physical activity, BMI, smoking, type 2 diabetes, aspirin use, alcohol intake, energy intake
			Knuppel	2020	Age, region, ethnicity, deprivation, qualification, employment, living with spouse/partner, height, smoking, physical activity, alcohol intake, fruit and vegetable intake, cereal fiber intake, cheese intake, milk added to tea/coffee/cereal, oily fish intake, non-oily fish intake, menopausal status, parity, HRT, OC use
			Luu	2021	Age, sex, dialect, year of enrollment, education, smoking, alcohol intake, energy intake, diabetes status, sleep hours, physical activity
Red and processed	Highest vs.	6	Fedirko	2013	Age, sex, non-alcohol energy, alcohol intake, intake of other

	meat	lowest				types of meat, smoking, physical activity, diabetes status, BMI, fiber intake, coffee intake
				Li	2014	Age, sex, race, smoking, alcohol intake, education, BMI, diabetes, physical activity, energy intake, modified aMED excluding total red and processed meat
				Luo	2019	Age, sex, race, physical activity, BMI, smoking, aspirin use, alcohol intake, energy intake
				Luo	2019	Age, sex, race, physical activity, BMI, smoking, aspirin use, alcohol intake, energy intake
				Knuppel	2020	Age, region, ethnicity, deprivation, qualification, employment, living with spouse/partner, height, smoking, physical activity, alcohol intake, fruit and vegetable intake, cereal fiber intake, cheese intake, milk added to tea/coffee/cereal, oily fish intake, non-oily fish intake, menopausal status, parity, HRT, OC use
				Luu	2021	Age, sex, dialect, year of enrollment, education, smoking, alcohol intake, energy intake, diabetes status, sleep hours, physical activity
Huang 2016	Green tea	Highest vs.	7	Nechuta et	2012	Age, marital status, education, occupation, BMI, exercise,

		lowest		al		fruit and vegetable intake, meat intake, diabetes, and family
						history of digestive system cancer
				Johnson et al	2011	Dairy products consumption, fruit consumption, fish consumption, soybean consumption
				Ui et al	2009	Age, sex, alcohol consumption, smoking status, coffee consumption, vegetable consumption, dairy product consumption, fruit consumption, fish consumption, soybean consumption
				lnoue et al	2009	Sex, age, area, smoking status, alcohol intake, BMI, history of diabetes mellitus, coffee consumption, serum ALT level, HCV infection status, and HBV infection status
				Shimazu et al	2005	Age, sex, history of liver cancer, alcohol consumption, and smoking status
				Nagano et al	2001	City, age, sex, radiation exposure, smoking status, alcohol drinking, BMI, education level, and calendar time
				Nakachiet al	2000	Age, cigarette smoking, alcohol consumption
Ni 2017	Green tea ¹	Highest vs.	2	lnoue et al	2009	Sex, age, area, smoking status, alcohol intake, BMI, history

		modest				of diabetes mellitus, coffee consumption, serum ALT level, HCV infection status, and HBV infection status
				Nagano et al	2001	City, age, sex, radiation exposure, smoking status, alcohol drinking, BMI, education level, and calendar time
Turati 2014	Alcohol	Highest vs. lowest	3	Kim	2010M	Age, residence, smoking, exercise, BMI, systolic and diastolic blood pressure, fasting blood sugar, total cholesterol (only women); stratified by sex
				Shimazu	2011M	Age, area, diabetes, smoking, coffee. Stratified by sex
				Person	2013M/F	Age, sex, race, education, smoking, BMI, diabetes
Wongtrakul 2021	Alcohol ²	Modest vs. lowest	2	Ascha	2010	NA
				Kimura	2018	NA
Yang 2014	Fruits	Highest vs. lowest	6	Sauvaget C	2003	Sex, age, radiation dose, city, BMI, smoking status, alcohol habits, and education level
				Kurozawa	2004	Gender, age, history of liver diseases
				Kurahashi	2009	Vegetables Fruits Vegetables and fruits

			SM George	2009	Age, smoking, energy intake, BMI, alcohol, physical activity, education race, marital status, family history, menopausal hormone therapy.
			Li WQ	2010	Age, sex, job status, education, exercise, smoking, alcohol drinking, hypertension, diabetes mellitus and gastric ulcer, family history of cancer, daily total energy intake, consumption of other food
			W Zhang	2013	Sex, age, body mass index, total energy intake, family income level, education level, family history of liver cancer in first- degree relatives, chronic viral hepatitis, diabetes, vitamin C and E and multivitamin supplement use,
Vegetables	Highest vs. lowest	9	Chen CJ	1993	HbsAg carrier status, Cigarette smoking, Alcohol intake
			Yu MW	1995	Age, HBsAg carrier status, habitual alcohol drinking, and past history of liver diseases
			Sauvaget C	2003	Sex, age, radiation dose, city, BMI, smoking status, alcohol habits, and education level
			Kurozawa	2004	Gender, age, history of liver diseases

				TM Pham	2006	Age; body mass index; smoking habit; alcohol consumption; coffee drinking; history of transfusion; history of hepatitis; history of cirrhosis; history of diabetes; study area
				Yun	2008	Age, dietary preference, LPA, smoking status, alcohol drinking, body mass index, employment and fasting blood sugar
				N Kurahashi	2009	Age, area, sex, HCV, HBsAg, smoking status, alcohol consumption, body mass index, history of diabetes mellitus and intake of coffee, genistein
				SM George	2009	Age, smoking, energy intake, BMI, alcohol, physical activity, education race, marital status, family history, menopausal hormone therapy
				W Zhang	2013	Sex, age, body mass index, total energy intake, family income level, education level, family history of liver cancer in first- degree relatives, chronic viral hepatitis, diabetes, vitamin C and E and multivitamin supplement use
Yu 2022	Red Meat	Highest vs. lowest	6	Fedirko	2013	Age, sex, HBV/HCV status, smoking status, physical activity, diabetes, alcohol intake, BMI, and baseline

			Freedman	2010	Age, sex, ethnicity, education, alcohol, BMI, smoking, diabetes, fruit intake, vegetable intake, total energy, physical activity, marital status, energy, physical activity
			Knuppel	2020	Sex, smoking
			Kurozawa	2004	Age, sex, liver diseases
			Luu	2021	Age, sex, dialect, year of enrollment, education level, smoking status, coffee drinking status, alcohol drinking status, total energy intake, BMI, diabetes status
			Ма	2019	Gender, age, race, physical-activity level, body mass index (BMI), smoking, type 2 diabetes, regular aspirin use, alcohol intake, and total calorie intake
White Meat	Highest vs. lowest	6	Daniel	2011	Age, sex, race, education, marital status, family history of cancer, BMI, smoking status, physical activity, alcohol intake, fruit intake, vegetables intake, total energy
			Fedirko	2013	Age, sex, HBV/HCV status, smoking status, physical activity, diabetes, alcohol intake, BMI, and baseline
			Freedman	2010	Age, sex, ethnicity, education, alcohol, BMI, smoking, diabetes, fruit intake, vegetable intake, total energy, physical

					activity, marital status, energy, physical activity
			Knuppel	2020	Sex, smoking
			Kurozawa	2004	Age, sex, liver diseases
			Ма	2019	Gender, age, race, physical-activity level, body mass index (BMI), smoking, type 2 diabetes, regular aspirin use, alcohol intake, and total calorie intake
Fish	Highest vs. lowest	5	Daniel	2011	Age, sex, race, education, marital status, family history of cancer, BMI, smoking status, physical activity, alcohol intake, fruit intake, vegetables intake, total energy
			Fedirko	2013	Age, sex, HBV/HCV status, smoking status, physical activity, diabetes, alcohol intake, BMI, and baseline
			Kurozawa	2004	Age, sex, liver diseases
			Ма	2019	Gender, age, race, physical-activity level, body mass index (BMI), smoking, type 2 diabetes, regular aspirin use, alcohol intake, and total calorie intake
			Sawada	2012	Adjusted for age, area, sex, HCV, HbsAg, ALT level, smoking status, alcohol frequency, BMI, past history of

						diabetes mellitus, and intake of other foods
	Total meat	Highest vs. lowest	3	Fedirko	2013	Age, sex, HBV/HCV status, smoking status, physical activity, diabetes, alcohol intake, BMI, and baseline
				Knuppel	2020	Sex, smoking
				Ма	2019	Gender, age, race, physical-activity level, body mass index (BMI), smoking, type 2 diabetes, regular aspirin use, alcohol intake, and total calorie intake
Zhao 2021	Milk	Highest vs. lowest	5	Yang	2019	NA
				Duarte	2014	NA
				Hirayama	1989	NA
				Kurozawa	2004	NA
				Mat	2007	NA
Zhu 2021	Ginseng	Yes vs. no	4	Yun	1995	NA
				Yun	1998	NA

				Shin	2000	NA
				Yun	2010	NA
Ren 2023	Cruciferous Vegetables	Highest vs. lowest	3	Bosetti	2012	Sex, age, study center, year of interview, education, BMI, alcohol drinking, tobacco smoking, and total energy intake.
				Kanazir	2010	No
				Zhang	2013	Age, sex, BMI, total energy intake, family income level, education level, family history of liver cancer, history of diabetes, history of cholelithiasis or age, sex and energy intake. cholecystectomy, vitamin C and E and multivitamin supplement use.
Meine 2024	Ultra-Processed Food	Highest vs. lowest	2	Chang	2023	NA
				Kliemann	2023	NA
Liu 2023	Legumes	Highest vs. lowest	3	Sharp GB	2005	Sex, city, liver irradiation level, attained age, year of death, HBV and HCV
				kurahashi N	2009	Age, area, HCV, HBsAg, smoking status, alcohol consumption, and intake of coffee and vegetables,

						menopausal status in women
				Zhang W	2013	Age, sex, body mass index, total energy intake, family income level, education level, family history of liver cancer, history of diabetes, history of cholelithiasis or cholecystectomy, vitamin C and E and multivitamin supplement use, and mutual adjustment for these dietary patterns
Dai 2024	Yogurt	Highest vs. lowest	2	Yang	2019	Age, sex, ethnicity, physical activity, BMI, smoking, alcohol, total coffee intake, total calorie intake, aspirin use, type 2 diabetes
				Duarte	2014	Age, sex, physical activity, BMI, smoking, self-reported diabetes status, alcohol, energy
	Cheese	Highest vs. lowest	3	Yang	2019	Age, sex, ethnicity, physical activity, BMI, smoking, alcohol, total coffee intake, total calorie intake, aspirin use, type 2 diabetes
				Duarte	2014	Age, sex, physical activity, BMI, smoking, self-reported diabetes status, alcohol, energy
				Guo	2022	Age, sex, ethnicity, education level, Townsend Deprivation

						Index (quartiles), drinking status, smoking status, exercise, BMl, diabetes
Cai 2019	Carbohydrate	Highest vs. lowest	7	Sieri	2017	sex, education, smoking status, BMI, alcohol intake, fibre intake, saturated fat intake, non-alcohol energy intake and physical activity.
				Vogtmann	2013(1)	age, education, income, smoking status, alcohol consumption, family history of liver cancer, BMI, physical activity, total energy intake, and history of diabetes and hepatitis/ chronic liver disease
				Vogtmann	2013(2)	age, education, income, smoking status, alcohol consumption, family history of liver cancer, BMI, physical activity, total energy intake, and history of diabetes and hepatitis/ chronic liver disease
				Fedirko	2013(1)	age, education, income, smoking status, alcohol consumption, family history of liver cancer, BMI, physical activity, total energy intake, and history of diabetes and hepatitis/ chronic liver disease
				Fedirko	2013(2)	age, education, income, smoking status, alcohol consumption, family history of liver cancer, BMI, physical

						activity, total energy intake, and history of diabetes and hepatitis/ chronic liver disease
				George	2009(1)	Age, race, education, marital status, BMI, family history of cancer, physical activity, smoking, alcohol consumption, total energy intake
				George	2009(2)	Age, race, education, marital status, BMI, family history of cancer, physical activity, smoking, alcohol consumption, total energy intake
Vinceti 2018	Selenium	Highest vs. lowest	4	Yu	1991	NA
				Yu	1997	NA
				Li	2000	NA
				Karp	2013	NA
Zhao 2021	N-3 polyunsaturated fatty acid	Highest vs. lowest	3	Yang	2020	Age, sex, BMI, family history of cancer, smoking, drinking, education status, physical activity, consumption of vegetables and fruit, insulin therapy, lipid-lowering medication, and systolic blood pressure
				Koh	2016	Age, sex, dialect, year of interview, educational level, BMI,

					smoking status, alcohol use, coffee drinking status, baselinehistory of self-reported diabetes, total energy and dietaryprotein.Fat subtype intakes are mutually adjusted.
			Sawada	2012	Age, area, sex, smoking status, alcohol frequency, BMI, past history of diabetes mellitus, intake of coffee, soy foods, vegetables, vegetable oil, protein, and iron
Cholesterol	Highest vs. lowest	2	Yang	2020	Age, sex, race, physical activity, BMI, smoking status, aspirin use, type 2 diabetes, alcohol intake, total coffee intake, and total energy intake.
			loannou	2009	Energy from other macronutrients, daily alcohol consumption, coffee or tea, gender, race, age, education, region, diabetes, BMI, and subscapular-totriceps skinfold ratio.
Monounsaturated fatty acid	Highest vs. lowest	4	Yang	2020	Age, sex, BMI, family history of cancer, smoking, drinking, education status, physical activity, consumption of vegetables and fruit, insulin therapy, lipid-lowering medication, and systolic blood pressure
			Koh	2016	Age, sex, dialect, year of interview, educational level, BMI,
					smoking status, alcohol use, coffee drinking status, baselinehistory of self-reported diabetes, total energy and dietaryprotein.Fat subtype intakes are mutually adjusted.
----------------------------	-----------------------	---	-------------------	------	--
			Duarte- Salles	2015	Baseline alcohol intake and non-alcohol total energy intake, sex-specific physical activity level, BMI, smoking status, lifetime alcohol intake pattern, coffee intake, and intake of dietary fiber. Fat subtype intakes are mutually adjusted
			Freedman	2010	Age, sex, alcohol, BMI, cigarette smoking, diabetes, education, fruit intake, vegetable intake, marital status, race and/or ethnicity, total energy from nonalcohol sources, usual physical activity throughout the day, and vigorous physical activity.
Polyunsaturated fatty acid	Highest vs. lowest	3	Yang	2020	Age, sex, BMI, family history of cancer, smoking, drinking, education status, physical activity, consumption of vegetables and fruit, insulin therapy, lipid-lowering medication, and systolic blood pressure
			Duarte-	2015	Baseline alcohol intake and non-alcohol total energy intake,

			Salles		sex-specific physical activity level, BMI, smoking status,lifetime alcohol intake pattern, coffee intake, and intake ofdietary fiber.Fat subtype intakes are mutually adjusted
			Freedman	2010	Age, sex, alcohol, BMI, cigarette smoking, diabetes, education, fruit intake, vegetable intake, marital status, race and/or ethnicity, total energy from nonalcohol sources, usual physical activity throughout the day, and vigorous physical activity.
Saturated fat	Highest vs. lowest	5	Yang	2020	Age, sex, BMI, family history of cancer, smoking, drinking, education status, physical activity, consumption of vegetables and fruit, insulin therapy, lipid-lowering medication, and systolic blood pressure
			Koh	2016	Age, sex, dialect, year of interview, educational level, BMI, smoking status, alcohol use, coffee drinking status, baseline history of self-reported diabetes, total energy and dietary protein. Fat subtype intakes are mutually adjusted.
			Duarte-	2015	Baseline alcohol intake and non-alcohol total energy intake,

			Salles		sex-specific physical activity level, BMI, smoking status,lifetime alcohol intake pattern, coffee intake, and intake ofdietary fiber.Fat subtype intakes are mutually adjusted
			Freedman	2010	Age, sex, alcohol, BMI, cigarette smoking, diabetes, education, fruit intake, vegetable intake, marital status, race and/or ethnicity, total energy from nonalcohol sources, usual physical activity throughout the day, and vigorous physical activity.
			loannou	2009	Energy from other macronutrients, daily alcohol consumption, coffee or tea, gender, race, age, education, region, diabetes, BMI, and subscapular-totriceps skinfold ratio.
Total fat	Highest vs. lowest	5	Yang	2020	Age, sex, BMI, family history of cancer, smoking, drinking, education status, physical activity, consumption of vegetables and fruit, insulin therapy, lipid-lowering medication, and systolic blood pressure
			Koh	2016	Age, sex, dialect, year of interview, educational level, BMI, smoking status, alcohol use, coffee drinking status, baseline

					history of self-reported diabetes, total energy and dietary protein. Fat subtype intakes are mutually adjusted.
			Duarte- Salles	2015	Baseline alcohol intake and non-alcohol total energy intake, sex-specific physical activity level, BMI, smoking status, lifetime alcohol intake pattern, coffee intake, and intake of dietary fiber. Fat subtype intakes are mutually adjusted
			Freedman	2010	Age, sex, alcohol, BMI, cigarette smoking, diabetes, education, fruit intake, vegetable intake, marital status, race and/or ethnicity, total energy from nonalcohol sources, usual physical activity throughout the day, and vigorous physical activity.
			loannou	2009	Energy from other macronutrients, daily alcohol consumption, coffee or tea, gender, race, age, education, region, diabetes, BMI, and subscapular-totriceps skinfold ratio.
Total dairy	Highest vs. lowest	5	Yang	2019	Age, sex, BMI, family history of cancer, smoking, drinking, education status, physical activity, consumption of

						vegetables and fruit, insulin therapy, lipid-lowering medication, and systolic blood pressure
				Duarte	2014	Age, sex, alcohol, BMI, cigarette smoking, diabetes, education, fruit intake, vegetable intake, marital status, race and/or ethnicity, total energy from nonalcohol sources, usual physical activity throughout the day, and vigorous physical activity.
				Park	2010	NA
				Park	2010	NA
				Li	2014	Age, sex, BMI, family history of cancer, smoking, drinking, education status, physical activity, consumption of vegetables and fruit, insulin therapy, lipid-lowering medication, and systolic blood pressure
Morze 2021	Mediterranean diet	Highest vs. lowest	3	Bogumil	2019	Age, sex, race/ethnicity, BMI, history of diabetes, smoking status, energy intake
				Li	2014	NA
				Ma	2019	Age, race, cohort, physical activity level, BMI, smoking, regular aspirin use, total calorie intake, type 2 diabetes

Watling 2024	Fiber	Highest vs. lowest	7	Watling	(2024), cohort1	Sex, age at dietary questionnaire completion, and energy whereas in ATBC, minimally adjusted models adjusted for age at recruitment and energy intake, smoking status, ethnicity, education, alcohol intake, diabetes status, body mass index (BMI), regular use of aspirin, red meat intakes, and coffee consumption in both cohorts
				Watling	(2024), cohort2	Sex, age at dietary questionnaire completion, and energy whereas in ATBC, minimally adjusted models adjusted for age at recruitment and energy intake, smoking status, ethnicity, education, alcohol intake, diabetes status, body mass index (BMI), regular use of aspirin, red meat intakes, and coffee consumption in both cohorts
				Fedirko	2013	Energy adjustment by residual method, exercise, education, BMI, smoking status, diabetes, alcohol consumption, alcohol use; stratified by age, sex, center
				Yang	(2019), cohort1	Age, race, physical activity level, BMI, smoking, aspirin use, alcohol consumption, type 2 diabetes
				Yang	(2019), cohort2	Age, race, physical activity level, BMI, smoking, aspirin use, alcohol consumption, type 2 diabetes

 1		1		1	
			Liu	2021	Age at baseline, education, race, BMI, alcohol consumption, tobacco use, physical activity, diabetes, total energy intake; stratified by sex
			Guo	2022	Age, sex, race, education, Townsend Deprivation Index, smoking status, drinking status, exercise, BMI, diabetes
Whole grain	Highest vs. lowest	5	Watling	(2024), cohort1	Sex, age at dietary questionnaire completion, and energy whereas in ATBC, minimally adjusted models adjusted for age at recruitment and energy intake, smoking status, ethnicity, education, alcohol intake, diabetes status, body mass index (BMI), regular use of aspirin, red meat intakes, and coffee consumption in both cohorts
			Watling	(2024), cohort2	Sex, age at dietary questionnaire completion, and energy whereas in ATBC, minimally adjusted models adjusted for age at recruitment and energy intake, smoking status, ethnicity, education, alcohol intake, diabetes status, body mass index (BMI), regular use of aspirin, red meat intakes, and coffee consumption in both cohorts
			Yang	(2019), cohort1	Age, race, physical activity level, BMI, smoking, aspirin use, alcohol consumption, type 2 diabetes

				Yang	(2019), cohort2	Age, race, physical activity level, BMI, smoking, aspirin use, alcohol consumption, type 2 diabetes
				Liu	2021	Age at baseline, education, race, BMI, alcohol consumption, tobacco use, physical activity, diabetes, total energy intake; stratified by sex
Kennedy 2017	Coffee (dose)	Extra two cups of coffee per day	10	Setiawan	2015	Age, gender, alcohol, smoking, T2DM, education, BMI, race
				Kurozawa	2007	Age, gender, alcohol, smoking, T2DM, liver disease, education
				Johnson	2011	Age, gender, alcohol, smoking, T2DM, education, BMI, dialect group, year of recruitment, black and green tea
				Bamia	2015	Stratified for age and centre; adjusted for gender, alcohol, smoking, T2DM, education, BMI, physical activity, energy intake, tea
				Inoue	2005	Stratified for age and centre; adjusted for gender, alcohol, smoking, T2DM, education, BMI, physical activity, energy intake, tea
				Hu	2008	Age, gender, alcohol, smoking, T2DM, liver disease,

						education, BMI, study year
				Petrick	2015	Age, gender, alcohol, smoking, BMI, race, cohort
				Shimazu (cohort 1)	2005	Age, gender, alcohol, smoking, liver disease
				Shimazu (cohort 2)	2005	Age, gender, alcohol, smoking, liver disease
				Lai	2013	Age, alcohol, smoking, T2DM, education, BMI, tea, cholesterol, marital status, ATBC intervention arm
Yu 2014	Tea (dose)	per 3 cups increment/day	4	Nechuta	2012	Age, marital status, education, occupation, BMI, exercise, fruit and vegetable intake, meat intake, diabetes, and family history of digestive system cancer
				Ui	2009	Age, sex, alcohol consumption, smoking status, coffee consumption, vegetable consumption, dairy products consumption, fruit consumption, fish consumption, soybean consumption
				Inoue	2009	Sex, age, area, smoking status, weekly ethanol intake, body mass index, history of diabetes mellitus, coffee consumption, green tea consumption, serum ALT level, HCV infection

						status, and HBV infection status
				Nagano	2001	City, age, gender, radiation exposure, smoking status, alcohol drinking, body mass index, education level, calendar time
Zhao 2021	Cholesterol (dose)	per 100 mg increment/day	2	loannou	2009	Energy from other macronutrients, daily alcohol consumption, coffee or tea, gender, race, age, education, region, diabetes, BMI, and subscapular-totriceps skinfold ratio.
				Yang	2020	Age, sex, race, physical activity, BMI, smoking status, aspirin use, type 2 diabetes, alcohol intake, total coffee intake, and total energy intake.
	Monounsaturated fatty acid (dose)	per 1% energy increment/day	4	Koh	2016	Age, sex, BMI, family history of cancer, smoking, drinking, education status, physical activity, consumption of vegetables and fruit, insulin therapy, lipid-lowering medication, and systolic blood pressure
				Yang	2020	Age, sex, dialect, year of interview, educational level, BMI, smoking status, alcohol use, coffee drinking status, baseline history of self-reported diabetes, total energy and dietary protein.

					Fat subtype intakes are mutually adjusted.
			Duarte- Salles	2015	Baseline alcohol intake and non-alcohol total energy intake, sex-specific physical activity level, BMI, smoking status, lifetime alcohol intake pattern, coffee intake, and intake of dietary fiber. Fat subtype intakes are mutually adjusted
			Freedman	2010	Age, sex, alcohol, BMI, cigarette smoking, diabetes, education, fruit intake, vegetable intake, marital status, race and/or ethnicity, total energy from nonalcohol sources, usual physical activity throughout the day, and vigorous physical activity.
Polyunsaturated fatty acid (dose)	per 1% energy increment/day	3	Yang	2020	Age, sex, BMI, family history of cancer, smoking, drinking, education status, physical activity, consumption of vegetables and fruit, insulin therapy, lipid-lowering medication, and systolic blood pressure
			Duarte- Salles	2015	Baseline alcohol intake and non-alcohol total energy intake, sex-specific physical activity level, BMI, smoking status, lifetime alcohol intake pattern, coffee intake, and intake of dietary fiber.

					Fat subtype intakes are mutually adjusted
			Freedman	2010	Age, sex, alcohol, BMI, cigarette smoking, diabetes, education, fruit intake, vegetable intake, marital status, race and/or ethnicity, total energy from nonalcohol sources, usual physical activity throughout the day, and vigorous physical activity.
Saturated fat (dose)	per 1% energy increment/day	5	Koh	2016	Age, sex, dialect, year of interview, educational level, BMI, smoking status, alcohol use, coffee drinking status, baseline history of self-reported diabetes, total energy and dietary protein. Fat subtype intakes are mutually adjusted.
			loannou	2009	Energy from other macronutrients, daily alcohol consumption, coffee or tea, gender, race, age, education, region, diabetes, BMI, and subscapular-totriceps skinfold ratio.
			Yang	2020	Age, sex, BMI, family history of cancer, smoking, drinking, education status, physical activity, consumption of vegetables and fruit, insulin therapy, lipid-lowering medication, and systolic blood pressure

			Duarte- Salles	2015	Baseline alcohol intake and non-alcohol total energy intake, sex-specific physical activity level, BMI, smoking status, lifetime alcohol intake pattern, coffee intake, and intake of dietary fiber. Fat subtype intakes are mutually adjusted
			Freedman	2010	Age, sex, alcohol, BMI, cigarette smoking, diabetes, education, fruit intake, vegetable intake, marital status, race and/or ethnicity, total energy from nonalcohol sources, usual physical activity throughout the day, and vigorous physical activity.
Total fat (dose)	per 5% energy increment/day	5	Yang	2020	Age, sex, BMI, family history of cancer, smoking, drinking, education status, physical activity, consumption of vegetables and fruit, insulin therapy, lipid-lowering medication, and systolic blood pressure
			Koh	2016	Age, sex, dialect, year of interview, educational level, BMI, smoking status, alcohol use, coffee drinking status, baseline history of self-reported diabetes, total energy and dietary protein. Fat subtype intakes are mutually adjusted.

			Duarte- Salles	2015	Baseline alcohol intake and non-alcohol total energy intake, sex-specific physical activity level, BMI, smoking status, lifetime alcohol intake pattern, coffee intake, and intake of dietary fiber. Fat subtype intakes are mutually adjusted
			Freedman	2010	Age, sex, alcohol, BMI, cigarette smoking, diabetes, education, fruit intake, vegetable intake, marital status, race and/or ethnicity, total energy from nonalcohol sources, usual physical activity throughout the day, and vigorous physical activity.
			loannou	2009	Energy from other macronutrients, daily alcohol consumption, coffee or tea, gender, race, age, education, region, diabetes, BMI, and subscapular-totriceps skinfold ratio.
N-3 polyunsaturated fatty acid (dose)	per 1% energy increment/day	3	Yang	2020	Age, sex, BMI, family history of cancer, smoking, drinking, education status, physical activity, consumption of vegetables and fruit, insulin therapy, lipid-lowering medication, and systolic blood pressure
			Koh	2016	Age, sex, dialect, year of interview, educational level, BMI,

	1					
						smoking status, alcohol use, coffee drinking status, baseline
						history of self-reported diabetes, total energy and dietary
						protein.
						Fat subtype intakes are mutually adjusted.
				Sawada	2012	Age, area, sex, smoking status, alcohol frequency, BMI, past
						history of diabetes mellitus, intake of coffee, soy foods,
						vegetables, vegetable oil, protein, and iron
Watling	Fiber (dose)	per 10 g	7	Watling	(2024),	Sex, age at dietary questionnaire completion, and energy
2024		increment/day			cohort1	whereas in ATBC, minimally adjusted models adjusted for
						age at recruitment and energy intake, smoking status,
						ethnicity, education, alcohol intake, diabetes status, body
						mass index (BMI), regular use of aspirin, red meat intakes,
						and coffee consumption in both cohorts
				Watling	(2024),	Sex, age at dietary questionnaire completion, and energy
					cohort2	whereas in ATBC, minimally adjusted models adjusted for
						age at recruitment and energy intake, smoking status,
						ethnicity, education, alcohol intake, diabetes status, body
						mass index (BMI), regular use of aspirin, red meat intakes,
						and coffee consumption in both cohorts
1	1	1	1	1	1	

			Fedirko	2013	Energy adjustment by residual method, exercise, education, BMI, smoking status, diabetes, alcohol consumption, alcohol use; stratified by age, sex, center
			Yang	(2019), cohort1	Age, race, physical activity level, BMI, smoking, aspirin use, alcohol consumption, type 2 diabetes
			Yang	(2019), cohort2	Age, race, physical activity level, BMI, smoking, aspirin use, alcohol consumption, type 2 diabetes
			Liu	2021	Age at baseline, education, race, BMI, alcohol consumption, tobacco use, physical activity, diabetes, total energy intake; stratified by sex
			Guo	2022	Age, sex, race, education, Townsend Deprivation Index, smoking status, drinking status, exercise, BMI, diabetes
Whole grain (dose)	per 16 g increment/day	5	Watling	(2024), cohort1	Sex, age at dietary questionnaire completion, and energy whereas in ATBC, minimally adjusted models adjusted for age at recruitment and energy intake, smoking status, ethnicity, education, alcohol intake, diabetes status, body mass index (BMI), regular use of aspirin, red meat intakes, and coffee consumption in both cohorts

		Watling	(2024), cohort2	Sex, age at dietary questionnaire completion, and energy whereas in ATBC, minimally adjusted models adjusted for age at recruitment and energy intake, smoking status, ethnicity, education, alcohol intake, diabetes status, body mass index (BMI), regular use of aspirin, red meat intakes, and coffee consumption in both cohorts
		Yang	(2019), cohort1	Age, race, physical activity level, BMI, smoking, aspirin use, alcohol consumption, type 2 diabetes
		Yang	(2019), cohort2	Age, race, physical activity level, BMI, smoking, aspirin use, alcohol consumption, type 2 diabetes
		Liu	2021	Age at baseline, education, race, BMI, alcohol consumption, tobacco use, physical activity, diabetes, total energy intake; stratified by sex

Dietary factor	Researc	Comparison	No.	Coh	Particip	Eff	Crite	ria					Evide	GRA
	h		of	ort	ants, n	ect	Cas	Р	95%	Р	I ² ,	Р	nce	DE
	classific		stud	stud		size	es, n		PI	(sm	%	(excess	class	
	ation		ies	y, n						all		signific		
										stud		ant		
										У		test)		
										test)				
Coffe	Non-	Highest vs. lowest	10	11	2266671	0.49	301	6.83	[0.33	7.92	19.2	7.31e-	Ι	Very
	dose-					7	5	e-	2,	e-01	25	01		low
	response							16	0.74					
									4]					
Fish	Non-	Highest vs. lowest	5	5	1292076	0.81	165	1.39	[0.68	5.36	0	7.07e-	III	Very
	dose-					1	9	e-	1,	e-01		01		low
	response							04	0.96					
									6]					
Fiber	Non-	Highest vs. lowest	5	7	2858360	0.71	207	3.54	[0.51	4.42	17.0	3.84e-	III	Low
	dose-					3	8	e-	1,	e-01	11	01		
	response							05	0.99					
									5]					

Supplement Table 5. Statistical analyses of quality evaluating criteria for all associations.

Mediterranean diet	Non-	Highest vs. lowest	3	3	803436	0.66	127	9.31	[0.20	3.80	0	5.43e-	III	Very
	dose-					6	4	e-	7,	e-01		01		low
	response							06	2.13					
									8]					
Alcohol*	Non-	Highest vs. lowest	2	2	489	3.77	<	7.21	< 3	< 3	0		IV	Very
	dose-					4	489	e-	studi	stud				low
	response							04	es	ies				
Saturated fat	Non-	Highest vs. lowest	5	5	1180214	1.33	130	1.81	[0.76	2.79	16.8	6.17e-	IV	Low
	dose-					4	0	e-	7,	e-01	41	01		
	response							02	2.32]					
Whole grains	Non-	Highest vs. lowest	4	5	1471226	0.79	121	5.60	[0.61	1.02	0	8.91e-	IV	Low
	dose-					4	8	e-	,	e-01		01		
	response							03	1.03					
									5]					
Cruciferous	Non-	Highest vs. lowest	3	3	141465	0.75	270	4.12	[0.13	1.53	0	8.18e-	IV	Low
vegetables	dose-					6	2	e-	3,	e-01		01		
	response							02	4.30					
									1]					
Vegetable	Non-	Highest vs. lowest	9	9	1474399	0.65	207	1.90	[0.28	1.62	75.1	4.63e-	IV	Very
	dose-					9	0	e-	8,	e-03	27	04		low
	response							03	1.50					

Selenium	Non- dose- response	Highest vs. lowest	4	4	6326	0.51 9	135	2.09 e- 04	[0.24 3, 1.11 1]	4.17 e-01	11.8 23	6.96e- 01	IV	Very low
Ginseng	Non- dose- response	Yes vs. no	4	4	13493	0.46 3	831	2.16 e- 02	[0.02 6, 8.30 9]	9.08 e-01	93.3 78	7.27e- 01	IV	Very low
Cholesterol	Non- dose- response	Highest vs. lowest	2	2	147704	1.65 2	283	1.62 e- 01	< 3 studi es	< 3 stud ies	67.9 64		V	Very low
Milk	Non- dose- response	Highest vs. lowest	5	5	9188172	1.26 7	404 0	7.54 e- 02	[0.53 4, 3.01 1]	8.40 e-01	67.8 99	4.50e- 01	V	Very low
Total dairy	Non- dose- response	Highest vs. lowest	5	4	1684162	1.21 2	126 1	1.15 e- 01	[0.47 2, 3.11 3]	1.30 e-01	59.6 43	3.91e- 01	V	Low

4]

Red meat	Non-	Highest vs. lowest	6	6	1770363	1.17	187	1.55	[0.63	8.11	54.3	3.12e-	V	Very
	dose-					7	8	e-	6,	e-02	1	01		low
	response							01	2.17					
									7]					
Processed meat	Non-	Highest vs. lowest	5	5	1694610	1.16	155	8.84	[0.87	8.55	31.0	2.76e-	V	Very
	dose-						2	e-	9,	e-01	04	01		low
	response							02	1.53]					
Green tea**	Non-	Highest vs. lowest	2	2	57355	1.10	139	6.26	< 3	< 3	42.1		V	Very
	dose-					2	4	e-	studi	stud	82			low
	response							01	es	ies				
Total red	Non-	Highest vs. lowest	5	6	1638829	1.08	172	2.45	[0.86	5.23	22.5	7.35e-	V	Very
and processed meat	dose-					5	0	e-	7,	e-01	02	01		low
	response							01	1.35					
									8]					
Total meat	Non-	Highest vs. lowest	3	3	1101412	1.07	578	6.34	[0.06	2.48	39.4	7.30e-	V	Very
	dose-							e-	6,	e-01	32	01		low
	response							01	17.2					
									17]					
Cheese	Non-	Highest vs. lowest	3	3	994543	1.06	102	6.84	[0.03	6.29	56.9	1.15e-	V	Very
	dose-					9	7	e-	4,	e-01	92	01		low
	response							01	33.8					

Total fat	Non-	Highest vs. lowest	5	5	1180214	1.06	130	6.23	[0.49	2.08	45.2	8.09e-	V	Low
	dose-					8	0	e-	5,	e-01	04	01		
	response							01	2.30					
									6]					
Ultra-processed	Non-	Highest vs. lowest	2	2	217566	1.05	289	7.88	< 3	< 3	0		V	Very
Food	dose-					6		e-	studi	stud				low
	response							01	es	ies				
Fruit	Non-	Highest vs. lowest	6	6	1043684	1.04	197	5.65	[0.85	3.63	0	6.95e-	V	Very
	dose-					2	2	e-	5,	e-02		01		low
	response							01	1.26					
									9]					
Alcohol	Non-	Highest vs. lowest	3	3	1588661	1.02	254	8.64	[0.07	6.61	62.2	2.98e-	V	Very
	dose-					1	6	e-	9,	e-01	99	01		low
	response							01	13.2					
									13]					
Carbohydrate	Non-	Highest vs. lowest	4	7	1101704	0.97	984	8.51	[0.73	1.52	44.5	2.78e-	V	Very
	dose-					9		e-	3,	e-01	1	05		low
	response							01	1.30					
									7]					

63]

Legumes	Non-	Highest vs. lowest	3	3	153072	0.93	470	6.91	[0.05	7.73	12.4	6.69e-	V	Very
	dose-					1		e-	7,	e-01	31	01		low
	response							01	15.1					
									6]					
Caffeinated Coffee	Non-	Yes vs. no	2	2	707226	0.93	220	3.50	< 3	< 3	0		V	Very
	dose-							e-	studi	stud				low
	response							01	es	ies				
PUFA	Non-	Highest vs. lowest	3	3	1110695	0.88	689	3.36	[0.15	3.95	0.31	7.09e-	V	Low
	dose-					7		e-	1,	e-01	4	01		
	response							01	5.22]					
Green tea	Non-	Highest vs. lowest	7	7	275975	0.88	128	2.44	[0.53	7.82	41.3	5.03e-	V	Very
	dose-					6	9	e-	1,	e-01	81	01		low
	response							01	1.47					
									8]					
MUFA	Non-	Highest vs. lowest	3	4	1170993	0.88	117	4.76	[0.22	1.90	52.2	7.85e-	V	Very
	dose-						7	e-	8,	e-01	06	01		low
	response							01	3.39					
									5]					
Yogurt	Non-	Highest vs. lowest	2	2	622051	0.80	358	1.26	< 3	< 3	0		V	Very
	dose-					9		e-	studi	stud				low
	response							01	es	ies				

White meat	Non-	Highest vs. lo	owest	6	6	2199292	0.79	189	6.82	[0.37	2.18	71.9	3.47e-	V	Very
	dose-						4	9	e-	2,	e-01	61	03		low
	response								02	1.69					
										8]					
N-3 PUFA	Non-	Highest vs. lo	owest	3	3	289077	0.76	104	1.04	[0.03	4.05	40.6	3.91e-	V	Low
	dose-						1	6	e-	,	e-01	48	01		
	response								01	19.2					
										31]					
Coffee	Dose-	Extra two	cups of	9	10	2272642	0.71	290	1.27	[0.59	1.71	36.3	6.79e-	Ι	Mode
	response	coffee per da	у				3	5	e-	7,	e-02	79	02		rate
									17	0.85					
										1]					
Fiber	Dose-	per 3	cups	5	7	2858360	0.83	207	3.41	[0.68	8.17	36.2	1.75e-	III	Mode
	response	increment/day	У				1	8	e-	3,	e-01	25	01		rate
									05	1.01					
										2]					
Saturated fat	Dose-	per 100	mg	4	5	1055579	1.33	130	1.81	[0.76	2.79	16.8	6.17e-	IV	Mode
	response	increment/day	у				4	0	e-	7,	e-01	41	01		rate
									02	2.32]					
Total cholesterol	Dose-	per 1%	energy	2	2	147704	1.15	283	2.94	< 3	< 3	0		IV	Low
	response	increment/day	у				8		e-	studi	stud				

Total fatt not be incremented as the incremented as the incremented as increment											03	es	ies				
$ \begin{tabular}{ c c c c c c c } & & & & & & & & & & & & & & & & & & &$	Total fat	Dose- response	per increm	1% ient/day	energy	5	5	1055579	1.01 3	130 0	7.85 e-	[0.74 3,	7.15 e-01	64.4 93	3.49e- 02	V	Mode rate
MUFA Dose- response per 1% energy 3 4 616872 0.95 117 2.84 [0.66 9.35 72.7 3.17e- V Mode response increment/day - 5 7 e- 8, e-02 29 01 - rate Whole grains Dose- per 5% energy 3 5 1471226 0.94 121 1.03 [0.70 6.66 34.6 4.80e- V Mode response increment/day - 5 1471226 0.94 121 1.03 [0.70 6.66 34.6 4.80e- V Mode response increment/day - - 117 2 6.51 2.12e- V Mode PUFA Dose- per 1% energy 3 3 986055 0.93 689 2.46 [0.28 1.52 6.51 2.12e- V Low response increment/day - - 1684 6.91 3.06 -											01	1.38 2]					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	MUFA	Dose-	per	1%	energy	3	4	616872	0.95	117	2.84	[0.66	9.35	72.7	3.17e-	V	Mode
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		response	increm	ent/day					5	7	e-	8,	e-02	29	01		rate
Whole grains Dose- response per 5% energy 3 5 1471226 0.94 121 1.03 [0.79 6.66 34.6 4.80e- V Mode response increment/day											01	1.36					
Whole grains Dose- per 5% energy 3 5 1471226 0.94 121 1.03 [0.79 6.66 34.6 4.80e- V Mode response increment/day - - 7 8 e- 2, c-01 14 01 - rate PUFA Dose- per 1% energy 3 3 986055 0.93 689 2.46 [0.28 1.52 65.1 2.12e- V Low PUFA pose- per 1% energy 3 3 986055 0.93 689 2.46 [0.28 1.52 65.1 2.12e- V Low response increment/day - - - 6-0 7, e-0 7,5 01 - - 1 - 4 168426 0.91 882 3.79 [0.42 8.01 52.5 4.52e- V Low response increment/day - - 1 - 2,01 9 01												5]					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Whole grains	Dose-	per	5%	energy	3	5	1471226	0.94	121	1.03	[0.79	6.66	34.6	4.80e-	V	Mode
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		response	increm	ent/day					7	8	e-	2,	e-01	14	01		rate
PUFA Dose-response per 1% energy 3 3 986055 0.93 689 2.46 [0.28] 1.52 65.1 2.12e- V Low response increment/day - - 8 - 6- 7, 6-01 75 01 - - 10 3.06 - - - - 4] - - 4] - - 4] - - 1 - 6-01 50.5 4.52e- V Low Tea Dose-response per 10 g 4 168426 0.91 882 3.79 [0.42 8.01 52.5 4.52e- V Low response increment/day - - - 6- 2, e-01 9 01 - - 1 - 1 - 7] - - - - 7] - - 1 - 1 - 1 - 1 - 1 - - 7] - <											01	1.13					
PUFA Dose- per 1% energy 3 986055 0.93 689 2.46 [0.28 1.52 65.1 2.12e- V Low response increment/day 8 e- 7, e-01 75 01 1 <td></td> <td>2]</td> <td></td> <td></td> <td></td> <td></td> <td></td>												2]					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	PUFA	Dose-	per	1%	energy	3	3	986055	0.93	689	2.46	[0.28	1.52	65.1	2.12e-	V	Low
Tea Dose- per 10 g 4 168426 0.91 882 3.79 [0.42 8.01 52.5 4.52e- V Low response increment/day 1 e- 2, e-01 9 01 7]		response	increm	ent/day					8		e-	7,	e-01	75	01		
Tea Dose- per 10 g 4 4 168426 0.91 882 3.79 [0.42 8.01 52.5 4.52e- V Low response increment/day 1 e- 2, e-01 9 01 01 1											01	3.06					
Tea Dose-per 10 g 4 168426 0.91 882 3.79 [0.42 8.01 52.5 4.52e-V Low response increment/day 1 e- 2, e-01 9 01 1												4]					
response increment/day 1 e- 2, e-01 9 01 01 1.96 7]	Tea	Dose-	per	10	g	4	4	168426	0.91	882	3.79	[0.42	8.01	52.5	4.52e-	V	Low
01 1.96 7]		response	increm	ent/day					1		e-	2,	e-01	9	01		
7]											01	1.96					
												7]					

N-3 PUFA	Dose-	per	16	g	3	3	289077	0.78	104	1.89	[0.07	9.10	0	7.32e-	V	Mode
	response	incremen	t/day						6	e-	1,	e-01		01		rate
										01	8.60					
											6]					

*This association focused on the NAFLD-related population rather than the whole population.

**This association focused on the frequency of green tea rather than the weight.

Supplement Table 6. Quality Assessment Using the GRADE Framework of Each Pooled Analysis Assessing Associations Between diet and the risk of hepatocellular carcinoma.

Cert	ainty a	ssessr	nent				№ of patient s	Effec	t	Cert ainty	Impo rtanc e
N⁰ of stu die s	Stud y desig n	Ris k of bia s	Incons istency	Indire ctness	Impre cision	Other conside rations	[interv ention]	Rel ativ e (95 % CI)	Abs olut e (95 % CI)		

Coffee. Highest vs. lowest

11	non-	not	not	not	not	publicati	3015/22	RR	1	⊕⊖	
	rando	seri	serious	serious	serious	on bias	66671	0.50	fewe	00	
	mised	ous				strongly	(0.1%)	(0.42	r per	Very	
	studie					suspecte		to	1,000	low ^a	
	s					da		0.59)	(fro		
									m 1		
									fewe		
									r to 0		
									fewe		
									r)		

Caffeinated Coffee. Yes vs. no

Cert	ainty a	ssessr	nent				№ of patient s	Effec	t	Cert ainty	Impo rtanc e
№ of stu die s	Stud y desig n	Ris k of bia s	Incons istency	Indire ctness	Impre cision	Other conside rations	[interv ention]	Rel ativ e (95 % CI)	Abs olut e (95 % CI)		
2	non- rando mised studie s	seri ous ^b	not serious	not serious	serious °	none	220/707 226 (0.0%)	RR 0.93 (0.80 to 1.08)	1 fewe r per 1,000 (fro m 1 fewe r to 1 fewe r)	⊕⊖ ⊖⊖ Very low ^{b,c}	

Processed meat. Highest vs lowest

6	non-	seri	not	not	not	none	1552/16	RR	1	⊕⊖	
	rando	ous ^b	serious	serious	serious		94610	1.16	fewe	00	
	mised						(0.1%)	(0.98	r per	Very	
	studie							to	1,000	low ^b	
	s							1.38)	(fro		
									m 1		
									fewe		
									r to 1		
									fewe		
									r)		

Cert	ainty a	ssessi	nent				№ of patient s	Effec	t	Cert ainty	Impo rtanc e
№ of stu die s	Stud y desig n	Ris k of bia s	Incons istency	Indire ctness	Impre cision	Other conside rations	[interv ention]	Rel ativ e (95 % CI)	Abs olut e (95 % CI)		

Red and processed meat. Highest vs. lowest

6	non-	seri	not	not	not	none	1720/16	RR	1	⊕⊖	
	rando	ous ^b	serious	serious	serious		38829	1.08	fewe	00	
	mised						(0.1%)	(0.94	r per	Very	
	studie							to	1,000	low ^b	
	s							1.25)	(fro		
									m 1		
									fewe		
									r to 1		
									fewe		
									r)		

Green tea. Highest vs. lowest

Cert	ainty a	ssessr	nent				№ of patient s	Effec	t	Cert ainty	Impo rtanc e
№ of stu die s	Stud y desig n	Ris k of bia s	Incons istency	Indire ctness	Impre cision	Other conside rations	[interv ention]	Rel ativ e (95 % CI)	Abs olut e (95 % CI)		
7	non- rando mised studie s	seri ous ^b	not serious	not serious	not serious	none	1289/27 5975 (0.5%)	RR 0.89 (0.72 to 1.09)	1 fewe r per 1,000 (fro m 1 fewe r to 1 fewe r)	⊕○ ○○ Very low ^b	

Alcohol (NAFLD patients). Modest vs. lowest

2	non-	not	not	not	serious	strong	NA/489	RR	1	⊕⊕	
	rando	seri	serious	serious	d	associati		1.10	fewe	00	
	mised	ous				on		(0.74	r per	Low ^d	
	studie							to	1,000		
	s							1.63)	(fro		
									m 2		
									fewe		
									r to 1		
									fewe		
									r)		

Cert	ainty a	ssessi	nent				№ of patient s	Effec	t	Cert ainty	Impo rtanc e
№ of stu die s	Stud y desig n	Ris k of bia s	Incons istency	Indire ctness	Impre cision	Other conside rations	[interv ention]	Rel ativ e (95 % CI)	Abs olut e (95 % CI)		

Fruits. Highest vs. lowest

_											
6	non-	not	not	not	not	none	1972/10	RR	1	⊕⊕	
	rando	seri	serious	serious	serious		43684	1.04	fewe	00	
	mised	ous					(0.2%)	(0.91	r per	Low	
	studie							to	1,000		
	s							1.20)	(fro		
									m 1		
									fewe		
									r to 1		
									fewe		
									r)		

Vegetables. Highest vs. lowest

C	Certainty assessment								Effec	t	Cert ainty	Impo rtanc e
Л 0	∿ <u>o</u> f	Stud y	Ris k	Incons istency	Indire ctness	Impre cision	Other conside	[interv ention]	Rel ativ	Abs olut		
s d	tu lie	desig n	of bia				rations		e (95	e (95		
s			S						% CI)	% CI)		
9		non- rando mised studie s	not seri ous	serious ^e	not serious	not serious	none	2070/14 74399 (0.1%)	RR 0.66 (0.51 to 0.86)	1 fewe r per 1,000 (fro m 1	⊕⊖ ⊖⊖ Very low ^e	
										fewe r to 1 fewe r)		

Red Meat. Highest vs. lowest

6	non-	not	not	not	not	publicati	1878/17	RR	1	Θ	
	rando	seri	serious	serious	serious	on bias	70363	1.18	fewe	00	
	mised	ous				strongly	(0.1%)	(0.94	r per	Very	
	studie					suspecte		to	1,000	$low^{\rm f}$	
	s					df		1.47)	(fro		
									m 1		
									fewe		
									r to 1		
									fewe		
									r)		

Cert	ainty a	ssessi	nent		№ of patient s	Effec	t	Cert ainty	Impo rtanc e		
№ of stu die s	Stud y desig n	Ris k of bia s	Incons istency	Indire ctness	Impre cision	Other conside rations	[interv ention]	Rel ativ e (95 % CI)	Abs olut e (95 % CI)		

White Meat. Highest vs. lowest

-											
6	non-	not	very	not	not	none	1833/21	RR	1	⊕⊖	
	rando	seri	serious ^g	serious	serious		99262	0.79	fewe	00	
	mised	ous					(0.1%)	(0.62	r per	Very	
	studie							to	1,000	low ^g	
	s							1.02)	(fro		
									m 1		
									fewe		
									r to 1		
									fewe		
									r)		

Fish. Highest vs. lowest

Cert	Certainty assessment							Effect		Cert ainty	Impo rtanc e
N⊵ of stu die s	Stud y desig n	Ris k of bia s	Incons istency	Indire ctness	Impre cision	Other conside rations	[interv ention]	Rel ativ e (95 % CI)	Abs olut e (95 % CI)		
5	non- rando mised studie s	not seri ous	not serious	not serious	not serious	none	1659/12 92076 (0.1%)	RR 0.81 (0.73 to 0.90)	1 fewe r per 1,000 (fro m 1 fewe r to 1 fewe r)	⊕⊖ ○⊖ Very low	

Total Meat. Highest vs. lowest

3	non-	not	not	not	serious	none	578/110	RR	1	⊕⊖	
	rando	seri	serious	serious	i		4402	1.07	fewe	00	
	mised	ous					(0.1%)	(0.81	r per	Very	
	studie							to	1,000	low ⁱ	
	s							1.41)	(fro		
									m 1		
									fewe		
									r to 1		
									fewe		
									r)		

Cert	ainty a	ssessi	nent		№ of patient s	Effect		Cert ainty	Impo rtanc e		
№ of stu die s	Stud y desig n	Ris k of bia s	Incons istency	Indire ctness	Impre cision	Other conside rations	[interv ention]	Rel ativ e (95 % CI)	Abs olut e (95 % CI)		

Milk. Highest vs. lowest

5	non-	not	not	not	not	none	2020/45	RR	1	⊕⊕	
	rando	seri	serious	serious	serious		94086	1.27	fewe	00	
	mised	ous					(0.0%)	(0.98	r per	Low	
	studie							to	1,000		
	s							1.65)	(fro		
									m 2		
									fewe		
									r to 1		
									fewe		
									r)		

Ginseng. Yes vs. no

C	Certainty assessment							Effect		Cert ainty	Impo rtanc e
Nº of	Stud y	Ris k	Incons istency	Indire ctness	Impre cision	Other conside	[interv ention]	Rel ativ	Abs olut		
di s	e n	bia s				rations		e (95 % CI)	e (95 % CI)		
4	non- rando mised studie s	seri ous ^b	very serious ^j	not serious	serious ^k	none	831/134 93 (6.2%)	RR 0.46 (0.24 to 0.89)	0 fewe r per 1,000 (fro m 1 fewe r to 0 fewe r)	⊕⊖ ⊖⊖ Very low ^{b,j,} k	

Cruciferous vegetables. Highest vs. lowest

3	non-	not	not	not	not	none	2070/14	RR	1	⊕⊕	
	rando	seri	serious	serious	serious		1465	0.76	fewe	00	
	mised	ous					(1.5%)	(0.58	r per	Low	
	studie							to	1,000		
	s							0.99)	(fro		
									m 1		
									fewe		
									r to 1		
									fewe		
									r)		
Cert	ainty a	ssessi	nent		№ of patient s	Effec	t	Cert ainty	Impo rtanc e		
----------------------------	-------------------------	----------------------------	-------------------	------------------	----------------------	-----------------------------	--------------------	-------------------------------------	-------------------------------------	--	--
№ of stu die s	Stud y desig n	Ris k of bia s	Incons istency	Indire ctness	Impre cision	Other conside rations	[interv ention]	Rel ativ e (95 % CI)	Abs olut e (95 % CI)		

Ultra-Processed Food. Highest vs. lowest

-											
2	non-	not	not	not	serious	none	289/217	RR	1	⊕⊖	
	rando	seri	serious	serious	1		566	1.06	fewe	00	
	mised	ous					(0.1%)	(0.71	r per	Very	
	studie							to	1,000	low ¹	
	s							1.57)	(fro		
									m 2		
									fewe		
									r to 1		
									fewe		
									r)		

Legumes. Highest vs. lowest

Certainty assessment						№ of patient s	Effect		Cert ainty	Impo rtanc e	
№ of stu die s	Stud y desig n	Ris k of bia s	Incons istency	Indire ctness	Impre cision	Other conside rations	[interv ention]	Rel ativ e (95 % CI)	Abs olut e (95 % CI)		
3	non- rando mised studie s	not seri ous	not serious	not serious	serious m	none	470/153 072 (0.3%)	RR 0.93 (0.66 to 1.32)	1 fewe r per 1,000 (fro m 1 fewe r to 1 fewe r)	⊕⊖ ○⊖ Very low ^m	

Yogurt. Highest vs. lowest

2	non-	not	not	not	serious	none	358/622	RR	1	⊕⊖	
	rando	seri	serious	serious	n		051	0.81	fewe	00	
	mised	ous					(0.1%)	(0.62	r per	Very	
	studie							to	1,000	low ⁿ	
	s							1.06)	(fro		
									m 1		
									fewe		
									r to 1		
									fewe		
									r)		

Cert	ainty a	ssessi	nent		№ of patient s	Effec	t	Cert ainty	Impo rtanc e		
№ of stu die s	Stud y desig n	Ris k of bia s	Incons istency	Indire ctness	Impre cision	Other conside rations	[interv ention]	Rel ativ e (95 % CI)	Abs olut e (95 % CI)		

Cheese. Highest vs. lowest

				1			1				-
3	non-	not	serious°	not	not	none	1027/99	RR	1	⊕⊖	
	rando	seri		serious	serious		4543	1.07	fewe	00	
	mised	ous					(0.1%)	(0.78	r per	Very	
	studie							to	1,000	low ^o	
	s							1.48)	(fro		
									m 1		
									fewe		
									r to 1		
									fewe		
									r)		

Carbohydrate. Highest vs. lowest

s	
№ Stud Ris Incons Indire Impre Other [interv Rel Abs	
of y k istency ctness cision conside ention] ativ olut	
stu desig of rations e e	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
S S CD CD	
7 non- not serious ^p not serious none 984/110 RR 1 \oplus	
rando seri serious q 1704 0.98 fewe	D C
mised ous (0.1%) (0.78 r per Ven	y
studie to 1,000 low	rp,q
s 1.22) (fro	
fewe	
r to 1	
fewe	

Selenium. Highest vs. lowest

4	non-	not	not	not	serious	none	135/632	RR	1	⊕⊖	
	rando	seri	serious	serious	r		6	0.52	fewe	00	
	mised	ous					(2.1%)	(0.37	r per	Very	
	studie							to	1,000	low ^r	
	s							0.73)	(fro		
									m 1		
									fewe		
									r to 0		
									fewe		
									r)		

Cert	ainty a	ssessi	nent		№ of patient s	Effec	t	Cert ainty	Impo rtanc e		
№ of stu die s	Stud y desig n	Ris k of bia s	Incons istency	Indire ctness	Impre cision	Other conside rations	[interv ention]	Rel ativ e (95 % CI)	Abs olut e (95 % CI)		

N-3 polyunsaturated fatty acid. Highest vs. lowest

3	non-	not	not	not	not	none	1046/28	RR	1	⊕⊕	
	rando	seri	serious	serious	serious		9077	0.76	fewe	00	
	mised	ous					(0.4%)	(0.55	r per	Low	
	studie							to	1,000		
	s							1.06)	(fro		
									m 1		
									fewe		
									r to 1		
									fewe		
									r)		

Total cholesterol. Highest vs. lowest

Certainty assessment						№ of patient s	Effec	t	Cert ainty	Impo rtanc e	
№ of stu die s	Stud y desig n	Ris k of bia s	Incons istency	Indire ctness	Impre cision	Other conside rations	[interv ention]	Rel ativ e (95 % CI)	Abs olut e (95 % CI)		
2	non- rando mised studie s	not seri ous	not serious	not serious	serious s	none	283/147 704 (0.2%)	RR 1.65 (0.82 to 3.34)	2 fewe r per 1,000 (fro m 3 fewe r to 1 fewe r)	⊕O OO Very low ^s	

Monounsaturated fatty acid. Highest vs. lowest

4	non-	not	not	not	not	publicati	1177/11	RR	1	\oplus	
	rando	seri	serious	serious	serious	on bias	70993	0.88	fewe	00	
	mised	ous				strongly	(0.1%)	(0.62	r per	Very	
	studie					suspecte		to	1,000	low ^t	
	s					d ^t		1.25)	(fro		
									m 1		
									fewe		
									r to 1		
									fewe		
									r)		

Cert	ainty a	ssessi	nent				№ of patient s	Effec	t	Cert ainty	Impo rtanc e
№ of stu die s	Stud y desig n	Ris k of bia s	Incons istency	Indire ctness	Impre cision	Other conside rations	[interv ention]	Rel ativ e (95 % CI)	Abs olut e (95 % CI)		

Polyunsaturated fatty acid. Highest vs. lowest

3	non-	not	not	not	serious	none	689/111	RR	1	⊕⊖	
	rando	seri	serious	serious	u		0695	0.89	fewe	00	
	mised	ous					(0.1%)	(0.69	r per	Very	
	studie							to	1,000	low ^u	
	s							1.13)	(fro		
									m 1		
									fewe		
									r to 1		
									fewe		
									r)		

Saturated fat. Highest vs. lowest

Cert	ainty a	ssessr	nent			№ of patient s	Effec	t	Cert ainty	Impo rtanc e	
№ of stu die s	Stud y desig n	Ris k of bia s	Incons istency	Indire ctness	Impre cision	Other conside rations	[interv ention]	Rel ativ e (95 % CI)	Abs olut e (95 % CI)		
5	non- rando mised studie s	not seri ous	not serious	not serious	not serious	none	1300/11 80214 (0.1%)	RR 1.33 (1.05 to 1.69)	1 fewe r per 1,000 (fro m 2 fewe r to 1 fewe r)	⊕⊕ ○○ Low	

Total fat. Highest vs. lowest

5	non-	not	not	not	not	none	1300/11	RR	1	⊕⊕	
	rando	seri	serious	serious	serious		80214	1.07	fewe	00	
	mised	ous					(0.1%)	(0.82	r per	Low	
	studie							to	1,000		
	s							1.39)	(fro		
									m 1		
									fewe		
									r to 1		
									fewe		
									r)		

Cert	ainty a	ssessi	nent				№ of patient s	Effec	t	Cert ainty	Impo rtanc e
№ of stu die s	Stud y desig n	Ris k of bia s	Incons istency	Indire ctness	Impre cision	Other conside rations	[interv ention]	Rel ativ e (95 % CI)	Abs olut e (95 % CI)		

Total dairy. Highest vs. lowest

5	non-	not	not	not	not	none	1261/16	RR	1	⊕⊕	
	rando	seri	serious	serious	serious		84162	1.21	fewe	00	
	mised	ous					(0.1%)	(0.95	r per	Low	
	studie							to	1,000		
	s							1.54)	(fro		
									m 2		
									fewe		
									r to 1		
									fewe		
									r)		

Mediterranean diet. Highest vs. lowest

Cert	Certainty assessment № Stud Ris Incons Indire Impre Other							Effec	t	Cert ainty	Impo rtanc e
№ of stu die s	Stud y desig n	Ris k of bia s	Incons istency	Indire ctness	Impre cision	Other conside rations	[interv ention]	Rel ativ e (95 % CI)	Abs olut e (95 % CI)		
3	non- rando mised studie s	seri ous ^v	not serious	not serious	not serious	none	1274/80 3436 (0.2%)	RR 0.67 (0.56 to 0.80)	1 fewe r per 1,000 (fro m 1 fewe r to 1 fewe r)	⊕⊖ ⊖⊖ Very low ^v	

Fiber. Highest vs lowest

7	non-	not	not	not	not	none	2078/28	RR	1	⊕⊕	
	rando	seri	serious	serious	serious		58360	0.71	fewe	00	
	mised	ous					(0.1%)	(0.61	r per	Low	
	studie							to	1,000		
	s							0.84)	(fro		
									m 1		
									fewe		
									r to 1		
									fewe		
									r)		

Cert	ainty a	ssessi	nent				№ of patient s	Effec	t	Cert ainty	Impo rtanc e
№ of stu die s	Stud y desig n	Ris k of bia s	Incons istency	Indire ctness	Impre cision	Other conside rations	[interv ention]	Rel ativ e (95 % CI)	Abs olut e (95 % CI)		

Whole grain

5	non-	not	not	not	not	none	1218/14	RR	1	⊕⊕	
	rando	seri	serious	serious	serious		71226	0.79	fewe	00	
	mised	ous					(0.1%)	(0.68	r per	Low	
	studie							to	1,000		
	s							0.94)	(fro		
									m 1		
									fewe		
									r to 1		
									fewe		
									r)		

Coffee. dose

Cert	ainty a	ssessr	nent			№ of patient s	Effec	t	Cert ainty	Impo rtanc e	
№ of stu die s	Stud y desig n	Ris k of bia s	Incons istency	Indire ctness	Impre cision	Other conside rations	[interv ention]	Rel ativ e (95 % CI)	Abs olut e (95 % CI)		
10	non- rando mised studie s	not seri ous	not serious	not serious	not serious	dose response gradient	2905/22 72642 (0.1%)	RR 0.71 (0.66 to 0.77)	1 fewe r per 1,000 (fro m 1 fewe r to 1 fewe r)	⊕⊕ ⊕⊖ Mode rate	

Tea. dose

4	non-	not	not	not	serious	dose	882/168	RR	1	⊕⊕	
	rando	seri	serious	serious	w	response	426	0.91	fewe	00	
	mised	ous				gradient	(0.5%)	(0.74	r per	Low ^w	
	studie							to	1,000		
	S							1.12)	(fro		
									m 1		
									fewe		
									r to 1		
									fewe		
									r)		

Cert	ainty a	ssessi	nent		№ of patient s	Effec	t	Cert ainty	Impo rtanc e		
№ of stu die s	Stud y desig n	Ris k of bia s	Incons istency	Indire ctness	Impre cision	Other conside rations	[interv ention]	Rel ativ e (95 % CI)	Abs olut e (95 % CI)		

Total cholesterol. dose

2	non-	not	not	not	serious	dose	283/147	RR	1	⊕⊕	
	rando	seri	serious	serious	s	response	704	1.16	fewe	00	
	mised	ous				gradient	(0.2%)	(1.05	r per	Lows	
	studie							to	1,000		
	s							1.28)	(fro		
									m 1		
									fewe		
									r to 1		
									fewe		
									r)		

Monounsaturated fatty acid. dose

Cert	tainty a	ssessr	nent		№ of patient s	Effec	t	Cert ainty	Impo rtanc e		
№ of stu	Stud y desig	Ris k of	Incons istency	Indire ctness	Impre cision	Other conside rations	[interv ention]	Rel ativ e	Abs olut e		
die s	n	bia s						(95 % CI)	(95 % CI)		
4	non- rando mised studie s	not seri ous	not serious	not serious	not serious	dose response gradient	1177/11 70993 (0.1%)	RR 0.95 (0.88 to 1.04)	1 fewe r per 1,000 (fro m 1 fewe r to 1 fewe r)	⊕⊕ ⊕○ Mode rate	

Polyunsaturated fatty acid. dose

,	3	non-	not	not	not	serious	dose	689/111	RR	1	⊕⊕	
		rando	seri	serious	serious	u	response	0695	0.94	fewe	00	
		mised	ous				gradient	(0.1%)	(0.84	r per	Low ^u	
		studie							to	1,000		
		s							1.04)	(fro		
										m 1		
										fewe		
										r to 1		
										fewe		
										r)		

Cert	ainty a	ssessi	nent		№ of patient s	Effec	t	Cert ainty	Impo rtanc e		
№ of stu die s	Stud y desig n	Ris k of bia s	Incons istency	Indire ctness	Impre cision	Other conside rations	[interv ention]	Rel ativ e (95 % CI)	Abs olut e (95 % CI)		

Saturated fat. dose

5	non-	not	not	not	not	dose	1300/11	RR	1	⊕⊕	
	rando	seri	serious	serious	serious	response	80214	1.33	fewe	$\oplus \bigcirc$	
	mised	ous				gradient	(0.1%)	(1.05	r per	Mode	
	studie							to	1,000	rate	
	s							1.69)	(fro		
									m 2		
									fewe		
									r to 1		
									fewe		
									r)		

Total fat. dose

Ce	tainty a	ssessi	nent		№ of patient s	Effec	t	Cert ainty	Impo rtanc e		
Nº of	Stud y	Ris k	Incons istency	Indire ctness	Impre cision	Other conside	[interv ention]	Rel ativ	Abs olut		
stu die	desig n	of bia				rations		e (95	e (95		
S		S						% CI)	% CI)		
5	non- rando mised studie s	not seri ous	not serious	not serious	not serious	dose response gradient	1300/11 80214 (0.1%)	RR 1.01 (0.91 to 1.11)	1 fewe r per 1,000 (fro m 1	⊕⊕ ⊕○ Mode rate	
									fewe r to 1 fewe r)		

Fiber. dose

7	non-	not	not	not	not	dose	2078/28	RR	1	θθ	
	rando	seri	serious	serious	serious	response	58360	0.83	fewe	$\oplus \bigcirc$	
	mised	ous				gradient	(0.1%)	(0.76	r per	Mode	
	studie							to	1,000	rate	
	S							0.91)	(fro		
									m 1		
									fewe		
									r to 1		
									fewe		
									r)		

Cert	ainty a	ssessi	nent		№ of patient s	Effec	t	Cert ainty	Impo rtanc e		
№ of stu die s	Stud y desig n	Ris k of bia s	Incons istency	Indire ctness	Impre cision	Other conside rations	[interv ention]	Rel ativ e (95 % CI)	Abs olut e (95 % CI)		

Whole grain. dose

5	non-	not	not	not	not	dose	1218/14	RR	1	⊕⊕	
	rando	seri	serious	serious	serious	response	71226	0.95	fewe	$\oplus \bigcirc$	
	mised	ous				gradient	(0.1%)	(0.89	r per	Mode	
	studie							to	1,000	rate	
	s							1.01)	(fro		
									m 1		
									fewe		
									r to 1		
									fewe		
									r)		

Green tea (frequency). Highest vs. modest

Cert	tainty a	ssessr	nent		№ of patient s	Effec	t	Cert ainty	Impo rtanc e		
№ of stu	Stud y desig	Ris k of	Incons istency	Indire ctness	Impre cision	Other conside rations	[interv ention]	Rel ativ e	Abs olut e		
die s	n	bia s						(95 % CI)	(95 % CI)		
2	non- rando mised studie s	seri ous ^x	not serious	not serious	not serious	none	1394/57 355 (2.4%)	RR 3.77 (1.75 to 8.15)	4 fewe r per 1,000 (fro m 8 fewe r to 2 fewe r)	⊕⊖ ⊖⊖ Very low ^x	

Alcohol. Highest vs. lowest

3	non-	seri	serious ^y	not	not	none	2546/15	RR	1	⊕⊖	
	rando	ous ^b		serious	serious		88661	1.02	fewe	00	
	mised						(0.2%)	(0.80	r per	Very	
	studie							to	1,000	low ^{b,y}	
	s							1.29)	(fro		
									m 1		
									fewe		
									r to 1		
									fewe		
									r)		

Certainty assessment								Effect		Cert ainty	Impo rtanc e
№ of stu die s	Stud y desig n	Ris k of bia s	Incons istency	Indire ctness	Impre cision	Other conside rations	[interv ention]	Rel ativ e (95 % CI)	Abs olut e (95 % CI)		

N-3 polyunsaturated fatty acid (dose)

3	non-	not	not	not	not	dose	1046/28	RR	1	⊕⊕	
	rando	seri	serious	serious	serious	response	9007	0.78	fewe	$\oplus \bigcirc$	
	mised	ous				gradient	(0.4%)	(0.54	r per	Mode	
	studie							to	1,000	rate	
	s							1.13)	(fro		
									m 1		
									fewe		
									r to 1		
									fewe		
									r)		

CI: confidence interval; RR: risk ratio

Explanations

- a. The p-value of Egger's test was 0.053, less than 0.10
- b. No bias risk assessment was performed
- c. The number of HCC patients was 220, less than 1000
- d. The number of participants was 489, less than 1000.
- e. The square of I was 82.73%, greater than 75%
- f. The p-value of Egger's test was 0.032, less than 0.10

- g. The square of I was 79.82%, greater than 75%
- i. The number of HCC patients was 578, less than 1000
- j. The square of I was 88.57%, greater than 75%
- k. The number of HCC patients was 831, less than 1000
- 1. The number of HCC patients was 289, less than 1000
- m. The number of HCC patients was 470, less than 1000
- n. The number of HCC patients was 358, less than 1000
- o. The square of I was 56.7%, greater than 50%
- p. The square of I was 65.76%, greater than 50%
- q. The number of HCC patients was 984, less than 1000
- r. The number of HCC patients was 135, less than 1000
- s. The number of HCC patients was 283, less than 1000
- t. The p-value of Egger's test was 0.046, less than 0.10
- u. The number of HCC patients was 689, less than 1000
- v. Low certainty of evidence was found by the application of NutriGrade
- w. The number of HCC patients was 882, less than 1000
- x. Only 1 cohort had a NOS score of more than 7
- y. The square of I was 67.56%, greater than 50%