Waste iron-based disposable chemical warmer derived electrocatalyst for water splitting

Keyru Serbara Bejigo¹, Raaju Sundhar Arul Saravanan¹, Kousik Bhunia¹, Sang-Jae Kim^{1,2,3*}

¹Nanomaterials & System Lab, Major of Mechatronics Engineering, Faculty of Applied

Energy System, Jeju National University, Jeju 63243, Republic of Korea

²Nanomaterials & System Lab, Major of Mechanical System Engineering, College of

Engineering, Jeju National University, Jeju 63243, Republic of Korea.

³Research Institute of New Energy Industry (RINEI), Jeju National University, Jeju 63243, Republic of Korea

*Corresponding author. Email address: <u>kimsangj@jejunu.ac.kr</u>

Materials and reagents

Used CHP was obtained from a chemical disposal container in Korea. We bought hydrochloric acid (HCl), Hexamethylenetetramine (HMT), potassium hydroxide (KOH, 85 %) and Nafion (5 wt%) from Sigma Aldrich. The fuel cell store in Korea provided carbon black (Vulcan XC 72), carbon-supported platinum (30 wt%), and ruthenium oxide. We used double-distilled water for the experiments and analysis. We used reagents of analytical grade and didn't perform any further purification.

Instrumentation

XRD patterns were acquired from an X-ray Powder Diffractometer (Malvern Panalytical, Malvern, UK) instrument. The degree of carbonization was assessed through Raman spectroscopy using Raman spectrometers (Horiba Jobin-Yvon, France) that featured an argonion laser with an excitation wavelength of 514 nm and covered a Raman shift range of 1150-1750 cm⁻¹. Field emission scanning electron microscopy (FESEM, MIRA3) and field emission transmission electron microscopes (TEM, JEOL, JEM-2100F) were used to examine the morphology and structure of the samples. An XPS analysis was carried out using X-ray photoelectron spectroscopy (XPS, VG Escalab 250) using Al-K α radiation at Busan KBSI. The Brunauer-Emmett-Teller (BET) surface area analysis was performed using the BELSORP MINI X and Microtrac MRB Chem BET analyzer. The iron concentration was analyzed by an Inductively coupled plasma-optical Emission Spectrometer (AVIO 550). In preparation for ICP-OES analysis, the digested sample was diluted to a concentration within the instrument's accurate detection limits. The actual concentration of the sample was then determined by multiplying the value obtained from ICP-OES by the dilution factor.

Electrochemical measurements

A commercial Pt/C catalyst (30%) was employed as a reference catalyst for HER, whereas ruthenium oxide (RuO₂) was utilized for the OER. The electrochemical impedance spectroscopy (EIS) was recorded at applied potentials of 1.53 V *vs*. RHE for OER in the frequency range from 10^{-2} to 10^5 Hz. Tafel slopes for OER and HER were determined by plotting the overpotential (η) against the logarithm of current density using polarization curves. All potentials were converted to RHE from Ag/AgCl without resistance compensation by the following equation $E_{RHE} = E_{(Ag/AgCl)} + 0.059$ pH + $E^{\circ}_{(Ag/AgCl)}$.

The water drainage method was used to measure the H₂ and O₂ gases produced in the bifunctional Fe/Fe₃O₄/NC water electrolyzer. The setup follows an H-cell configuration, with both compartments separated by a Fumasep membrane. A constant current density of 50 mA cm⁻² was applied. Faradic Efficiency (η) was estimated based on the following equation.

$$\eta_{eff} = \frac{V_{exp}}{V_{theor.}}$$

V exp. The measured gas volume at 273.15 K and 105 Pa.

V_{theor.} is calculated by using the equation

$$\eta_{theor.} = \frac{I.t.Vs}{n.F}$$

In this equation, *I*, *t*, *Vs*, *n*, and *F* stand for applied current (A), total water splitting time (s), standard molar volume (22.4 L mol-1), number of exchanging electrons (n = 4 and 2, respectively, for O₂ and H₂), and Faraday's constant (96484 C mol⁻¹).

We have calculated the percentage of each species of nitrogen present at each catalyst from the spectra area of deconvoluted XPS using XPSPEAK41 software and the total atomic percentage of N in each component using the following equation.

$$= \frac{A_i}{\Sigma A_i}$$

Where A_i is the area of each component in deconvoluted XPS, and $\sum A_i$ is the total peak area of all compositions.

The atomic percentage of each component N (for example, $Fe-N_x$) is calculated by

Atomic % Fe-Nx= %A_{Fe-Nx} *(%N)

%N is the atomic percentage of nitrogen in the composite catalyst, provided in Table S4.

Fig. S 1. Photograph showing the weight measurement of a single discarded heat pack

Fig. S 2. Photographs of discarded heat pack at dismantled state (a) and low-gradient magnetic separation (b).

Figure S 3. Cost comparison of Fe/Fe₃O₄/NC from virgin and recycled iron source

Fig. S 4. XRD patterns of Fe_2O_3 and $Fe/Fe_3O_4/NC$

Fig. S 5. Pore size distribution of synthesized catalysts

Fig. S 6. SEM image (a), corresponding elemental mapping (b-e) and Energy Dispersive X-ray (EDX) spectra (f) of Fe/Fe₃O₄/NC

Fig. S 7. XPS survey spectrum of Fe/Fe₃O₄/NC composites.

Fig. S 8. Percentages of different N species (b) Atomic percentage of Fe-Nx species in the synthesized catalysts (b)

•

Fig. S 9. EIS spectrum of Fe/Fe₃O₄/NC (850 $^{\circ}$ C) measured at different bias potentials (a) and corresponding bode plot (b).

Figure S 10. LSV curves for the water electrolyzer at two-electrode configuration for different bifunctional catalysts at a scan rate of 5.0 mV s^{-1} (inset: cell voltage at 10 mA cm⁻²)

Figure S 11. Photograph of real time H-type cell water electrolyzer setup utilizing $Fe/Fe_3O_4/NC$ bifunctional catalyst (a). The collected oxygen (O₂) and hydrogen (H₂) gases (b and c)

Figure S 12. The water-splitting system powered by a 1.8 V solar cell

Figure S 13. SEM image (a) and XRD analysis (b) of Fe/Fe₃O₄/NC after stability tests

Inputs	Price	Amount		Cost	
Waste heat pack	-	1 g		\$ 0.0	
Carbon black	\$ 180 per kg	4 g		\$ 0.72	
HCl	\$ 60 per L	10 ml		\$ 0.6	
НМТ	\$40 per kg	4 g		\$ 0.16	
Ar	\$ 20 (40 L, 15	15 L, 0.1 MPa		\$ 0.1	
	MPa)				
		Sonication	1.2 KWh	13.2 kWh* \$0.1	
				KWh ⁻¹ = \$ 1.32	
Electricity	\$ 0.1 per KWh	Mixing and drying	2.0 KWh	-	
		Annealing	10		
Total				≈\$ 3.0	
5 g Pt/C (30%)				\$ 598	
5 g RuO ₂ (99.9%)				\$ 451	

Table S 1. The synthesis expenses analysis for a 5 g Fe/Fe $_3O_4$ /NC catalyst by using a waste heat pack

Table S 2. The synthesis expenses analysis for a 5 g Fe/Fe $_3O_4$ /NC catalyst by using commercial catalyst source

Inputs	Price	Amount	Cost
--------	-------	--------	------

FeCl ₃	\$66 per 5 g	1 g		\$ 13.4	
Carbon black	\$ 180 per kg	4 g		\$ 0.72	
HMT	\$40 per kg	4 g		\$ 0.16	
Ar	\$ 20 (40 L, 15	15 L, 0.1 MPa		\$ 0.1	
	MPa)				
Electricity	\$ 0.1 per KWh	Mixing and drying	2.0 KWh	12.0 kWh* KWh ⁻¹ = \$1.2	\$ 0.1
	1	Annealing	10.0		
Total			-	≈ \$ 15.5	

- ✓ The chemical price was obtained from Sigma-Aldrich as of February 2024 (<u>https://www.sigmaaldrich.com/KR/ko</u>) by considering the 99.7% ACS reagent basis for metal salts
- \checkmark The electricity price rate was determined by the average price in Korea.
- ✓ Producing the Fe/Fe₃O₄/NC catalyst on a larger scale would lead to a greater reduction in price

Sample	S _{BET} ^a [m ² g ⁻¹]	V _{tot} ^b [cm ³ g ⁻¹]	D _p ^c (nm)	$I_{ m D}/I_{ m G}$ d
Fe ₃ O ₄ /NC	161.7	0.5	12.55	1.11
Fe/Fe ₃ O ₄ /NC	223.2	0.63	11.2	1.04
Fe /NC	185.6	0.61	11.9	1.03

Table S3. Physical properties of synthesized Fe/Fe₃O₄/NC composite materials.

a- Surface areas analyzed using the BET method

b- Total pore volumes evaluated from N₂ adsorption isotherms at $P/P_0 = 0.99$.

c- Mesopore diameters evaluated by BJH method from N_2 desorption branches.

d- Raman Intensity peak ratio of I_D and I_G .

Sample	С %	Fe %	N%	0
Fe ₃ O ₄ /NC	94.26	0.12	0.35	5.27
Fe/Fe ₃ O ₄ /NC	95.6	0.11	1.5	2.8
Fe/NC	97.38	0.15	0.53	1.94

Table S4. Surface compositions and corresponding atomic ratios for $Fe/Fe_3O_4/NC$ composites determined from XPS

 Table S 5. Comparison of OER, HER and overall water splitting performances for

 synthesized catalysts, and some recently reported electrocatalysts.

Catalyst	Support	η _{OER} @ <i>j</i> =10 mA cm ⁻² [mV]	η _{HER} @ j=10 mA cm ⁻² [mV]	Cell voltage @ <i>j</i> =10 mA cm ⁻² [V]	Ref.
Fe ₃ O ₄ /NC		270	198	1.67	
Fe/Fe ₃ O ₄ /NC	Ni foam (NF)	230	160	1.53	This work
Fe/NC		240	181	1.6	
Cr-Fe ₃ O ₄ -N	NF	218	95	1.53	1
NiFe-oxide Nanocube		271	197	1.6713	2
Fe ₃ O ₄ -CoP _x /TiN	Ti foil	331	177	1.75	3
Fe ₃ O ₄ @graphite	CC	285	121	-	4
Fe-CoP/Ti		230	78	1.6	5
Fe ₃ O ₄ /NCMTs- 800(IL)	NF	310	170	1.71	6
Al, Fe-CoP/RG	-	280	145	1.66	7
CoFe-Se-P	NF	_	183.1	1.59	8
Fe-doped CoWO ₄	NF	259	118	1.55	9
Fe _{0.25} -CoP	-	262	111	1.57	9
CoFeP	NF	350	177	1.57	10
$Mn-FeP/Co_3(PO_4)_2$	CC	237	85	1.61	11
CoFeN x	NF	200	259/50	1.59	11
HNAs/NF			mA/cm ⁻²		
CoFe/Co-BF	Bamboo fiber	250	46	1.55	13
FeCoS ₂ /Co ₄ S ₃ /NGF	Graphene foam	276	170	1.68	14
Ru-Fe ₃ O ₄ /IF	Iron foam	297	128	1.521	12
Bi ₃ (FeO ₄)(MoO ₄) ₂		266	199	1.67	13

References

- S. Meng, S. Sun, Y. Liu, Y. Lu and M. Chen, J. Colloid Interface Sci., 2022, 624, 433–442.
- 2 A. Kumar and S. Bhattacharyya, ACS Appl. Mater. Interfaces, 2017, 9, 41906–41915.
- 3 B. Guo, J. Sun, X. Hu, Y. Wang, Y. Sun, R. Hu, L. Yu, H. Zhao and J. Zhu, ACS Appl. Nano Mater., 2019, 2, 40–47.
- R. Atchudan, T. N. J. Immanuel Edison, S. Perumal, R. Vinodh, N. Muthuchamy and Y.
 R. Lee, *Fuel*, 2020, 277, 118235.
- 5 C. Tang, R. Zhang, W. Lu, L. He, X. Jiang, A. M. Asiri and X. Sun, *Adv. Mater.*, DOI:10.1002/adma.201602441.
- G. Liu, B. Wang, P. Ding, Y. Ye, W. Wei, W. Zhu, L. Xu, J. Xia and H. Li, *J. Alloys Compd.*, 2019, **797**, 849–858.
- 7 S. F. Zai, Y. T. Zhou, C. C. Yang and Q. Jiang, *Chem. Eng. J.*, 2021, **421**, 127856.
- 8 L. He, B. Cui, B. Hu, J. Liu, K. Tian, M. Wang, Y. Song, S. Fang, Z. Zhang and Q. Jia, ACS Appl. Energy Mater., 2018, 1, 3915–3928.
- Q. Yang, H. Dai, W. Liao, X. Tong, Y. Fu, M. Qian and T. Chen, *Dalton Trans.*, 2021, 50, 18069–18076.
- 10 L. Ji, J. Wang, X. Teng, T. J. Meyer and Z. Chen, ACS Catal., 2020, 10, 412–419.
- 11 D. Li, Y. Xing, R. Yang, T. Wen, D. Jiang, W. Shi and S. Yuan, ACS Appl. Mater. Interfaces, 2020, acsami.0c05219.
- 12 L. Ai, M. Chen, Y. Luo, Y. Tian, X. Wang, W. Wei and J. Jiang, *Colloids Surf. A Physicochem. Eng. Asp.*, 2022, **651**, 129767.

13 S. Khatun and P. Roy, *Chem. Commun.*, 2020, **56**, 7293–7296.