Supplementary Information

Additive-free N-methylation reaction catalyzed by Pt single atoms and clusters on α -MoC synergistically using methanol as a sustainable C1 source

Shurui Fan^{a,b§}, Mingyuan Zhang^{e§}, Xiangxin Jin^{a,b}, Zirui Gao^d, Yao Xu^d, Maolin Wang^d, Chuqiao Song^{a,b}, Houhong Song^e, Xiangxiang Chen^{a,b}, Rulong Ma^a, Siyu Yao^e, Rui Gao^{e*}, Xiaonian Li^{a*} and Lili Lin^{a,b*}

- a. Institute of Industrial Catalysis, State Key Laboratory of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
- b. Zhejiang Carbon Neutral Innovation Institute & Zhejiang International Cooperation Base for Science and Technology on Carbon Emission Reduction and Monitoring, Zhejiang University of Technology, Hangzhou 310014, China
- c. College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
- d. Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- e. Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China

[§]Shurui Fan and Mingyuan Zhang contributed equally.

Corresponding Author

* Corresponding author's E-mail address: Lili Lin: linll@zjut.edu.cn, xnli@zjut.edu.cn, gaorui@imu.edu.cn

1. Experimental section

1.1 Catalysts preparation

1.1.1 Chemicals and Materials

All chemicals were used as received without further purification.

Chloroplatinic acid hexahydrate (Pt:37.5%+, Shanghai Titan Technology Co., Ltd.), ammonium molybdate tetrahydrate (98%+, Shanghai Titan Technology Co., Ltd.), methanol (anhydrous, AR, Sinopharm Chemical Reagent Co., Ltd.), formic acid (AR, 88%, Sinopharm Chemical Reagent Co., Ltd.), formaldehyde solution (37%-40%, Sinopharm Chemical Reagent Co., Ltd.), quinoline (AR, Sinopharm Chemical Reagent Co., Ltd.), m-xylene (AR, Sinopharm Chemical Reagent Co., Ltd.), *N,N*-Dimethylformamide (AR, Sinopharm Chemical Reagent Co., Ltd.), 1-Propanol (AR, Sinopharm Chemical Reagent Co., Ltd.), acetone (AR, Sinopharm Chemical Reagent Co., Ltd.).

1.1.2 Preparation of α-MoC Support

The preparation method of α -MoC support can be seen in the previous work^{1,2}. MoO₃ was prepared by calcining a certain amount of ammonium paramolybdate ((NH₄)₆Mo₇O₂₄•4H₂O) in a muffle furnace to 500 °C and holding at 500°C for 4 hours.

1.1.3 Preparation of the catalysts

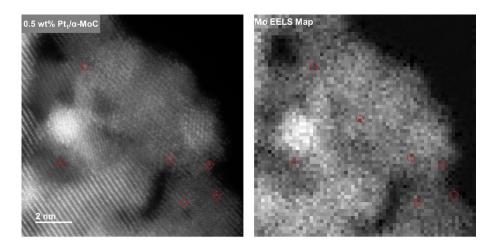
The 2 wt% Pt/Al₂O₃, 2 wt% Pt/TiO₂, and 2 wt% Pt/CeO₂ catalysts were prepared by impregnation method using H₂PtCl₆·6H₂O as the precursor. In a typical synthesis, 0.3 g of the support was dispersed in 30 mL of deionized water and the oxygen in the round bottom flask was removed by N₂. Then the necessary mass of Pt precursor solution was added to the water under vigorous stirring. The mixture was stirred for 3 hours at room temperature under N₂ atmosphere. The water in the mixture is evaporated by a rotary evaporator at 58°C to obtain a solid sample. The sample was dried overnight in a vacuum freeze dryer to collect catalyst powder. Before catalytic evaluation, the powder (Pt/Al₂O₃, Pt/TiO₂ and Pt/CeO₂) was subjected to heat treatment at 200 °C using a programmed tubular furnace with the temperature increased at a ramp rate of 5 °C/min and holding at 200 °C for 2 hours under a N₂/H₂ mixture (20/80 v/v).

1.2 Density function theory calculations

Calculation Methods: All structure optimizations and energy calculations are carried out by the density functional theory (DFT) combined with generalized gradient approximation (GGA) for exchange-correlation potential prescribed by Perdew, Burke and Ernzerh of (PBE)³, implemented in the Vienna ab initio simulation package (VASP)^{4,5}. The kinetic energy cutoff of 450 eV is used for wave function expansion. The Self- consistent field (SCF) and force convergence criteria are set to 1 × 10⁻⁴ eV and 0.02 eV/Å, respectively.

The adsorption energy (E_{ads}) is calculated as follows: $E_{ads} = E_{X/slab} - (E_{slab} + E_X)$. where $E_{X/slab}$ is the total energy of the system; E_{slab} , the energy of the surface; and E_X , the calculated energy of a molecule in the gas phase. In order to determine the reaction path of the minimum energy, the Climbing image nudged elastic band (CI-NEB) method⁶ was used to search the transition state. The energy barrier (E_a) and reaction energy (ΔE_r) were calculated according to $Ea = E_{TS} - E_{IS}$ and $\Delta E_r = E_{FS} - E_{IS}$, where E_{IS} , E_{TS} and E_{FS} were the energy of initial states, transition states and final states respectively.

Calculation Models: The optimized lattice constant of cubic platinum cell (fcc) and cubic MoC cell (fcc) is 3.919 Å and 4.332 Å respectively, which is in good agreement with the experimental results (3.924 Å and 4.270 Å) and the length of Pt-Pt bond and Mo-


Mo bond is 2.771 Å and 3.063 Å, respectively. The side-view and top-view of optimized $Pt_1/MoC(111)$ and $Pt_4/MoC(111)$ structures are given in **Figure S15**, which the unit cell is modeled by a 3 × 3 unit and both the two models are sampled by 3×3×1 k-point. $Overall, in Pt_1/MoC(111) and Pt_4/MoC(111) structures, the former has 1 Pt atom and the latter has 4 Pt atoms, of which the bottom 36 C atoms and 20 Mo atoms are fixed in MoC(111) substrate consisting of 60 C atoms and 60 Mo atoms.$

2. Figures and Tables

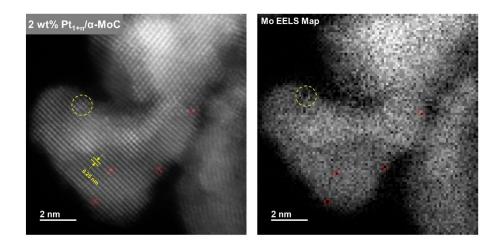
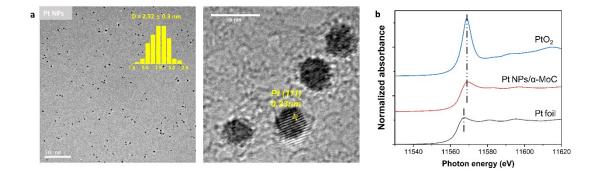

Entry	Catalyst	Loading (wt%)
1	0.5 wt% Pt ₁ /α-MoC	0.5
2	$2 \text{ wt\% Pt}_{1+n}/\alpha\text{-MoC}$	1.9
3	$2 \text{ wt\% Pt}_p/\alpha$ -MoC	1.9
4	$2 \text{ wt\% Pt/Al}_2O_3$	1.9
5	2 wt% Pt/TiO ₂	2.0
6	2 wt% Pt/CeO ₂	1.9

Table S1. The platinum	loading content of	Pt-based catalysts ^{<i>a</i>} .
------------------------	--------------------	--


a: The metal contents of the catalyst were measured by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES).

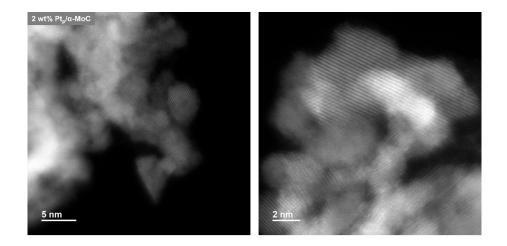

Figure S1. HAADF-STEM image and Mo EELS map of Pt_1/α -MoC. Pt single atoms are marked with small red circles.

Figure S2. HAADF-STEM image and Mo EELS map of Pt_{1+n}/α -MoC. Pt single atoms are marked with small red circles, and Pt clusters are marked with slightly larger yellow circles.

Figure S3. (a) TEM images of the PVP-Pt NPs. The average particle size of Pt nanoparticles is 2.52 nm. (b) Molybdenum K-edge (20,000 eV) X-ray absorption near-edge structure (XANES) spectra of Pt NPs/ α -MoC catalyst, molybdenum foil and molybdenum oxides. The Pt NPs/ α -MoC catalyst was not activated by CH₄/H₂ mixed atmosphere.

Figure S4. HAADF-STEM image of Pt_p/α -MoC.

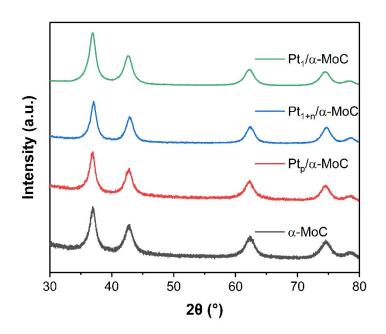


Figure S5. XRD patterns of the Pt_1/α -MoC, Pt_{1+n}/α -MoC, Pt_p/α -MoC and the α -MoC support.

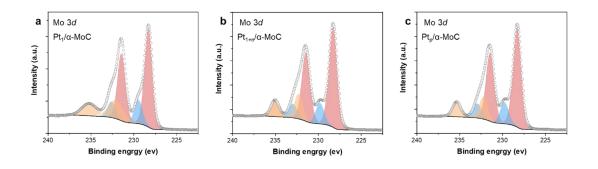


Figure S6. Mo 3d XPS spectrum of (a) Pt_1/α -MoC; (b) Pt_{1+n}/α -MoC; (c) Pt_p/α -MoC.

Catalysts	Shell	d(Å) ^b	Coordination number ^c	$\Delta E_0(eV)$	$\sigma^2(\text{\AA}^2)^{d}$
0.5% Pt ₁ /α-MoC	Pt-O/C	1.94 ± 0.03	1.6 ± 0.3	2 + 1	0.007 ± 0.003
	Pt-Mo	2.89 ± 0.01	2.9 ± 0.8	3 ± 1	$\textbf{0.009} \pm \textbf{0.002}$
2% Pt _{1+n} /α-MoC	Pt-Mo	2.73 ± 0.02	2.0 ± 0.6	F . 4	$\textbf{0.006} \pm \textbf{0.001}$
	Pt-Pt	2.75 ± 0.01	5.2 ± 0.9	5 ± 1	0.005 ± 0.002
2% Pt _p /α-MoC	Pt-Pt	2.73 ± 0.01	6.9 ± 0.6		$\textbf{0.006} \pm \textbf{0.001}$
	Pt-Mo	2.74 ± 0.01	1.0 ± 0.2	4 ± 1	0.002 ± 0.001

a: The data ranges used in the fit are $3.0 \le k \le 12.0$ Å⁻¹ and $1.0 \sim 1.2 \le R \le 3.0 \sim 3.5$ Å. S_0^2 was fixed at 0.737, obtained from the Pt foil measured at the same time. The numbers of variable parameters are out of the total of independent data points. R-factors for these fittings are all below 0.017. b: The half path length. The paths for Pt-0, Pt-Mo and Pt-Pt are from the crystal structure of PtO₂ (P6₃mc, ICSD 24923), MoPt (Pmma, ICSD 644160) and Pt (Fm-3m, ICSD 180981). c: average coordination number. d: Debye-Waller factor.

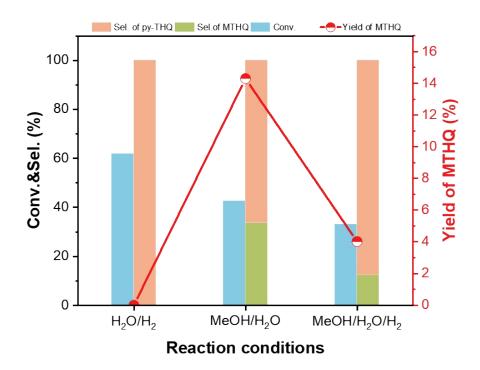
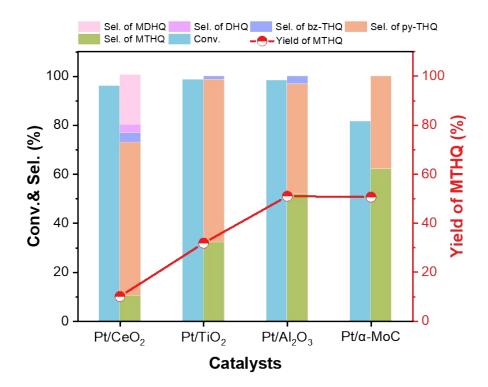
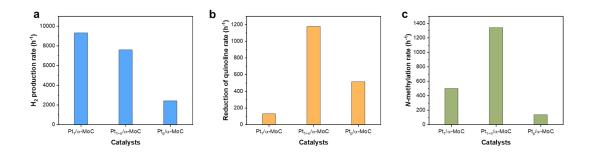
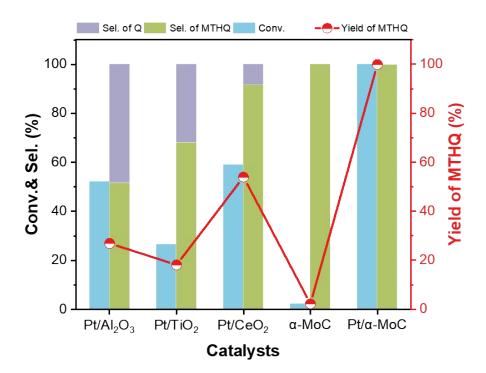

	Heterogeneou s catalyst	Temp./ Time	C1/Hydrog en source	Additive	Substrate	Product	Yiel d (%)
Ref. 1 ⁷	10% Pd/C+Zn	150 °C / 40 h	Methanol/ H ₂ O	1.5eq. Zn		N CH ₃	75
Ref. 2 ⁸	5% Fe ₂ O ₃ /Gr@C	130 °C / 30 h	Paraformal dehyde	2eq. Na ₂ CO ₃	NO ₂	CH ₃ NCH ₃	86
Ref. 39	4% Ir@YSMCN	170 °C / 30 h	Methanol	1eq. <i>t</i> -BuOK	NO ₂	H CH ₃	97
Ref. 4 ¹⁰	2.5% Pd/C	100 °C / 12 h	Paraformal dehyde/ 1 MPa H ₂	-		N CH ₃	98
Ref. 5 ¹¹	1% Pt/C	150 °C / 24 h	Methanol/ 0.2 MPa H ₂	1eq. <i>t</i> -BuOK	NO ₂	H CH ₃	92

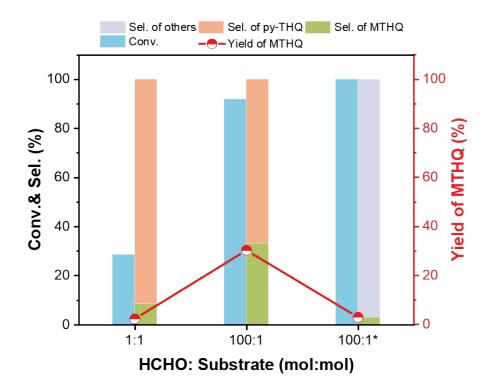
Table S3. Reductive N-methylation reactions under different catalytic systems

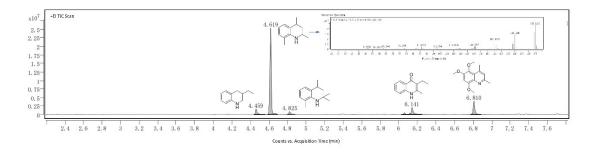

Ref. 6 ¹²	5% Pd/C	130 °C / 20 h	Methanol	4eq.	NO ₂	N CH	92
				t-BuOK		CH3	
Ref. 7 ¹³	27% Cu/Al ₂ O ₃	130 °C / 15 h	Paraformal dehyde	2eq. Na ₂ CO ₃	NO ₂	CH ₃ NCH ₃	97
Ref. 8 ¹⁴	4% Co ₃ O ₄ /NGr@ C	100 °C / 24 h	Formaldehy de/formic acid	~29eq. <i>t</i> -BuOH	NO ₂	CH ₃ N CH ₃	80
Ref. 9 ¹⁵	Pd-ZnO/TiO ₂	180 °C / 24 h	1.5 MPa CO ₂ /4.5 MPa H ₂	-	HN	CH ₃	94 ^a
Ref. 10 ¹⁶	10% Ag/Al ₂ O ₃	230 °C / 24 h	3 MPa CO ₂ / 3 MPa H ₂	-	NH ₂	HNCH3	90 ª
This work	2% Pt _{1+n} /α- MoC	190 °C / 3 h	Methanol	-		N -H3	98
		190 °C / 5 h			NO ₂	CH ₃ NCH ₃	95

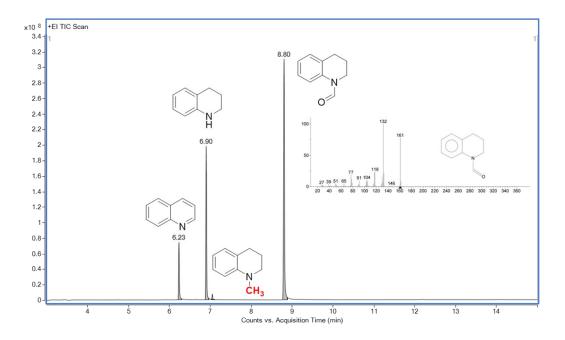
a. N-methylation of aniline

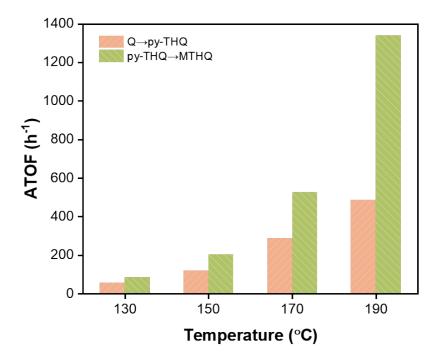

The results of the reductive *N*-methylation reactions of different catalytic systems reported were summarized as shown in Table S3. In comparison to the catalytic systems presented in the table, the catalyst prepared in this work demonstrates significant advantages, as it is capable of achieving excellent yields of the corresponding *N*-methyl product merely in a methanol aqueous solution without additives or molecular hydrogen. It should be noted that CO_2 is often used as a C1 source for the *N*-methylation of aniline compounds rather than that of reductive *N*-methylation reactions of nitrobenzene.


Figure S7. Catalytic performance of Pt/ α -MoC catalysts in the reductive *N*-methylation of quinolone under different condition. Reaction conditions: 25 mg Pt/ α -MoC, 15 mL (H₂O or MeOH: H₂O = 9:1), 1 mmol quinoline, 0.3 MPa N₂, 3h.


Figure S8. Effect of different supports under H₂ atmosphere. Reaction conditions: 100 mg of catalyst, 15 mL MeOH, 1 mmol quinoline, 1 MPa H₂, 3h, 190 °C. Abbreviation: bz-THQ represents 5,6,7,8-tetrahydro-quinoline, and DHQ represents decahydroquinoline, and MDHQ represents 1-methyldecahydroquinoline.


Figure S9. Activity of various Pt/α -MoC on the hydrogen production from aqueous phase methanol reforming (APRM), reduction of *N*-heteroarene and the *N*-methylation of the py-THQ with methanol. Reaction conditions: 25 mg catalysts, 15 mL MeOH/H₂O, 1 mmol quinoline, 0.3 MPa N₂.


Figure S10. Catalytic performance of Pt catalysts in the *N*-methylation reaction of py-THQ. Reaction conditions: 100 mg of catalyst, 15 mL MeOH/H₂O, 1 mmol py-THQ, 0.3 MPa N₂, 3h, 190 °C.


Figure S11. Effects of different methylation reagents. Others: 15.1% of 3-ethyl-1,2,3,4-tetrahydroquinoline, 76.5% of 2,4,8-trimethyl-1,2,3,4-tetrahydroquinoline, 5.4% of 2,2,4,8-tetramethyl-1,2,3,4-tetrahydroquinoline. Reaction conditions: 100 mg Pt_{1+n}/ α -MoC, 15 mL HCHO/H₂O, 1 mmol quinolone (*: 1 mmol py-THQ), 0.3 MPa N₂, 3h, 190 °C.

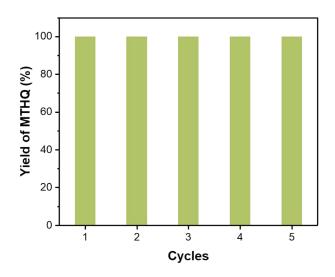
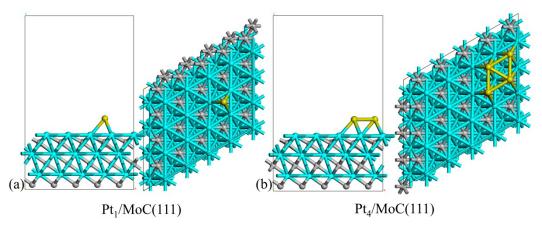

Figure S12. The GC-MS spectrum for the Pt_{1+n}/α -MoC catalyzed reductive *N*-methylation of quinoline using formaldehyde as C1 source.

Figure S13. The GC-MS spectrum for the Pt_{1+n}/α -MoC catalyzed reductive *N*-methylation of quinoline using formic acid as C1 source.


Figure S14. Effect of reaction temperature on Pt_{1+n}/α -MoC catalyst. Reaction conditions: 25 mg Pt_{1+n}/α -MoC, 15 mL CH₃OH/H₂O (9:1, molar ratio), 5 mmol quinolone, 0.3 MPa N₂, 190 °C. Reaction conversion is controlled in the kinetic range by adjusting the reaction time, less than 15%.

 $\label{eq:Figure S15} Figure S15. Recyclability evaluation of Pt_{1+n}/\alpha-MoC \ catalyst \ for \ the \ reductive \ \textit{N-methylation} \ of \ quinoline \ in$ successive runs. Reaction conditions: 100 mg Pt_{1+n}/ α -MoC, 15 mL MeOH/H₂O, 1 mmol quinoline, 0.3 MPa N₂, 3 h, m-Xylene as internal standard, yields were determined by GC.

Entry	The mass fraction of Pt (%) ^a		
Pt_{1+n}/α -MoC-fresh	1.9		
Pt_{1+n}/α -MoC-cycle-5 ^{th b}	1.9		
Liquid products after reaction	< 0.0001		

Table S4. The mass fraction of Pt in different sample	es.
---	-----

Figure S16. Surface Model. Side-view and top-view of optimized structures of a) Pt₁/ MoC(111) and b) Pt₄/MoC(111). (Mo/cyan; C/gray; Pt/yellow)

Table S5. The reductive N-methylation of quinolines and nitroarenes functionalized with reducible groups over Pt_{1+n}/α -MoC^a.

Entry	Substrate	Product	Temp. (°C)	Time (h)	Conv. (%) b	Sel. (%) b
1	0 N	N CH3	190	3	99.9	62.7
2	N ^{NO} 2	CH3 NH	150	3	99.9	71.6
3	NO ₂	CH3 NH	150	3	99.9	68.0 / (24.1)
		/ (CH ₃ (N CH ₃)				

 $^{\rm a}$ Reaction conditions: 50mg of catalyst, 0.25 mmol of a substrate, 15 mL methanol/H $_2$ 0, 0.3 MPa $N_2;$

^b Identified by GC–MS.

Reference:

- 1 L. Lin, W. Zhou, R. Gao, S. Yao, X. Zhang, W. Xu, S. Zheng, Z. Jiang, Q. Yu, Y. W. Li, C. Shi, X. D. Wen and D. Ma, *Nature*, 2017, **544**, 80–83.
- 2 L. Lin, S. Yao, R. Gao, X. Liang, Q. Yu, Y. Deng, J. Liu, M. Peng, Z. Jiang, S. Li, Y. W. Li, X. D. Wen, W. Zhou and D. Ma, *Nat. Nanotechnol.*, 2019, **14**, 354–361.
- 3 J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, **77**, 3865–3868.
- 4 G. Kresse and J. Furthmüller, *Comput. Mater. Sci.*, 1996, **6**, 15–50.
- 5 G. Kresse and J. Furthmüller, *Phys. Rev. B*, 1996, **54**, 11169–11186.
- 6 G. A. Henkelman, B. P. Uberuaga and H. Jónsson, J. Chem. Phys., 2000, 113, 9901–9904.
- 7 B. Abarca, R. Adam and R. Ballesteros, *Org. Biomol. Chem.*, 2012, **10**, 1826–1833.
- 8 K. Natte, H. Neumann, R. V. Jagadeesh and M. Beller, *Nat. Commun.*, 2017, **8**, 1–9.
- 9 A. Fu, Q. Liu, M. Jiang and G. Xu, Asian J. Org. Chem., 2019, **8**, 487–491.
- 10 H. Wang, Y. Huang, Q. Jiang, X. Dai and F. Shi, *Chem. Commun.*, 2019, **55**, 3915–3918.
- 11 M. A. R. Jamil, A. S. Touchy, M. N. Rashed, K. W. Ting, S. M. A. H. Siddiki, T. Toyao, Z. Maeno and K. ichi Shimizu, *J. Catal*, 2019, **371**, 47–56.
- 12 V. Goyal, J. Gahtori, A. Narani, P. Gupta, A. Bordoloi and K. Natte, J. Org. Chem., 2019, 84, 15389–15398.
- 13 X. Dong, Z. Wang, Y. Yuan and Y. Yang, *J. Catal.*, 2019, **375**, 304–313.
- 14 T. Senthamarai, K. Murugesan, K. Natte, N. V. Kalevaru, H. Neumann, P. C. J. Kamer and R. V. Jagadeesh, ChemCatChem, 2018, 10, 1235–1240.
- 15 W. Lin, H. Cheng, Q. Wu, C. Zhang, M. Arai and F. Zhao, *ACS Catal.*, 2020, **10**, 3285–3296.
- 16 Y. Long, J. He, H. Zhang, Y. Chen, K. Liu, J. Fu, H. Li, L. Zhu, Z. Lin, A. Stefancu, E. Cortes, M. Zhu and M. Liu, *Chem. A Eur. J.*, DOI:10.1002/chem.202203152.