Supporting Information

Visible Light Catalyzed Arylsilylation of Alkenes to Construct Silicon-Containing 1,1-Diaryl Moieties

Jia Cao,^[a,b] Liuzhou Gao,^[a] Guoqiang Wang,*^[a] Shuhua Li*^[a]

[a] Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China

[b] Shaanxi Key Laboratory of Chemical Reaction Engineering, School of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, P. R. China

Corresponding Author: shuhua@nju.edu.cn; wangguoqiang710@nju.edu.cn

Table of Contents

1.Gen	eral Information	3
2. Exp	perimental Details for the Photoredox Catalyzed 1.2-Silylarylation of Alkenes	4
2.1	Reaction Optimization Studies	4
2.2	Experimental Procedure for the Photoredox Catalyzed 1.2-Silylarylation of Alkenes.	4
2.3	Experimental Studies on Reaction Mechanism	5
2.4	Characterization Data of alkene silylarylation products	8
3. Cor	nputational Investigations	. 39
4. NM	R Spectra	. 40
5. Ene	ergies and Cartesian Coordinates of the Optimized Structures	103
6. Ref	erence	111

1. General Information

All reactions were carried out with standard Schlenk techniques in an argon-filled glove-box. (Dimethylphenylsilyl)boronic acid pinacol ester (PhMe₂SiBpin₂), 4-canopyridine, base, photocatalysis, substituted styrenes bearing Me, MeO, CF₃, F, CN, Cl, Br, CO₂Me group on the benzene ring as well as 1.1-diphenylethylene, 2-phenyl-1-propene, trans-stilbene, ethyl acrylate and 2-methyl-2-propenoic acid cyclohexyl ester were purchased and used without purification. Additionally, (hetero)aryl nitriles including 2-cyclopropylisonicotinonitrile, 2-tert-butylisonicotinonitrile, 2,6-dimethyl-4-cyanopyridine, 2fluoroisonicotinonitrile. 3-methoxy-isonicotinonitrile, 4-cyano-3-methylpyridine, 4-cyano-3-1.4-dicyanobenzene,2,5fluoropyridine, 5-cyanoquinoline, 1.2-dicyanobenzene, dimethylterephthalonitrile, 4-(4-cyanophenyl)benzonitrile and 2,5-dichloroterephthalonitrile were also purchased and used without purification. Commercial chemicals were purchased from TCI, Acros, Sigma-Aldrich, J&K, and Alfa Aesar Chemical Companies and used as received. Anhydrous CH₃CN was purchased from J&K and used as received (water < 30 ppm, J&KSeal). Analytical thin-layer chromatography (TLC) was performed on silica gel 60 F₂₅₄ aluminum sheets from Qingdao Haiyang Chemical Co., Ltd. Flash chromatography was performed on silica gel (200-300 mesh, Qingdao Haiyang Chemical Co., Ltd). Other substituted alkenes^[1] and 3-aryl subustituted canopyridines^[2] were prepared according to the literature. Silvlboronates (1b-1f) were prepared according to the literatures.[3]

¹H, ¹³C, ¹¹B and ¹⁹F NMR spectra were recorded in CDCl₃ on a Bruker AVANCE Avance III 400 instrument. Chemical shifts are reported in parts per million (ppm) and are referenced to the residual solvent resonance as the internal standard (CDCl₃: 7.26 ppm for ¹H NMR, and 77.16 ppm for ¹³C{¹H NMR}). Data are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q =quartet, m = multiplet), coupling constants (Hz) and integration. Infrared spectra were recorded on a ThermoFisher Nicolet iS5 FTIR using a neat thin-film technique. High-resolution mass spectra (HRMS) were recorded on the Thermo Quest Finnigan LCQDECA system equipped with an ESI ionization source and a TOF detector mass spectrometer.

All the photochemical reactions were performed with Blue LED strip (8 W, λ = 450 nm).

Figure S1. Photoreactor setup

2. Experimental Details for the Photoredox Catalyzed 1.2-Silylarylation of Alkenes

2.1 Reaction Optimization Studies

Experimental procedure: according to the general procedure, in an oven-dried reaction vial (10 mL) containing a magnetic stir bar was charged with 4-methylstyrene **3a** (36 mg, 0.3 mmol, 1.5 equiv.), 1.4-dicyanobenzene (0.2 mmol, 1.0 equiv.), and PhMe₃SiBpin (79 mg, 0.3 mmol, 1.5 equiv.), Rb₂CO₃ (0.2 mmol, 1.0 equiv.), Ir(ppy)₃ (2.6 mg, 0.004 mmol, 2 mol%) and anhydrous acetonitrile (1 mL) in an argon-filled glove box. After stirring under blue LED irradiation at room temperature for 24 h (The temperature of the reaction was maintained at room temperature *via* a fan). Then, the reaction mixture was diluted by ethyl acetate, and filtered through a plug of silica (eluting with ethyl acetate). Finally, the filtrate was concentrated under reduced pressure and the resulting crude material was purified by preparative TLC (petroleum ether/ethyl acetate) to afford the corresponding silylpyridylation of alkenes product.

2.2 Experimental Procedure for the Photoredox Catalyzed 1.2-Silylarylation of Alkenes

2.2.1 General procedure for the photoredox catalyzed 1.2-silylarylation of alkenes

In an oven-dried reaction vial (10 mL) containing a magnetic stir bar was charged with (hetero)aryl nitrile derivatives (0.2 mmol, 1.0 equiv.), alkene (0.3 mmol, 1.5 equiv.), PhMe₂SiBpin (79 mg, 0.3 mmol, 1.5 equiv.), Rb₂CO₃ (0.2 mmol, 1.0 equiv.), Ir(ppy)₃ (2.6 mg, 0.004 mmol, 2 mol%) and anhydrous acetonitrile (1 mL) in an argon-filled glove box. The vial was tightly sealed, then removed from the glovebox. After stirring under 8 W blue LED strip irradiation at room temperature for 24 h (The temperature of the reaction was maintained at room temperature *via* a fan). Upon completion, the reaction mixture was diluted by ethyl acetate, and filtered through a plug of silica (eluting with ethyl acetate). Finally, the filtrate was concentrated under reduced pressure and the resulting crude material was purified by preparative TLC (petroleum ether/ethyl acetate) to afford the corresponding silylpyridylation of alkenes product.

2.2.2 Gram scale experiments

In an oven-dried reaction vial (10 mL) containing a magnetic stir bar was charged with 4canopyridine (4 mmol, 1.0 equiv.), alkene (1.5 equiv.), PhMe₂SiBpin (1.5 equiv.), Rb₂CO₃ (1.0 equiv.), Ir(ppy)₃ (2 mol%) and anhydrous acetonitrile (20 mL) in an argon-filled glove box. The vial was tightly sealed, then removed from the glovebox. After stirring under 8 W blue LED strip irradiation at room temperature for 24 h (The temperature of the reaction was maintained at room temperature *via* a fan). Upon completion, the reaction mixture was diluted by ethyl acetate, and filtered through a plug of silica (eluting with ethyl acetate). Finally, the filtrate was concentrated under reduced pressure and the resulting crude material was purified by preparative TLC (petroleum ether/ethyl acetate) to afford the corresponding product **4bl** in 78% yield.

2.3 Experimental Studies on Reaction Mechanism

2.3.1 Radical-radical coupling experiment

We performed the reaction of 1.4-dicyanobenzene and PhMe₃SiBpin under standard conditions. The cross-coupling product **6** between PhMe₂Si radical and (hetero)aryl nitrile radical anion as well as the product PhMe₂Si-SiMe₂Ph from dimeric PhMe₂Si radical were produced. These results indicated both the PhMe₂Si radical and (hetero)aryl nitrile radical anion was formed in the photocatalyzed process.

Experimental procedure: according to the general procedure, in an oven-dried reaction vial (10 mL) containing a magnetic stir bar was charged with 1.4-dicyanobenzene (0.2 mmol, 1.0 equiv.), and PhMe₃SiBpin (79 mg, 0.3 mmol, 1.5 equiv.), Rb₂CO₃ (0.2 mmol, 1.0 equiv.), Ir(ppy)₃ (2.6 mg, 0.004 mmol, 2 mol%) and anhydrous acetonitrile (1 mL) in an argon-filled glove box. After stirring under blue LED irradiation at room temperature for 24 h (The temperature of the reaction was maintained at room temperature *via* a fan). Upon completion, the reaction mixture was diluted by ethyl acetate, and filtered through a plug of silica (eluting with ethyl acetate). Finally, the filtrate was concentrated under reduced pressure and the resulting crude material was purified by preparative TLC (petroleum ether/ethyl

acetate) to afford the corresponding product. Compound **6** as oil (14% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.63 – 7.60 (m, 4H), 7.51 – 7.47 (m, 2H), 7.42 – 7.35 (m, 3H), 0.57 (s, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 145.5, 136.6, 134.7, 134.2, 131.1, 129.7, 128.2, 119.1, 112.8, -2.6 ppm. Spectra datas of compound **6** are consistent with literature data.^[4] Compound **7** as oil (35% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.64 – 7.51 (m, 4H), 7.43 – 7.35 (m, 6H), 0.37 (s, 12H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 138.9, 132.1, 128.4, 126.8, 0.0 ppm. Spectra data of compound **7** are consistent with literature data.^[5]

2.3.2 Radical clock experiments

We performed a radical-clock experiment using the reaction of (1-(2-phenylcyclopropyl)-vinyl)benzene **3**, 1.4-dicyanobenzene, and PhMe₃SiBpin with Ir(ppy)₃ as photocatalyst and Rb₂CO₃ as a base, the corresponding ring-opening product **8** was obtained in 65% yield, which supports a radical mechanism.

Experimental procedure: according to the general procedure, in an oven-dried reaction vial (10 mL) containing a magnetic stir bar was charged with (1-(2-phenylcyclopropyl)-vinyl)-benzene 3, 1.4dicyanobenzene (0.2 mmol, 1.0 equiv.), and PhMe₃SiBpin (79 mg, 0.3 mmol, 1.5 equiv.), Rb₂CO₃ (0.2 mmol, 1.0 equiv.), Ir(ppy)₃ (2.6 mg, 0.004 mmol, 2 mol%) and anhydrous acetonitrile (1 mL) in an argon-filled glove box. After stirring under blue LED irradiation at room temperature for 24 h (The temperature of the reaction was maintained at room temperature via a fan). Upon completion, the reaction mixture was diluted by ethyl acetate, and filtered through a plug of silica (eluting with ethyl acetate). Finally, the filtrate was concentrated under reduced pressure and the resulting crude material was purified by preparative TLC (petroleum ether/ethyl acetate) to afford the corresponding product 8 as colorless oil (65% yield, E/Z = 1.5:1). ¹H NMR (400 MHz, CDCl₃): δ 7.58 – 7.42 (m, 3H), 7.41 – 7.17 (m, 13H), 7.12 – 7.05 (m, 2H), 7.00 – 6.97 (m, 1H), 5.15 (td, J = 7.1, 2.1 Hz, 1H), 3.98 – 3.89 (m, 1H), 2.72 – 2.68 (m, 1H), 2.67 – 2.54 (m, 1H), 2.18 (s, 1H), 2.03 (s, 1H), 0.13 – 0.07 (m, 3H), 0.06 – 0.01 (m, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 150.3, 150.2, 144.3, 143.2, 143.2, 141.9, 139.9, 139.3, 139.0, 138.9, 133.7, 133.6, 132.2, 132.1, 129.1, 128.9, 128.9, 128.7, 128.6, 128.4, 128.2, 128.1, 128.0, 127.8, 127.7, 126.9, 126.7, 126.6, 123.3, 122.8, 119.1, 110.0, 109.9, 52.1, 51.2, 34.9, 34.8, 29.0, 21.1, -2.4, -2.8 ppm. IR (film): 3066, 3024, 2954, 2896, 2226, 1599, 1492, 1426, 1247, 1112, 1020, 910, 834, 697 cm⁻¹. **HRMS (ESI)**: calculated for C₃₂H₃₂NSi⁺ [M+H]⁺ 458.2299; found 458.2290.

2.3.3 TEMPO trapping experiment

When adding the 2,2,6,6-Tetramethyl-1-piperinedinyloxy (TEMPO) into the reaction of 4canopyridine, 4-methyl styrene and PhMe₃SiBpin in presence of $Ir(ppy)_3$ and Rb_2CO_3 , the desired product 4ba was inhibited, suggesting a radical mechanism.

Experimental procedure: according to the general procedure, in an oven-dried reaction vial (10 mL) containing a magnetic stir bar was charged with 4-methylstyrene **3a** (36 mg, 0.3 mmol, 1.5 equiv.), 1.4-dicyanobenzene (0.2 mmol, 1.0 equiv.), 2,2,6,6-Tetramethyl-1-piperinedinyloxy (TEMPO, 5.0 equiv.) and PhMe₃SiBpin (79 mg, 0.3 mmol, 1.5 equiv.), Rb₂CO₃ (0.2 mmol, 1.0 equiv.), Ir(ppy)₃ (2.6 mg, 0.004 mmol, 2 mol%) and anhydrous acetonitrile (1 mL) in an argon-filled glove box. After stirring under blue LED irradiation at room temperature for 24 h. Then, the reaction mixture was analysis by GC-MS.

2.3.4 Light on/off experiment

We carried out the light on/off experiments by the reaction of 4-canopyridine, 4-methylstyrene and PhMe₃SiBpin under standard conditions, indicating light irradiation is essential for this protocol.

Experimental procedure: according to the general procedure, six oven-dried reaction vials were charged respectively 4-methylstyrene **3a** (36 mg, 0.3 mmol, 1.5 equiv.), 1.4-dicyanobenzene (0.2 mmol, 1.0 equiv.), and PhMe₃SiBpin (79 mg, 0.3 mmol, 1.5 equiv.), Rb₂CO₃ (0.2 mmol, 1.0 equiv.), Ir(ppy)₃ (2.6 mg, 0.004 mmol, 2 mol%) and anhydrous acetonitrile (1 mL) in an argon-filled glove box. The vials were irritated under blue LED irradiation. After 2 hour, the lamps were turned off, and one vial was removed from the irradiation setup for analysis. The remaining five vials were stirred in the absence of light for an additional 1 hour. Then, one vial was removed for analysis, and the other lamps were turned off, and one vial was removed for analysis. The remaining vials were stirred in the absence of light for an additional 1 hour. Then, a vial was removed for analysis, and the other lamps were turned off, and one vial was removed for analysis. The remaining vials were stirred in the absence of light for an additional 1 hour. Then, a vial was removed for analysis, and the other lamps were turned off, and one vial was removed for analysis. The remaining vials were stirred in the absence of light for an additional 1 hour. Then, a vial was removed for analysis, and the other lamps were turned off, and one vial was removed for analysis. The remaining vials were stirred in the absence of light for an additional 1 hour. Then, a vial was removed for analysis, and the other lamps were turned back on to irradiate the remaining one reaction mixture. After an additional 2 hours of irradiation, the lamps were turned back on to irradiate the remaining one reaction mixture. After an additional 2 hours of irradiation, the lamps were turned off, and the last vial was removed for analysis. The reaction mixtures were diluted by ethyl acetate, and filtered through a plug of silica (eluting with ethyl acetate). Finally, the filtrate was

concentrated under reduced pressure and the resulting crude material was purified by preparative TLC (petroleum ether/ethyl acetate) to afford the corresponding product.

- 2.4 Characterization Data of alkene silylarylation products
- 2.4.1 4-(2-(dimethyl(phenyl)silyl)-1-(p-tolyl)ethyl)benzonitrile (4a)

Prepared according to general procedure from 1,4-dicyanobenzene **1a** (26 mg, 0.2 mmol, 1.0 equiv.), PhMe₂SiBpin (79 mg, 0.3 mmol, 1.5 equiv.), 4-methylstyrene **3a** (36 mg, 0.3 mmol, 1.5 equiv.) and anhydrous acetonitrile (1 mL) in the presence of $Ir(ppy)_3$ (2 mol%, 2.6 mg, 004 mmol) and Rb₂CO₃ (0.2 mmol, 1.0 equiv.). Purification by preparative TLC (petroleum PE/EA = 20:1) to afford **4aa** as colorless oil (49 mg, 68% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.53 – 7.46 (m, 2H), 7.43 – 7.38 (m, 2H), 7.37 – 7.34 (m, 2H), 7.32 – 7.29 (m, 2H), 7.10 – 7.05 (m, 4H), 4.08 – 4.03 (m, 1H), 2.32 – 2.31 (m, 3H), 1.67 – 1.60 (m, 2H), 0.11 (s, 3H), 0.08 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 152.7, 142.1, 138.5, 136.3, 133.6, 132.2, 129.3, 129.0, 128.3, 127.8, 127.5, 119.1, 109.7, 47.0, 23.2, 21.0, -2.4, -2.7 ppm. **IR** (film): 3028, 2253, 2232, 1607, 1255, 1122, 903, 674 cm⁻¹. **HRMS (ESI)**: calculated for C₂₄H₂₆NSi⁺ [M+H]⁺ 356.1829; found 356.1822.

2.4.2 4-(2-(dimethyl(phenyl)silyl)-1-(p-tolyl)ethyl)pyridine (4ba)

Prepared according to general procedure from 4-cyanopyridine **1b** (21 mg, 0.2 mmol, 1.0 equiv.), PhMe₂SiBpin (79 mg, 0.3 mmol, 1.5 equiv.), 4-methylstyrene **3a** (36 mg, 0.3 mmol, 1.5 equiv.) and anhydrous acetonitrile (1 mL) in the presence of Ir(ppy)₃ (2 mol%, 2.6 mg, 004 mmol) and Rb₂CO₃ (0.2 mmol, 1.0 equiv.). Purification by preparative TLC (petroleum PE/EA = 20:1) to afford **4ba** as colorless oil (69 mg, 84% yield). ¹**H NMR** (400 MHz, CDCl₃): 8.30 (d, J = 5.3 Hz, 2H), 7.31 – 7.27 (m, 2H), 7.26 – 7.18 (m, 3H), 7.02 – 6.99 (m, 2H), 6.98 – 6.91 (m, 4H), 3.86 – 3.80 (m, 1H), 2.18 (s, 3H), 1.52 – 1.44 (m, 2H), 0.06 (s, 3H), 0.03 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 156.2, 149.7, 141.8, 138.6, 136.4, 133.6, 129.3, 129.1, 127.9, 127.6, 122.9, 46.4, 22.8, 21.1, -2.3, -2.7 ppm. IR (film): 3043, 3020, 2953, 2918, 1593, 1511, 1426, 1248, 1112, 993, 837, 700 cm⁻¹. HRMS (ESI): calculated for C₂₂H₂₆NSi⁺ [M+H]⁺ 332.1839; found 332.1927.

2.4.3 4-(2-(dimethyl(phenyl)silyl)-1-phenylethyl)pyridine (4bb)

Prepared according to general procedure from 4-cyanopyridine **1b** (21 mg, 0.2 mmol, 1.0 equiv.), PhMe₂SiBpin (79 mg, 0.3 mmol, 1.5 equiv.), styrene **3b** (32 mg, 0.3 mmol, 1.5 equiv.) and anhydrous acetonitrile (1 mL) in the presence of Ir(ppy)₃ (2 mol%, 2.6 mg, 004 mmol) and Rb₂CO₃ (0.2 mmol, 1.0 equiv.). Purification by preparative TLC (petroleum PE/EA = 20:1) to afford **4bb** as colorless oil (50 mg, 79% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.40 (d, *J* = 5.3 Hz, 2H), 7.41 – 7.35 (m, 2H), 7.33 – 7.30 (m, 2H), 7.25 – 7.20 (m, 2H), 7.18 – 7.13 (dm, 3H), 7.12 – 7.09 (m, 2H), 3.96 (t, *J* = 8.0 Hz, 1H), 1.63 – 1.56 (m, 2H), 0.05 (s, 3H), 0.03 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 155.9, 149.7, 144.8, 138.5, 133.6, 129.1, 128.7, 127.9, 127.8, 126.8, 122.9, 46.8, 22.8, -2.3, -2.7 ppm. IR (film): 3067, 3024, 1953, 2917, 1680, 1593, 1493, 1414, 1249, 1112, 837, 733, 699 cm⁻¹. HRMS (ESI): calculated for C₂₁H₂₄NSi⁺ [M+H]⁺ 318.1673; found 318.1667. Spectra data are consistent with literature data.^[1]

2.4.4 4-(2-(dimethyl(phenyl)silyl)-1-(4-methoxyphenyl)ethyl)pyridine (4bc)

Prepared according to general procedure from 4-cyanopyridine **1b** (21 mg, 0.2 mmol, 1.0 equiv.), PhMe₂SiBpin (79 mg, 0.3 mmol, 1.5 equiv.), 4-methoxystyrene **3c** (40 mg, 0.3 mmol, 1.5 equiv.) and anhydrous acetonitrile (1 mL) in the presence of $Ir(ppy)_3$ (2 mol%, 2.6 mg, 004 mmol) and Rb₂CO₃ (0.2 mmol, 1.0 equiv.). Purification by preparative TLC (petroleum PE/EA = 20:1) to afford **4bc** as colorless oil (54 mg, 78% yield). ¹**H NMR** (400 MHz, CDCl₃): δ 8.33 (d, *J* = 5.0 Hz, 2H), 7.34 – 7.30 (m, 2H), 7.28 – 7.20 (m, 3H), 7.04 – 6.99 (m, 4H), 6.72 – 6.69 (m, 2H), 3.88 – 3.82 (n, 1H), 3.67 (s, 3H), 1.56 – 1.47 (m, 2H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 158.4, 156.3, 149.7, 138.6, 136.8, 133.5, 129.0, 128.7, 127.8, 122.8, 114.0, 55.3, 45.9, 22.9, -2.4, -2.7 ppm. IR (film): 3067, 3021, 2953, 2905, 2834, 1608, 1593, 1426, 1246, 1176, 1126, 1073, 993, 835, 731 cm⁻¹. HRMS (ESI): calculated for C₂₂H₂₆NOSi⁺ [M+H]⁺ 348.1778; found 348.1779. Spectra data are consistent with literature data.^[1,6]

2.4.5 4-(2-(dimethyl(phenyl)silyl)-1-(4-fluorophenyl)ethyl)pyridine (4bd)

Prepared according to general procedure from 4-cyanopyridine **1b** (21 mg, 0.2 mmol, 1.0 equiv.), PhMe₂SiBpin (79 mg, 0.3 mmol, 1.5 equiv.), 4-methoxystyrene **3d** (37 mg, 0.3 mmol, 1.5 equiv.) and anhydrous acetonitrile (1 mL) in the presence of Ir(ppy)₃ (2 mol%, 2.6 mg, 004 mmol) and Rb₂CO₃ (0.2 mmol, 1.0 equiv.). Purification by preparative TLC (petroleum PE/EA = 20:1) to afford **4bd** as colorless oil (54 mg, 80% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.43 (d, *J* = 5.5 Hz, 2H), 7.43 – 7.26 (m, 5H), 7.14 – 7.08 (m, 4H), 6.96 – 6.88 (m, 2H), 3.97 (t, *J* = 8.0 Hz, 1H), 1.62 – 1.57 (m, 2H), 0.09 (s, 6H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 161.6 (d, *J* = 245.2 Hz), 155.6, 149.8, 140.4 (d, *J* = 3.3 Hz), 138.3, 133.5, 129.2, 129.1, 127.9, 122.7, 115.4 (d, *J* = 21.3 Hz), 46.0, 23.0, -2.4, -2.7 ppm. ¹⁹F NMR (376 MHz, CDCl₃) δ -116.1. IR (film): 3068, 2954, 2897, 1594, 1507, 1426, 1411, 1249, 1221, 1157, 1112, 835, 813, 699 cm⁻¹. HRMS (ESI): calculated for C₂H₂₃NFSi⁺ [M+H]⁺ 336.1578; found 336.1573. Spectra data are consistent with literature data.^[1]

2.4.6 4-(1-(4-chlorophenyl)-2-(dimethyl(phenyl)silyl)ethyl)pyridine (4be)

Prepared according to general procedure from 4-cyanopyridine **1b** (21 mg, 0.2 mmol, 1.0 equiv.), PhMe₂SiBpin (79 mg, 0.3 mmol, 1.5 equiv.), 4-chlorostyrene **3e** (42 mg, 0.3 mmol, 1.5 equiv.) and anhydrous acetonitrile (1 mL) in the presence of Ir(ppy)₃ (2 mol%, 2.6 mg, 004 mmol) and Rb₂CO₃ (0.2 mmol, 1.0 equiv.). Purification by preparative TLC (petroleum PE/EA = 20:1) to afford **4be** as colorless oil (58 mg, 82% yield). ¹**H NMR** (400 MHz, CDCl₃): δ 8.45 – 8.42 (m, 2H), 7.42 – 7.29 (m, 5H), 7.24 – 7.16 (m, 2H), 7.10 – 7.07 (m, 4H), 3.95 (t, J = 8.0 Hz, 1H), 1.61 – 1.56 (m, 2H), 0.09 (s, 6H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 155.3, 149.8, 143.2, 138.1, 133.5, 132.5, 129.2, 129.1, 128.7, 127.9, 122.8, 46.1, 22.8, -2.4, -2.6 ppm. IR (film): 3068, 3022, 2954, 2916, 1426, 1249, 1090, 1113, 873, 728, 699 cm⁻¹. HRMS (ESI): calculated for C₂H₂₃NCISi⁺ [M+H]⁺ 352.1283; found 352.1280.

2.4.7 4-(1-(4-bromophenyl)-2-(dimethyl(phenyl)silyl)ethyl)pyridine (4bf)

Prepared according to general procedure from 4-cyanopyridine **1b** (21 mg, 0.2 mmol, 1.0 equiv.), PhMe₂SiBpin (79 mg, 0.3 mmol, 1.5 equiv.), 4- bromostyrene **3f** (55 mg, 0.3 mmol, 1.5 equiv.) and anhydrous acetonitrile (1 mL) in the presence of $Ir(ppy)_3$ (2 mol%, 2.6 mg, 004 mmol) and Rb₂CO₃ (0.2 mmol, 1.0 equiv.). Purification by preparative TLC (petroleum PE/EA = 20:1) to afford **4bf** as colorless oil (39 mg, 50% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.45 – 8.40 (m, 2H), 7.44 – 7.26 (m, 7H), 7.11 – 7.07 (m, 2H), 7.05 – 7.00 (m, 2H), 3.93 (t, *J* = 8.0 Hz, 1H), 1.63 – 1.53 (m, 2H), 0.09 (s, 6H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 155.2, 149.8, 143.7, 138.1, 133.5, 131.7, 129.5, 129.2, 127.9, 122.8, 120.6, 46.2, 22.7, -2.4, -2.6 ppm. IR (film): 3067, 3046, 3021, 2916, 1678, 1593, 1486, 1426, 1249, 1112, 1009, 872, 836, 700 cm⁻¹. HRMS (ESI): calculated for C₂₁H₂₃NBrSi⁺ [M+H]⁺ 396.0778; found 396.0777.

2.4.8 4-(2-(dimethyl(phenyl)silyl)-1-(4-(trifluoromethyl)phenyl)ethyl)pyridine (4bg)

Prepared according to general procedure from 4-cyanopyridine **1b** (21 mg, 0.2 mmol, 1.0 equiv.), PhMe₂SiBpin (79 mg, 0.3 mmol, 1.5 equiv.), 4-bromostyrene **3g** (52 mg, 0.3 mmol, 1.5 equiv.) and anhydrous acetonitrile (1 mL) in the presence of $Ir(ppy)_3$ (2 mol%, 2.6 mg, 004 mmol) and Rb₂CO₃ (0.2 mmol, 1.0 equiv.). Purification by preparative TLC (petroleum PE/EA = 20:1) to afford **4bg** as colorless oil (51 mg, 66% yield). ¹**H NMR** (400 MHz, CDCl₃): δ 8.44 (d, *J* = 5.2 Hz, 2H), 7.49 – 7.45 (m, 2H), 7.39 - 7.33 (m, 3H), 7.33 - 7.29 (m, 2H), 7.27 - 7.24 (m, 2H), 7.11 - 7.08 (m, 2H), 4.02 (t, J = 8.0 Hz, 1H), 1.64 - 1.59 (m, 2H), 0.10 (s, 3H), 0.09 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 154.7, 149.9, 148.7, 138.0, 133.5, 129.2, 128.9, 128.1, 127.9, 125.6 (q, J = 3.8 Hz), 125.5, 122.8, 46.6, 22.7, -2.6, -2.6 ppm. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.4. IR (film): 3069, 2956, 1618, 1595, 1416, 1250, 1163, 1120, 1067, 1016, 834, 731 cm⁻¹. HRMS (ESI): calculated for C₂₂H₂₃NF₃Si⁺ [M+H]⁺ 386.1546; found 386, 1540.

2.4.9 4-(2-(dimethyl(phenyl)silyl)-1-(pyridin-4-yl)ethyl)benzonitrile (4bh)

Prepared according to general procedure from 4-cyanopyridine **1b** (21 mg, 0.2 mmol, 1.0 equiv.), PhMe₂SiBpin (79 mg, 0.3 mmol, 1.5 equiv.), 4-cyanostyrene **3h** (39 mg, 0.3 mmol, 1.5 equiv.) and anhydrous acetonitrile (1 mL) in the presence of $Ir(ppy)_3$ (2 mol%, 2.6 mg, 004 mmol) and Rb₂CO₃ (0.2 mmol, 1.0 equiv.). Purification by preparative TLC (petroleum PE/EA = 20:1) to afford **4bh** as colorless oil (34 mg, 50% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.37 (d, *J* = 5.0 Hz, 2H), 7.47 – 7.39 (m, 2H), 7.34 – 7.19 (m, 5H), 7.18 – 7.15 (m, 2H), 7.02 – 6.98 (m, 2H), 3.93 (t, *J* = 8.0 Hz, 1H), 1.55 – 1.50 (m, 2H), 0.10 (s, 3H), 0.09 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃):154.1, 150.2, 150.0, 137.7, 133.5, 132.5, 129.4, 128.5, 128.0, 122.8, 118.7, 110.7, 46.9, 22.6, -2.5, -2.5 ppm. IR (film): 3068, 3047, 2954, 2923, 2227, 2182, 2015, 1980, 1677, 1570, 1426, 1250, 1112, 904, 837, 731 cm⁻¹. HRMS (ESI): calculated for C₂₂H₂₃N₂Si⁺ [M+H]⁺ 343.1625; found 349.1622.

2.4.10 4-(2-(dimethyl(phenyl)silyl)-1-(3-methoxyphenyl)ethyl)pyridine (4bi)

Prepared according to general procedure from 4-cyanopyridine **1b** (21 mg, 0.2 mmol, 1.0 equiv.), PhMe₂SiBpin (79 mg, 0.3 mmol, 1.5 equiv.), 3-methoxystyrene **3i** (40 mg, 0.3 mmol, 1.5 equiv.) and

anhydrous acetonitrile (1 mL) in the presence of Ir(ppy)₃ (2 mol%, 2.6 mg, 004 mmol) and Rb₂CO₃ (0.2 mmol, 1.0 equiv.). Purification by preparative TLC (petroleum PE/EA = 20:1) to afford **4bi** as colorless oil (53 mg, 77% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.43 (d, *J* = 5.7 Hz, 2H), 7.46 – 7.39 (m, 2H), 7.39 – 7.30 (m, 3H), 7.21 – 7.16 (m, 1H), 7.15 – 7.12 (m, 2H), 6.81 – 6.78 (m, 1H), 6.74 – 6.71 (m, 2H), 3.95 (t, *J* = 8.0 Hz, 1H), 3.75 (s, 3H), 1.66 – 1.57 (m, 2H), 0.11 (s, 3H), 0.09 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 159.7, 155.6, 149.7, 146.3, 138.5, 133.5, 129.6, 129.1, 127.8, 122.9, 120.2, 113.9, 111.6, 55.2, 46.7, 22.7, -2.4, -2.7 ppm. IR (film): 3068, 2953, 2834, 1593, 1487, 1426, 1249, 1112, 1048, 993, 827, 730, 697 cm⁻¹. HRMS (ESI): calculated for C₂₂H₂₆NOSi⁺ [M+H]⁺ 348.1778; found 348.1773.

2.4.11 methyl-3-(2-(dimethyl(phenyl)silyl)-1-(pyridin-4-yl)ethyl)benzoate (4bj)

Prepared according to general procedure from 4-cyanopyridine **1b** (21 mg, 0.2 mmol, 1.0 equiv.), PhMe₂SiBpin (79 mg, 0.3 mmol, 1.5 equiv.), methyl 3-vinylbenzoate **3j** (49 mg, 0.3 mmol, 1.5 equiv.) and anhydrous acetonitrile (1 mL) in the presence of Ir(ppy)₃ (2 mol%, 2.6 mg, 004 mmol) and Rb₂CO₃ (0.2 mmol, 1.0 equiv.). Purification by preparative TLC (petroleum PE/EA = 20:1) to afford **4bj** as colorless oil (39 mg, 52% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.32 – 8.28 (m, 2H), 7.77 – 7.68 (m, 2H), 7.25 – 7.15 (m, 7H), 7.00 – 6.97 (m, 2H), 3.90 (t, *J* = 8.0 Hz, 1H), 3.77 (s, 3H), 1.57 – 1.45 (m, 2H), 0.05 (s, 6H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 166.9, 155.2, 149.9, 145.1, 138.1, 133.5, 132.4, 130.5, 129.1, 128.8, 128.7, 128.1, 127.9, 122.8, 52.2, 46.6, 22.7, -2.5, -2.6 ppm. **IR** (film): 3068, 3021, 2951, 1700, 1594, 1427, 1284, 1251, 1196, 1175, 1110, 993, 905, 834 cm⁻¹. HRMS (ESI): calculated for C₂₃H₂₆NO₂Si⁺ [M+H]⁺ 376.1727; found 376.1725.

2.4.12 4-(2-(dimethyl(phenyl)silyl)-1-(2-methoxyphenyl)ethyl)pyridine (4bk)

Prepared according to general procedure from 4-cyanopyridine **1b** (21 mg, 0.2 mmol, 1.0 equiv.), PhMe₂SiBpin (79 mg, 0.3 mmol, 1.5 equiv.), 2-methoxystyrene **3k** (40 mg, 0.3 mmol, 1.5 equiv.) and anhydrous acetonitrile (1 mL) in the presence of Ir(ppy)₃ (2 mol%, 2.6 mg, 004 mmol) and Rb₂CO₃ (0.2 mmol, 1.0 equiv.). Purification by preparative TLC (petroleum PE/EA = 20:1) to afford **4bk** as colorless oil (52 mg, 75% yield). ¹H **NMR** (400 MHz, CDCl₃): δ 8.33 (d, *J* = 5.1 Hz, 2H), 7.37 – 7.30 (m, 2H), 7.28 – 7.12 (m, 4H), 7.12 – 7.06 (m, 3H), 6.84 – 6.79 (m, 1H), 6.72 – 6.69 (m, 1H), 4.48 – 4.41 (m, 1H), 3.65 (s, 3H), 1.63 – 1.55 (m, 1H), 1.50 – 1.44 (m, 1H), 0.03 (s, 3H), 0.01 (s, 3H) ppm. ¹³C{¹H} **NMR** (100 MHz, CDCl₃): δ 156.6, 156.0, 149.4, 139.0, 133.5, 133.1, 128.9, 128.0, 127.7, 127.5, 123.2, 120.6, 110.7, 55.2, 38.8, 21.6, -2.5, -2.6 ppm. **IR** (film): 3068, 3022, 2953, 2836, 1973, 1593, 1489, 1413, 1242, 1111, 1029, 905, 835, 728 cm⁻¹. **HRMS (ESI)**: calculated for C₂₂H₂₆NOSi⁺ [M+H]⁺ 348.1778; found 348.1772.

2.4.13 4-(2-(dimethyl(phenyl)silyl)-1-(perfluorophenyl)ethyl)pyridine (4bl)

Prepared according to general procedure from 4-cyanopyridine **1b** (21 mg, 0.2 mmol, 1.0 equiv.), PhMe₂SiBpin (79 mg, 0.3 mmol, 1.5 equiv.), 1,2,3,4,5-Pentafluoro-6-vinylbenzene **3l** (58 mg, 0.3 mmol, 1.5 equiv.) and anhydrous acetonitrile (1 mL) in the presence of $Ir(ppy)_3$ (2 mol%, 2.6 mg, 004 mmol) and Rb₂CO₃ (0.2 mmol, 1.0 equiv.). Purification by preparative TLC (petroleum PE/EA = 20:1) to afford **4bk** as colorless oil (60 mg, 74% yield). ¹**H NMR** (400 MHz, CDCl₃): δ 8.51 – 8.47 (m, 2H), 7.38 – 7.28 (m, 3H), 7.28 – 7.22 (m, 2H), 7.20 (d, *J* = 5.3 Hz, 2H), 4.46 (dd, *J* = 11.8, 4.9 Hz, 1H), 1.97 – 1.89 (m, 1H), 1.58 – 1.52 (m, 1H), 0.30 (s, 3H), 0.23 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 152.0, 150.0, 146.2 – 145.8 (m, 1C), 143.7 – 143.3 (m, 1C), 141.4 – 140.9 (m, 1C), 138.9 – 138.4 (m, 1C), 137.1, 136.4 – 135.9 (m, 1C), 133.1, 129.1, 127.7, 122.4, 117.5 – 116.9 (m, 1C), 35.4, 18.7, -2.3, -4.2

ppm. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -141.3 – -141.4 (m, 2F), -156.2 – -156.4 (m, 1F), -161.7 – -161.9 (m, 2F) ppm. **IR** (film): 3076, 3018, 2956, 1654, 1595, 1520, 1499, 1415, 1251, 1114, 983, 836, 717 cm⁻¹. **HRMS (ESI)**: calculated for C₂₁H₁₉F₅NSi⁺ [M+H]⁺ 408.1201; found 408.1194.

2.4.14 4-(1-(4-allylphenyl)-2-(dimethyl(phenyl)silyl)ethyl)pyridine (4bm)

Prepared according to general procedure from 4-cyanopyridine **1b** (21 mg, 0.2 mmol, 1.0 equiv.), PhMe₂SiBpin (79 mg, 0.3 mmol, 1.5 equiv.), 1-allyl-4-vinylbenzene **3m** (43 mg, 0.3 mmol, 1.5 equiv.) and anhydrous acetonitrile (1 mL) in the presence of Ir(ppy)₃ (2 mol%, 2.6 mg, 004 mmol) and Rb₂CO₃ (0.2 mmol, 1.0 equiv.). Purification by preparative TLC (petroleum PE/EA = 20:1) to afford **4bm** as colorless oil (47 mg, 66% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.37 (d, *J* = 4.7 Hz, 2H), 7.37 – 7.34 (m, 2H), 7.31 – 7.25 (m, 3H), 7.09 – 7.05 (m, 4H), 7.02 (d, *J* = 8.3 Hz, 2H), 5.95 – 5.81 (m, 1H), 5.03 – 5.00 (m, 1H), 4.99 – 4.97 (m, 1H), 3.93 – 3.87 (m, 1H), 3.29 (dd, J = 6.6, 1.6 Hz, 2H), 1.63 – 1.49 (m, 2H), 0.30 (s, 3H), 0.23 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 156.0, 149.7, 142.6, 138.6, 138.5, 137.4, 133.6, 129.1, 128.9, 127.9, 127.8, 122.9, 115.8, 46.4, 39.8, 22.9, -2.4, -2.7 ppm. IR (film): 3068, 3021, 2953, 2901, 2215, 2040, 1975, 1679, 1557, 1426, 1413, 1248, 1112, 993, 837, 730 cm⁻¹. HRMS (ESI): calculated for C₂₄H₂₈NSi⁺ [M+H]⁺ 358.1986; found 358.1983.

2.4.15 4-(1-(benzofuran-5-yl)-2-(dimethyl(phenyl)silyl)ethyl)pyridine (4bn)

Prepared according to general procedure from 4-cyanopyridine **1b** (21 mg, 0.2 mmol, 1.0 equiv.), PhMe₂SiBpin (79 mg, 0.3 mmol, 1.5 equiv.), 5-vinylbenzofuran **3n** (43 mg, 0.3 mmol, 1.5 equiv.) and anhydrous acetonitrile (1 mL) in the presence of Ir(ppy)₃ (2 mol%, 2.6 mg, 004 mmol) and Rb₂CO₃ (0.2 mmol, 1.0 equiv.). Purification by preparative TLC (petroleum PE/EA = 20:1) to afford **4bn** as colorless oil (52 mg, 73% yield). ¹**H NMR** (400 MHz, CDCl₃): δ 8.37 – 8.28 (m, 2H), 7.48 (d, *J* = 2.2 Hz, 1H), 7.31 – 7.27 (m, 3H), 7.26 – 7.17 (m, 4H), 7.05 (d, *J* = 5.0 Hz, 2H), 7.00 – 6.96 (m, 1H), 6.59 – 6.56 (m, 1H), 4.02 – 3.98 (m, 1H), 1.63 – 1.50 (m, 2H), -0.02 (s, 3H), -0.04 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 156.2, 153.9, 149.7, 145.5, 139.4, 138.5, 133.5, 129.1, 127.8, 127.6, 124.3, 122.9, 120.0, 111.4, 106.6, 46.6, 23.2, -2.4, -2.7 ppm. IR (film): 3068, 3020, 2953, 2897, 2161, 1594, 1465, 1426, 1414, 1248, 1196, 1110, 1031, 885, 810, 700 cm⁻¹. HRMS (ESI): calculated for C₂₃H₂₄NOSi⁺ [M+H]⁺ 358.1622; found 358.1619.

2.4.16 4-(1-(dimethyl(phenyl)silyl)-2-phenylpropan-2-yl)pyridine (4bo)

Prepared according to general procedure from 4-cyanopyridine **1b** (21 mg, 0.2 mmol, 1.0 equiv.), PhMe₂SiBpin (79 mg, 0.3 mmol, 1.5 equiv.), 2-Phenyl-1-propene **3o** (36 mg, 0.3 mmol, 1.5 equiv.) and anhydrous acetonitrile (1 mL) in the presence of Ir(ppy)₃ (2 mol%, 2.6 mg, 004 mmol) and Rb₂CO₃ (0.2 mmol, 1.0 equiv.). Purification by preparative TLC (petroleum PE/EA = 20:1) to afford **4bo** as colorless oil (39 mg, 59% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.43 (d, *J* = 5.8 Hz, 2H), 7.42 – 7.38 (m, 2H), 7.37 – 7.29 (m, 3H), 7.28 – 7.24 (m, 2H), 7.21 – 7.16 (m, 3H), 7.13 – 7.10 (m, 2H), 1.88 – 1.77 (m, 2H), 1.58 (s, 3H), 0.03 (s, 3H), 0.02 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 160.8, 149.5, 149.1, 139.7, 133.5, 128.9, 128.2, 127.8, 127.2, 126.3, 122.3, 45.3, 30.6, 29.7, -1.4, -1.5 ppm. IR (film): 3058, 3022, 2966, 2896, 1591, 1549, 1493, 1409, 1248, 1111, 906, 821, 727 cm⁻¹. HRMS (ESI): calculated for C₂₃H₂₄NOSi⁺ [M+H]⁺ 332.1829; found 332.1826.

2.4.17 methyl 4-(1-(dimethyl(phenyl)silyl)-2-(pyridin-4-yl)propan-2-yl)benzoate (4bp)

Prepared according to general procedure from 4-cyanopyridine **1b** (21 mg, 0.2 mmol, 1.0 equiv.), PhMe₂SiBpin (79 mg, 0.3 mmol, 1.5 equiv.), 5-vinylbenzofuran **3p** (53 mg, 0.3 mmol, 1.5 equiv.) and anhydrous acetonitrile (1 mL) in the presence of $Ir(ppy)_3$ (2 mol%, 2.6 mg, 004 mmol) and Rb₂CO₃ (0.2 mmol, 1.0 equiv.). Purification by preparative TLC (petroleum PE/EA = 20:1) to afford **4bp** as colorless oil (53 mg, 68% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.41 (d, *J* = 4.9 Hz, 2H), 7.91 – 7.87 (m, 2H), 7.35 – 7.32 (m, 2H), 7.31 – 7.24 (m, 3H), 7.22 – 7.20 (m, 2H), 7.07 – 7.04 (m, 2H), 3.89 (s, 3H), 1.82 – 1.78 (m, 2H), 1.56 (s, 3H) 0.00 (s, 3H), 0.02 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 166.9, 159.9, 154.3, 149.6, 139.2, 133.4, 129.5, 129.0, 128.2, 127.9, 127.2, 122.2, 52.1, 45.6, 30.5, 29.5, -1.4, -1.4. IR (film): 3068, 2952, 2362, 1700, 1592, 1434, 1408, 1281, 1190, 1112, 1016, 830, 775, 710 cm⁻¹. HRMS (ESI): calculated for C₂₄H₂₈NO₂Si⁺ [M+H]⁺ 390.1884; found 390.1881. Spectra data are consistent with literature data.^[1]

2.4.18 methyl 4-(1-(dimethyl(phenyl)silyl)-2-(pyridin-4-yl)propan-2-yl)benzoate (4bq)

Prepared according to general procedure from 4-cyanopyridine **1b** (21 mg, 0.2 mmol, 1.0 equiv.), PhMe₂SiBpin (79 mg, 0.3 mmol, 1.5 equiv.), 4,4,5,5-tetramethyl-2-(4-(prop-1-en-2-yl)phenyl)-1,3,2dioxaborolane **3q** (73 mg, 0.3 mmol, 1.5 equiv.) and anhydrous acetonitrile (1 mL) in the presence of Ir(ppy)₃ (2 mol%, 2.6 mg, 004 mmol) and Rb₂CO₃ (0.2 mmol, 1.0 equiv.). Purification by preparative TLC (petroleum PE/EA = 20:1) to afford **4bq** as colorless oil (73 mg, 80% yield). ¹**H NMR** (400 MHz, CDCl₃): δ 8.45 – 8.30 (m, 2H), 7.66 (d, *J* = 8.3 Hz, 2H), 7.37 – 7.32 (m, 2H), 7.32 – 7.21 (m, 3H), 7.16 – 7.13 (m, 2H), 7.08 – 7.02 (m, 2H), 1.84 – 1.74 (m, 2H), 1.54 (s, 3H), 1.32 (s, 12H), 0.01 (s, 3H), -0.05 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 162.6, 152.2, 149.5, 139.7, 134.7, 133.5, 128.9, 128.5, 127.8, 126.6, 122.3, 83.9, 45.6, 30.5, 29.6, 25.0, -1.35, -1.43. ¹¹B NMR (128 MHz, CDCl₃) δ 31.8. **IR** (film): 3074, 3022, 2976, 1610, 1592, 1550, 1399, 1300, 1249, 1144, 1093, 1018, 962, 831, 730 cm⁻¹. **HRMS (ESI)**: calculated for C₂₈H₃₆NBO₂Si⁺ [M+H]⁺ 458.2681; found 458.2676. Spectra data are consistent with literature data.^[1]

2.4.19 4-(2-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-1-(dimethyl(phenyl)silyl)propan-2-yl)pyridine (4br)

Prepared according to general procedure from 4-cyanopyridine **1b** (21 mg, 0.2 mmol, 1.0 equiv.), PhMe₂SiBpin (79 mg, 0.3 mmol, 1.5 equiv.), 6-(prop-1-en-2-yl)-2,3-dihydrobenzo[b][1,4]dioxine **3u** (53 mg, 0.3 mmol, 1.5 equiv.) and anhydrous acetonitrile (1 mL) in the presence of $Ir(ppy)_3$ (2 mol%, 2.6 mg, 004 mmol) and Rb₂CO₃ (0.2 mmol, 1.0 equiv.). Purification by preparative TLC (petroleum PE/EA = 20:1) to afford **4br** as colorless oil (58 mg, 75% yield). ¹**H NMR** (400 MHz, CDCl₃): δ 8.41 (d, *J* = 5.0 Hz, 2H), 7.40 – 7.34 (m, 2H), 7.34 – 7.24 (m, 3H), 7.12 – 7.09 (m, 2H), 6.73 – 6.65 (m, 2H), 6.62 – 6.57 (m, 1H), 4.23 – 4.19 (m, 4H), 1.76 – 1.73 (m, 2H), 1.53 (s, 3H), -0.05 (s, 3H), 0.02 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 160.8, 149.4, 143.0, 142.6, 141.8, 139.7, 133.5, 128.8, 127.8, 122.2, 120.2, 116.8, 116.2, 64.5, 64.4, 44.7, 30.8, 29.8, -1.3 ppm. IR (film): 3068, 2972, 2876, 2362, 2115, 1592, 1500, 1410, 1287, 1250, 1070, 904, 837 cm⁻¹. HRMS (ESI): calculated for C₂₄H₂₈NO₂Si⁺ [M+H]⁺ 390.1884; found 390.1880. Spectra data are consistent with literature data.^[1]

2.4.20 2-(1-(dimethyl(phenyl)silyl)-2-(pyridin-4-yl)propan-2-yl)-9-ethyl-9H-carbazole (4bs)

Prepared according to general procedure from 4-cyanopyridine **1b** (21 mg, 0.2 mmol, 1.0 equiv.), PhMe₂SiBpin (79 mg, 0.3 mmol, 1.5 equiv.), 9-ethyl-2-(prop-1-en-2-yl)-9H-carbazole **3v** (70 mg, 0.3 mmol, 1.5 equiv.) and anhydrous acetonitrile (1 mL) in the presence of Ir(ppy)₃ (2 mol%, 2.6 mg, 004 mmol) and Rb₂CO₃ (0.2 mmol, 1.0 equiv.). Purification by preparative TLC (petroleum PE/EA = 20:1) to afford **4bs** as colorless oil (61 mg, 68% yield). ¹H **NMR** (400 MHz, CDCl₃): δ 8.39 (d, *J* = 5.7 Hz, 2H), 8.04 (d, *J* = 7.7 Hz, 1H), 7.96 – 7.93 (m, 1H), 7.44 – 7.33 (m, 4H), 7.27 – 7.17 (m, 5H), 7.16 – 7.08 (m, 3H), 4.33 – 4.25 (m, 2H), 1.98 – 1.85 (m, 2H), 1.67 (s, 3H), 1.42 – 1.35 (m, 3H), -0.05 (s, 6H) ppm. ¹³C{¹H} **NMR** (100 MHz, CDCl₃): δ 161.9, 149.4, 140.3, 139.8, 139.4, 138.5, 133.5, 128.8, 127.7, 125.9, 125.6, 123.0, 122.4, 122.3, 120.3, 118.8, 118.3, 108.6, 108.2, 45.3, 37.6, 31.3, 30.3, 13.9, -1.3, -1.4 ppm. **IR** (film): 3067, 3020, 2972, 2932, 2893, 1677, 1594, 1490, 1346, 1248, 1111, 906, 831, 730 cm⁻¹. **HRMS (ESI)**: calculated for C₃₀H₃₃N₂Si⁺ [M+H]⁺ 449.2408; found 449.2403. Spectra data are consistent with literature data.^[1]

2.4.21 4-(2-(benzo[b]thiophen-2-yl)-1-(dimethyl(phenyl)silyl)propan-2-yl)pyridine (4bt)

Prepared according to general procedure from 4-cyanopyridine **1b** (21 mg, 0.2 mmol, 1.0 equiv.), PhMe₂SiBpin (79 mg, 0.3 mmol, 1.5 equiv.), 2-(prop-1-en-2-yl)benzo[b]thiophene **3w** (52 mg, 0.3 mmol, 1.5 equiv.) and anhydrous acetonitrile (1 mL) in the presence of Ir(ppy)₃ (2 mol%, 2.6 mg, 004 mmol) and Rb₂CO₃ (0.2 mmol, 1.0 equiv.). Purification by preparative TLC (petroleum PE/EA = 20:1) to afford **4bt** as colorless oil (38 mg, 50% yield). ¹**H NMR** (400 MHz, CDCl₃): δ 8.46 (s, 2H), 7.83 – 7.77 (m, 1H), 7.36 – 7.28 (m, 7H), 7.22 – 7.19 (m, 2H), 7.08 – 7.05 (m, 1H), 7.02 – 6.97 (m, 1H), 2.15 – 2.04 (s, 1H), 1.91 – 1.82 (s, 1H), 1.63 (s, 3H), -0.07 (s, 3H), -0.15 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 159.7, 149.8, 142.8, 141.3, 139.2, 137.5, 133.5, 129.0, 127.8, 124.4, 123.9, 123.6, 123.1, 122.4, 121.6, 43.9, 31.4, 28.6, -1.9, -2.2 ppm. **IR** (film): 3068, 2965, 2109, 2014, 1594, 1426, 1248, 1112, 900, 835 cm⁻¹. **HRMS (ESI)**: calculated for C₂₄H₂₆SNSi⁺ [M+H]⁺ 388.1550; found 388.1547. Spectra data are consistent with literature data.^[1]

2.4.22 4-(4-(1-(dimethyl(phenyl)silyl)-2-(pyridin-4-yl)propan-2-yl)phenyl)morpholine (4bu)

Prepared according to general procedure from 4-cyanopyridine **1b** (21 mg, 0.2 mmol, 1.0 equiv.), PhMe₂SiBpin (79 mg, 0.3 mmol, 1.5 equiv.), and 4-(4-(prop-1-en-2-yl)phenyl)morpholine **3u** (61 mg, 0.3 mmol, 1.5 equiv.) and anhydrous acetonitrile (1 mL) in the presence of Ir(ppy)₃ (2 mol%, 2.6 mg, 004 mmol) and Rb₂CO₃ (0.2 mmol, 1.0 equiv.). Purification by preparative TLC (petroleum PE/EA = 20:1) to afford **4bu** as colorless oil (51 mg, 62% yield). ¹H **NMR** (400 MHz, CDCl₃): 8.42 – 8.34 (m, 2H), 7.38 – 7.32 (m, 2H), 7.32 – 7.22 (m, 3H), 7.08 (d, *J* = 5.9 Hz, 2H), 7.04 – 7.01 (m, 2H), 6.77 – 6.73 (m, 2H), 3.84 – 3.81 (m, 4H), 3.12 – 3.09 (m, 4H), 1.80 – 1.71 (m, 2H), 1.52 (s, 3H), 0.01 (s, 3H), -0.03 (s, 3H) ppm. ¹³C{¹H} **NMR** (100 MHz, CDCl₃): δ 161.2, 149.5, 149.4, 140.4, 139.9, 133.5, 128.9, 127.9, 127.8, 122.3, 115.2, 67.0, 49.3, 44.6, 30.7, 29.8, -1.35.ppm. **IR** (film): 3068, 2963, 2891, 2820, 2362, 2185, 2040, 1592, 1513, 1232, 1121, 930, 827, 750 cm⁻¹. **HRMS (ESI)**: calculated for C₂₆H₃₃ON₂Si⁺ [M+H]⁺ 417.2357; found 417.2353. Spectra data are consistent with literature data.^[1] 2.4.23 4-(2-(4-chlorophenyl)-1-(dimethyl(phenyl)silyl)butan-2-yl)pyridine (4bv)

Prepared according to general procedure from 4-cyanopyridine **1b** (21 mg, 0.2 mmol, 1.0 equiv.), PhMe₂SiBpin (79 mg, 0.3 mmol, 1.5 equiv.), 1-(but-1-en-2-yl)-4-chlorobenzene **3v** (50 mg, 0.3 mmol, 1.5 equiv.) and anhydrous acetonitrile (1 mL) in the presence of $Ir(ppy)_3$ (2 mol%, 2.6 mg, 004 mmol) and Rb₂CO₃ (0.2 mmol, 1.0 equiv.). Purification by preparative TLC (petroleum PE/EA = 20:1) to afford **4bv** as colorless oil (59 mg, 78% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.33 (d, *J* = 5.7 Hz, 2H), 7.32 – 7.14 (m, 5H), 7.12 – 6.99 (m, 2H), 6.96 – 6.92 (m, 4H), 1.93 (q, J = 7.3 Hz, 2H), 1.62 (d, J = 10.0 Hz, 2H), 0.45 (t, J = 7.3 Hz, 3H), -0.10 (s, 3H), -0.11 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 159.0, 149.4, 147.1, 139.1, 133.4, 132.07, 129.1, 129.0, 128.1, 127.8, 123.0, 48.6, 31.9, 26.2, 8.7, -1.7 ppm. IR (film): 3068, 3021, 2967, 2881, 1594, 1489, 1426, 1406, 1249, 1111, 1012, 930, 800, 700 cm⁻¹. HRMS (ESI): calculated for C₂₃H₂₇NClSi⁺ [M+H]⁺ 380.1596; found 380.1594.

2.4.24 4-(1-cyclobutyl-2-(dimethyl(phenyl)silyl)-1-phenylethyl)pyridine (4bw)

Prepared according to general procedure from 4-cyanopyridine **1b** (21 mg, 0.2 mmol, 1.0 equiv.), PhMe₂SiBpin (79 mg, 0.3 mmol, 1.5 equiv.), and 1-(but-1-en-2-yl)-4-chlorobenzene **3w** (47 mg, 0.3 mmol, 1.5 equiv.) and anhydrous acetonitrile (1 mL) in the presence of $Ir(ppy)_3$ (2 mol%, 2.6 mg, 004 mmol) and Rb₂CO₃ (0.2 mmol, 1.0 equiv.). Purification by preparative TLC (petroleum PE/EA = 20:1) to afford **4bw** as colorless oil (57 mg, 78% yield). ¹**H NMR** (400 MHz, CDCl₃): δ 8.45 (d, *J* = 4.8 Hz, 2H), 7.46 – 7.36 (m, 2H), 7.37 – 7.28 (m, 3H), 7.28 – 7.16 (m, 3H), 7.10 – 7.02 (m, 4H), 3.19 – 3.10 (m, 1H), 1.92 – 1.78 (m, 2H), 1.77 – 1.62 (m, 2H), 1.59 – 1.44 (m, 2H), 1.44 – 1.07 (m, 2H), -0.04 (s, 3H), -0.09 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 157.6, 148.9, 146.8, 139.9, 133.4, 129.0, 128.9, 127.8, 126.4, 124.7, 51.61, 42.21, 27.48, 24.84, 24.53, 17.48, -1.73, -1.87 ppm. **IR** (film): 3076, 3021,

2976, 2866, 1593, 1444, 1407, 1250, 1112, 1072, 997, 904, 842, 729 cm⁻¹. **HRMS (ESI)**: calculated for $C_{25}H_{30}NSi^+$ [M+H]⁺ 372.2142; found 372.2139.

2.4.25 4-(2-(dimethyl(phenyl)silyl)-1,1-diphenylethyl)pyridine (4bx)

Prepared according to general procedure from 4-cyanopyridine **1b** (21 mg, 0.2 mmol, 1.0 equiv.), PhMe₂SiBpin (79 mg, 0.3 mmol, 1.5 equiv.), and 1,1-Diphenylethylene **3x** (54 mg, 0.3 mmol, 1.5 equiv.) and anhydrous acetonitrile (1 mL) in the presence of Ir(ppy)₃ (2 mol%, 2.6 mg, 004 mmol) and Rb₂CO₃ (0.2 mmol, 1.0 equiv.). Purification by preparative TLC (petroleum PE/EA = 20:1) to afford **4bx** as colorless oil (51 mg, 65% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.49 (d, *J* = 5.2 Hz, 2H), 7.49 – 7.44 (m, 2H), 7.42 – 7.35 (m, 3H), 7.34 – 7.29 (m, 8H), 7.29 – 7.24 (m, 4H), 2.42 – 2.38 (m, 2H), -0.03 (s, 6H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 158.2, 149.3, 147.0, 140.2, 133.4, 129.1, 128.9, 128.0, 12.87, 126.5, 124.1, 55.5, 30.9, -1.3 ppm. IR (film): 3054, 3021, 2954, 2924, 1948, 1600, 1492, 1426, 1249, 1111, 821, 699 cm⁻¹. HRMS (ESI): calculated for C₂₇H₂₈NSi⁺ [M+H]⁺ 394.1986; found 394.1980.

2.4.26 4-(2-(dimethyl(phenyl)silyl)-1-phenylpropyl)pyridine (4by)

Prepared according to general procedure from 4-cyanopyridine **1b** (21 mg, 0.2 mmol, 1.0 equiv.), PhMe₂SiBpin (79 mg, 0.3 mmol, 1.5 equiv.), β -methylstyrene **3y** (36 mg, 0.3 mmol, 1.5 equiv.) and anhydrous acetonitrile (1 mL) in the presence of Ir(ppy)₃ (2 mol%, 2.6 mg, 004 mmol) and Rb₂CO₃ (0.2 mmol, 1.0 equiv.). Purification by preparative TLC (petroleum PE/EA = 20:1) to afford **4by** as colorless oil (23 mg, 35% yield, d. r. = 1:1). ¹**H NMR** (400 MHz, CDCl₃): δ 8.48 (d, *J* = 4.6 Hz, 2H), 7.47 – 7.40 (m, 2H), 7.40 – 7.30 (m, 3H), 7.28 – 7.24 (m, 3H), 7.24 – 7.20 (m, 3H), 7.20 – 7.14 (m, 1H), 3.71 (s, 0.5H), 3.68 (s, 0.5H), 2.03 – 1.97 (m, 1H), 0.90 – 0.85 (m, 3H), 0.08 (s, 3H), 0.02 (s, 3H) ppm. ¹³C{¹H} **NMR** (100 MHz, CDCl₃): δ 154.2, 149.9, 143.6, 138.3, 134.0, 128.9, 128.7, 128.3, 127.7, 127.0, 123.4, 55.3, 24.0, 14.9, -2.7, -4.2 ppm. **IR** (film): 3067, 3024, 2954, 2870, 1594, 1493, 1415, 1249, 1111, 903, 834, 734 cm⁻¹. **HRMS (ESI)**: calculated for C₂₂H₂₆NSi⁺ [M+H]⁺ 332.1829; found 332.1826.

2.4.27 ethyl-3-(dimethyl(phenyl)silyl)-2-(pyridin-4-yl)propanoate (4bz)

Prepared according to general procedure from 4-cyanopyridine **1b** (21 mg, 0.2 mmol, 1.0 equiv.), PhMe₂SiBpin (79 mg, 0.3 mmol, 1.5 equiv.), ethyl acrylate (30 mg, 0.3 mmol, 1.5 equiv.) and anhydrous acetonitrile (1 mL) in the presence of $Ir(ppy)_3$ (2 mol%, 2.6 mg, 004 mmol) and Rb₂CO₃ (0.2 mmol, 1.0 equiv.). Purification by preparative TLC (petroleum PE/EA = 20:1) to afford **4bz** as colorless oil (23 mg, 36% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.39 – 8.24 (m, 2H), 7.27 – 7.24 (m, 2H), 7.19 – 7.14 (m, 3H), 7.01 – 6.99 (m, 2H), 3.85 – 3.75 (m, 2H), 3.41 – 3.35 (m, 1H), 1.54 – 1.49 (m, 1H), 1.11 (s, 1H), 0.99 – 0.94 (m, 3H), 0.04 (s, 3H), 0.02 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 173.5, 150.1, 149.9, 137.7, 133.7, 129.3, 128.0, 123.2, 61.3, 47.0, 20.4, 14.0, -2.6, -2.7 ppm. IR (film): 3069, 3052, 1700, 1597, 1426, 1250, 1175, 1113, 1030, 905, 838, 730 cm⁻¹. HRMS (ESI): calculated for C₁₈H₂₄NO₂Si⁺ [M+H]⁺ 314.1571; found 314.1568.

2.4.28 cyclohexyl 3-(dimethyl(phenyl)silyl)-2-methyl-2-(pyridin-4-yl)propanoate (4baa)

Prepared according to general procedure from 4-cyanopyridine **1b** (21 mg, 0.2 mmol, 1.0 equiv.), PhMe₂SiBpin (79 mg, 0.3 mmol, 1.5 equiv.), cyclohexyl methacrylate **3aa** (50 mg, 0.3 mmol, 1.5 equiv.) and anhydrous acetonitrile (1 mL) in the presence of $Ir(ppy)_3$ (2 mol%, 2.6 mg, 004 mmol) and Rb₂CO₃ (0.2 mmol, 1.0 equiv.). Purification by preparative TLC (petroleum PE/EA = 20:1) to afford **4baa** as colorless oil (40 mg, 53% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.33 – 8.21 (m, 2H), 7.27 – 7.22 (m, 2H), 7.17 – 7.08 (m, 3H), 7.03 (d, *J* = 6.0 Hz, 2H), 4.51 – 4.43 (m, 1H), 1.53 – 1.42 (m, 2H), 1.39 – 1.29 (m, 6H), 1.27 – 1.22 (m, 1H), 1.15 – 1.04 (m, 5H), 1.02 – 0.94 (m, 1H), 0.04 (s, 3H), 0.00 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 174.9, 154.9, 149.7, 139.2, 133.6, 129.1, 127.9, 121.2, 73.4, 48.8, 31.1, 27.5, 25.3, 24.9, 23.4, -1.3, -1.3 ppm. **IR** (film): 2937, 2859, 1722, 1593, 1250, 1210, 1112, 905, 837 cm⁻¹. **HRMS (ESI)**: calculated for C₂₃H₃₂NO₂Si⁺ [M+H]⁺ 382.2197; found 382.2193.

2.4.29 4-(2-(cyclohex-1-en-1-yl)-1-(dimethyl(phenyl)silyl)propan-2-yl)benzonitrile (4bab)

Prepared according to general procedure from 1.4-dicyanobenzene (0.2 mmol, 1.0 equiv.), PhMe₂SiBpin (79 mg, 0.3 mmol, 1.5 equiv.), 1-(prop-1-en-2-yl)cyclohex-1-ene (37 mg, 0.3 mmol, 1.5 equiv.) and anhydrous acetonitrile (1 mL) in the presence of Ir(ppy)₃ (2 mol%, 2.6 mg, 004 mmol) and Rb₂CO₃ (0.2 mmol, 1.0 equiv.). Purification by preparative TLC (petroleum PE/EA = 20:1) to afford **4bab** as colorless oil (40 mg, 53% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.36 – 7.29 (m, 2H), 7.28 – 7.20 (m, 2H), 7.19 – 7.07 (m, 5H), 5.61 – 5.57 (m, 1H), 1.95 – 1.88 (m, 2H), 1.42 – 1.19 (m, 8H), 1.14 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 156.0, 143.4, 140.0, 133.5, 131.8, 128.8, 127.8, 127.2, 121.4, 119.3, 109.3, 46.8, 27.9, 27.8, 25.8, 25.5, 23.0, 22.2 ppm. HRMS (ESI): calculated for C₂₄H₃₀NSi⁺ [M+H]⁺ 360.2142; found 360.2131.

2.4.30 4-(4-(dimethyl(phenyl)silyl)-3-methyl-1-phenylbut-2-en-1-yl)benzonitrile (4bac)

Prepared according to general procedure from 1.4-dicyanobenzene (0.2 mmol, 1.0 equiv.), PhMe₂SiBpin (79 mg, 0.3 mmol, 1.5 equiv.), 1-(prop-1-en-2-yl)cyclohex-1-ene (37 mg, 0.3 mmol, 1.5 equiv.) and anhydrous acetonitrile (1 mL) in the presence of $Ir(ppy)_3$ (2 mol%, 2.6 mg, 004 mmol) and Rb₂CO₃ (0.2 mmol, 1.0 equiv.). Purification by preparative TLC (petroleum PE/EA = 20:1) to afford **4bac** as colorless oil (*E*, 34 mg, 45% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.27 – 7.24 (m, 2H), 7.21 – 7.16 (m, 2H), 7.11 – 6.94 (m, 6H), 6.90 – 6.87 (m, 2H), 6.81 – 6.77 (m, 2H), 5.07 (d, J = 9.4 Hz, 1H), 4.59 (d, J = 9.3 Hz, 1H), 1.57 – 1.54 (m, 2H), 1.33 (d, J = 1.4 Hz, 3H) ppm. NOE difference

measurement: When the chemical shift of olefin proton was identified at δ 5.09 ppm, NOE was observed at the methylene (-CH₂-SiMe₂Ph) proton resonances at δ 1.55 ppm, whereas no NOE appeared at the methyl proton resonance at δ 1.33 ppm. Irradiation at the methyl proton resonance at δ 1.33 ppm caused enhancement of the benzyl [-CH-(Ph)(4-CNPh), δ 4.59 ppm] and the olefin (δ 5.16) proton resonances, while no NOE was observed at the olefin proton resonance at 5.09 ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 151.1, 144.0, 138.6, 135.1, 133.7, 132.2, 129.1, 129.0, 128.6, 128.2, 127.8, 126.5, 124.6, 119.2, 109.7, 49.8, 29.6, 19.2, -2.3, -2.5 ppm. HRMS (ESI): calculated for C₂₆H₂₇NSiNa⁺ [M+Na]⁺ 404.1805; found 404.1795.

2.4.31 2-cyclopropyl-4-(2-(dimethyl(phenyl)silyl)-1-(p-tolyl)ethyl)pyridine (5a)

Prepared according to general procedure from 2-cyclopropyl-4-cyanopyridine **1ba** (29 mg, 0.2 mmol, 1.0 equiv.), PhMe₂SiBpin (79 mg, 0.3 mmol, 1.5 equiv.), 4-methylstyrene **3a** (36 mg, 0.3 mmol, 1.5 equiv.) and anhydrous acetonitrile (1 mL) in the presence of $Ir(ppy)_3$ (2 mol%, 2.6 mg, 004 mmol) and Rb₂CO₃ (0.2 mmol, 1.0 equiv.). Purification by preparative TLC (petroleum PE/EA = 20:1) to afford **5a** as colorless oil (48 mg, 65% yield). ¹H **NMR** (400 MHz, CDCl₃): δ 8.12 (d, *J* = 5.1 Hz, 1H), 7.31 – 7.26 (m, 2H), 7.25 – 7.12 (m, 3H), 6.98 – 6.92 (m, 4H), 6.84 (d, *J* = 1.7 Hz, 1H), 6.76 (dd, *J* = 5.2, 1.7 Hz, 1H), 3.79 (t, *J* = 7.9 Hz, 1H), 1.84 – 1.76 (m, 1H), 1.52 – 1.45 (m, 2H), 0.87 – 0.77 (m, 4H), -0.03 (s, 3H), -0.05 (s, 3H) ppm. ¹³C{¹H} **NMR** (100 MHz, CDCl₃): δ 162.7, 155.8, 149.2, 142.1, 138.8, 136.2, 133.6, 129.3, 129.0, 127.8, 127.6, 120.6, 119.8, 46.4, 22.8, 21.1, 17.2, 9.8, 9.7, -2.3, -2.7 ppm. **IR** (film): 3007, 2953, 2918, 1598, 1512, 1478, 1426, 1249, 1113, 900, 836 cm⁻¹. **HRMS (ESI)**: calculated for C₂₅H₃₀NSi⁺ [M+H]⁺ 372.2142; found 372.2136.

2.4.32 2-(tert-butyl)-4-(2-(dimethyl(phenyl)silyl)-1-(p-tolyl)ethyl)pyridine (5b)

Prepared according to general procedure from 2-tert-butylisonicotinonitrile **1bb** (32 mg, 0.2 mmol, 1.0 equiv.), PhMe₂SiBpin (79 mg, 0.3 mmol, 1.5 equiv.), 4-methylstyrene **3a** (36 mg, 0.3 mmol, 1.5 equiv.) and anhydrous acetonitrile (1 mL) in the presence of $Ir(ppy)_3$ (2 mol%, 2.6 mg, 004 mmol) and Rb₂CO₃ (0.2 mmol, 1.0 equiv.). Purification by preparative TLC (petroleum PE/EA = 20:1) to afford **5b** as colorless oil (38 mg, 49% yield). ¹H **NMR** (400 MHz, CDCl₃): δ 8.25 (d, *J* = 5.1 Hz, 1H), 7.30 – 7.26 (m, 2H), 7.25 – 7.17 (m, 3H), 7.06 (s, 1H), 7.00 – 6.97 (m, 2H), 6.95 – 6.91 (m, 2H), 6.82 – 6.79 (m, 1H), 3.81 (t, *J* = 8.0 Hz, 1H), 2.18 (s, 3H), 1.52 – 1.44 (m, 2H), 1.21 (s, 9H), -0.04 (s, 3H), -0.07 (s, 3H) ppm. ¹³C{¹H} **NMR** (100 MHz, CDCl₃): δ 169.29 155.9, 148.6, 142.3, 138.7, 136.1, 133.6, 129.3, 129.0, 127.8, 127.5, 120.0, 118.3, 46.8, 37.4, 30.3, 23.1, 21.0, -2.4, -2.5 ppm. **IR** (film): 3028, 2961, 2253, 1599, 1251, 1114, 902, 722, 649 cm⁻¹. **HRMS (ESI)**: calculated for C₂₆H₃₄NSi⁺ [M+H]⁺ 388.2455; found 388.2449.

2.4.33 4-(2-(dimethyl(phenyl)silyl)-1-(p-tolyl)ethyl)-2,6-dimethylpyridine (5c)

Prepared according to general procedure from 2,6-dimethyl-4-cyanopyridine **1bc** (27 mg, 0.2 mmol, 1.0 equiv.), PhMe₂SiBpin (79 mg, 0.3 mmol, 1.5 equiv.), 4-methylstyrene **3a** (36 mg, 0.3 mmol, 1.5 equiv.) and anhydrous acetonitrile (1 mL) in the presence of $Ir(ppy)_3$ (2 mol%, 2.6 mg, 004 mmol) and Rb₂CO₃ (0.2 mmol, 1.0 equiv.). Purification by preparative TLC (petroleum PE/EA = 20:1) to afford **5c** as colorless oil (35 mg, 46% yield). ¹H **NMR** (400 MHz, CDCl₃): δ 7.40 – 7.37 (m, 2H), 7.36 – 7.29 (m, 3H), 7.09 – 7.04 (m, 4H), 6.77 (s, 2H), 3.86 (t, J = 8.0 Hz, 1H), 2.41 (s, 6H), 2.29 (s, 3H), 1.62 – 1.50 (m, 2H), 0.08 (s, 3H), 0.05 (s, 3H) ppm. ¹³C{¹H} **NMR** (100 MHz, CDCl₃): δ 157.6, 156.5, 142.2, 138.8, 136.2, 133.6, 129.3, 129.0, 127.8, 127.6, 119.5, 46.3, 24.5, 22.8, 21.1, -2.2, -2.7 ppm. **IR** (film): 3070, 3019, 2954, 2919, 2203, 2172, 1602, 1566, 1426, 1249, 1112, 907, 843, 731 cm⁻¹. **HRMS (ESI)**: calculated for C₂₄H₃₀NSi⁺ [M+H]⁺ 360.2142; found 360.2136.

2.4.34 4-(2-(dimethyl(phenyl)silyl)-1-(p-tolyl)ethyl)-2-fluoropyridine (5d)

Prepared according to general procedure from 4-cyano-2-fluoropyridine **1bd** (25 mg, 0.2 mmol, 1.0 equiv.), PhMe₂SiBpin (79 mg, 0.3 mmol, 1.5 equiv.), and 4-methylstyrene **3a** (36 mg, 0.3 mmol, 1.5 equiv.) in the presence of Ir(ppy)₃ (2 mol%, 2.6 mg, 004 mmol) and Rb₂CO₃ (0.2 mmol, 1.0 equiv.). Purification by preparative TLC (petroleum PE/EA = 20:1) to afford **5d** as colorless oil (32 mg, 45% yield). ¹H **NMR** (400 MHz, CDCl₃): δ 7.92 (d, *J* = 5.3 Hz, 1H), 7.33 – 7.30 (m, 2H), 7.29 – 7.23 (m, 3H), 6.98 (t, J = 1.1 Hz, 4H), 6.92 – 6.89 (m, 1H), 6.67 (s, 1H), 3.89 (dd, J = 9.1, 6.8 Hz, 1H), 2.22 (s, 3H), 1.57 – 1.47 (m, 2H) ppm. ¹³C{¹H} **NMR** (100 MHz, CDCl₃): δ 164.1 (d, *J*_{C-F} = 238.4 Hz), 162.4 (d, *J* = 7.3 Hz), 147.4 (d, *J*_{C-F} = 37.2 Hz), 141.0, 138.3, 136.7, 133.6, 129.5, 129.1, 127.9, 127.6, 120.7 (d, *J*_{C-F} = 3.9 Hz), 108.1 (d, *J*_{C-F} = 37.2 Hz), 46.3, 22.8, 21.1, -2.3, -2.8 ppm. ¹⁹F **NMR** (376 MHz, CDCl₃) δ - 68.6 ppm. **IR** (film): 3070, 3020, 2953, 2921, 1595, 1512, 1410, 1249, 1112, 838, 731. **HRMS (ESI)**: calculated for C₂₂H₂₅FNSi⁺ [M+H]⁺ 350.1735; found 350.1732.

2.4.35 4-(2-(dimethyl(phenyl)silyl)-1-(p-tolyl)ethyl)-3-methoxypyridine (5e)

Prepared according to general procedure from 3-methoxy-isonicotinonitrile **1be** (27 mg, 0.2 mmol, 1.0 equiv.), PhMe₂SiBpin (79 mg, 0.3 mmol, 1.5 equiv.), 4-methylstyrene **3a** (36 mg, 0.3 mmol, 1.5 equiv.) and anhydrous acetonitrile (1 mL) in the presence of Ir(ppy)₃ (2 mol%, 2.6 mg, 004 mmol) and Rb₂CO₃ (0.2 mmol, 1.0 equiv.). Purification by preparative TLC (petroleum PE/EA = 20:1) to afford **5e** as colorless oil (55 mg, 73% yield). ¹**H NMR** (400 MHz, CDCl₃): δ 8.04 – 7.99 (m, 2H), 7.35 – 7.28 (m, 2H), 7.27 – 7.15 (m, 3H), 7.06 – 7.03 (m, 3H), 6.95 (d, *J* = 7.8 Hz, 2H), 4.41 (t, *J* = 7.9 Hz, 1H), 3.73 (s, 3H), 2.20 (s, 3H), 1.47 (d, *J* = 8.0 Hz, 2H), 0.02 (s, 3H), -0.02 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 152.8, 144.0, 142.7, 141.6, 139.0, 135.9, 133.5, 133.1, 129.0, 128.8, 127.9, 127.7, 122.1, 55.9, 38.2, 22.1, 21.0, -2.3, -2.8 ppm. **IR** (film): 3067, 3019, 2953, 2921, 1972, 1588, 1511, 1494, 1415, 1293, 1112, 1025, 830, 731, 700 cm⁻¹. **HRMS (ESI)**: calculated for C₂₃H₂₈NOSi⁺ [M+H]⁺ 362.1935; found 362.1933.

2.4.36 4-(2-(dimethyl(phenyl)silyl)-1-(p-tolyl)ethyl)-3-methylpyridine (5f)

Prepared according to general procedure from 4-cyano-3-methylpyridine **1bf** (36 mg, 0.2 mmol, 1.0 equiv.), PhMe₂SiBpin (79 mg, 0.3 mmol, 1.5 equiv.), 4-methylstyrene **3a** (36 mg, 0.3 mmol, 1.5 equiv.) and anhydrous acetonitrile (1 mL) in the presence of Ir(ppy)₃ (2 mol%, 2.6 mg, 004 mmol) and Rb₂CO₃ (0.2 mmol, 1.0 equiv.). Purification by preparative TLC (petroleum PE/EA = 20:1) to afford **5f** as colorless oil (49 mg, 71% yield). ¹H **NMR** (400 MHz, CDCl₃): δ 8.31 (d, J = 5.3 Hz, 1H), 8.19 (s, 1H), 7.36 – 7.32 (m, 2H), 7.31 – 7.25 (m, 3H), 7.23 (d, J = 4.8 Hz, 1H), 6.98 (s, 4H), 4.08 (t, J = 7.8 Hz, 1H), 2.23 (s, 3H), 2.04 (s, 3H), 1.59 – 1.46 (m, 2H), 0.06 (s, 3H), 0.02 (s, 3H). ppm. ¹³C{¹H} **NMR** (100 MHz, CDCl₃): δ 153.5, 151.0, 147.7, 141.2, 138.6, 136.1, 134.0, 133.6, 131.1, 129.2, 129.1, 127.8, 121.5, 42.0, 23.6, 21.0, 16.5, -2.2, -2.5 ppm. **IR** (film): 3046, 3019, 2952, 2922, 1590, 1511, 1426, 1248, 1112, 904, 831, 700 cm⁻¹. **HRMS (ESI)**: calculated for C₂₃H₂₈NSi⁺ [M+H]⁺ 346.1986; found 346.1981.

2.4.37 4-(2-(dimethyl(phenyl)silyl)-1-(p-tolyl)ethyl)-3-fluoropyridine (5g)

Prepared according to general procedure from 4-cyano-3-fluoropyridine **1bg** (25 mg, 0.2 mmol, 1.0 equiv.), PhMe₂SiBpin (79 mg, 0.3 mmol, 1.5 equiv.), 4-methylstyrene **3a** (36 mg, 0.3 mmol, 1.5 equiv.) and anhydrous acetonitrile (1 mL) in the presence of Ir(ppy)₃ (2 mol%, 2.6 mg, 004 mmol) and Rb₂CO₃ (0.2 mmol, 1.0 equiv.). Purification by preparative TLC (petroleum PE/EA = 20:1) to afford **5g** as colorless oil (48 mg, 70% yield). ¹H **NMR** (400 MHz, CDCl₃): δ 8.28 – 8.21 (m, 2H), 7.41 – 7.36 (m, 2H), 7.35 – 7.23 (m, 3H), 7.22 – 7.18 (m, 1H), 7.12 (d, *J* = 8.1 Hz, 2H), 7.06 (d, *J* = 8.0 Hz, 2H), 4.36 (t, *J* = 8.0 Hz, 1H), 2.30 (s, 3H), 1.65 – 1.55 (m, 2H), 0.12 (s, 3H), 0.09 (s, 3H) ppm. ¹³C{¹H} **NMR** (100 MHz, CDCl₃): 157.3 (d, *J*_{C-F} = 254.3 Hz), 145.7 (d, *J*_{C-F} = 5.0 Hz), 142.73 (d, *J*_{C-F} = 12.2 Hz), 140.5, 138.4, 138.0 (d, *J*_{C-F} = 25.6 Hz), 136.6, 133.5, 129.3, 129.1, 127.9, 127.7, 122.9, 38.9, 22.0, 21.1, -2.4, -2.9 ppm. ¹⁹F **NMR** (376 MHz, CDCl₃) δ -131.9 ppm. **IR** (film): 3070, 3050, 2952, 2927, 2015, 1881, 1512, 1484, 1414, 1248, 1112, 904, 834, 700 cm⁻¹. **HRMS (ESI)**: calculated for C₂₂H₂₅FNSi⁺ [M+H]⁺ 350.1735; found 350.1730.

2.4.38 3-chloro-4-(2-(dimethyl(phenyl)silyl)-1-(p-tolyl)ethyl)pyridine (5h)

Prepared according to general procedure from 3-Chloro-4-cyanopyridine **1bh** (28 mg, 0.2 mmol, 1.0 equiv.), PhMe₂SiBpin (79 mg, 0.3 mmol, 1.5 equiv.), 4-methylstyrene **3a** (36 mg, 0.3 mmol, 1.5 equiv.) and anhydrous acetonitrile (1 mL) in the presence of $Ir(ppy)_3$ (2 mol%, 2.6 mg, 004 mmol) and Rb₂CO₃ (0.2 mmol, 1.0 equiv.). Purification by preparative TLC (petroleum PE/EA = 20:1) to afford **5h** as colorless oil (35 mg, 49% yield). ¹**H NMR** (400 MHz, CDCl₃): δ 8.43 (s, 1H), 8.30 (d, *J* = 5.0 Hz, 1H), 7.42 – 7.37 (m, 2H), 7.35 – 7.29 (m, 3H), 7.23 (d, J = 5.1 Hz, 1H), 7.13 (d, *J* = 8.2 Hz, 2H), 7.06 (d, *J* = 7.8 Hz, 2H), 4.53 (dd, J = 8.8, 7.0 Hz, 1H), 2.30 (s, 3H), 1.62 – 1.53 (m, 2H), 0.15 (s, 3H), 0.10 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 153.1, 149.5, 147.8, 140.0, 138.5, 136.6, 133.5, 131.4, 129.3, 129.1, 128.0, 127.8, 123.1, 42.0, 22.8, 21.1, -2.3, -2.8 ppm. **IR** (film): 3047, 3020, 2953, 2922, 1678, 1580, 1512, 1426, 1399, 1249, 1112, 1034, 903, 835, 700 cm⁻¹. **HRMS (ESI)**: calculated for C₂₂H₂₅NCISi⁺ [M+H]⁺ 366.1439; found 366.1434.

2.4.39 4-(2-(dimethyl(phenyl)silyl)-1-(p-tolyl)ethyl)-3-(3,4,5-trimethoxyphenyl)pyridine (5i)

Prepared according to general procedure from 3-(3,4,5-trimethoxyphenyl)-4-cyanopyridine **1bi** (54 mg, 0.2 mmol, 1.0 equiv.), PhMe₂SiBpin (79 mg, 0.3 mmol, 1.5 equiv.), 4-methylstyrene **3a** (36 mg, 0.3 mmol, 1.5 equiv.) and anhydrous acetonitrile (1 mL) in the presence of $Ir(ppy)_3$ (2 mol%, 2.6 mg, 004 mmol) and Rb₂CO₃ (0.2 mmol, 1.0 equiv.). Purification by preparative TLC (petroleum PE/EA = 20:1) to afford **5i** as colorless oil (50 mg, 51% yield). ¹H **NMR** (400 MHz, CDCl₃): δ 8.53 (d, *J* = 5.3 Hz, 1H), 8.38 (s, 1H), 7.46 (d, J = 5.2 Hz, 1H), 7.38 – 7.31 (m, 1H), 7.29 (d, *J* = 3.5 Hz, 4H), 7.01 (d, *J* = 7.9 Hz, 2H), 6.86 – 6.83 (m, 2H), 6.26 (s, 1H), 4.23 (dd, *J* = 8.9, 6.8 Hz, 1H), 3.94 (s, 3H), 3.72 (s, 6H), 2.29 (s, 3H), 1.62 – 1.47 (m, 2H), 0.00 (s, 3H), -0.02 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 153.0, 152.9, 150.1, 148.8, 141.8, 138.5, 137.5, 137.3, 135.9, 133.4, 133.3, 129.0, 129.0, 127.9, 127.7, 122.0,

106.8, 61.0, 56.0, 42.1, 24.6, 21.0, -2.2, -2.8 ppm. **IR** (film): 3066, 3001, 2937, 2836, 1583, 1510, 1479, 1412, 1347, 1238, 1238, 1172, 1112, 1007, 907, 834, 731 cm⁻¹. **HRMS (ESI)**: calculated for $C_{31}H_{36}NO_3Si^+$ [M+H]⁺ 498.2459; found 498.2449.

2.4.40 4-(2-(dimethyl(phenyl)silyl)-1-(p-tolyl)ethyl)-3-(3-(methylthio)phenyl)pyridine (5j)

Prepared according to general procedure from 3-(3-(methylthio)phenyl)-4-cyanopyridine **1bj** (45 mg, 0.2 mmol, 1.0 equiv.), PhMe₂SiBpin (79 mg, 0.3 mmol, 1.5 equiv.), 4-methylstyrene **3a** (36 mg, 0.3 mmol, 1.5 equiv.) and anhydrous acetonitrile (1 mL) in the presence of Ir(ppy)₃ (2 mol%, 2.6 mg, 004 mmol) and Rb₂CO₃ (0.2 mmol, 1.0 equiv.). Purification by preparative TLC (petroleum PE/EA = 20:1) to afford **5j** as colorless oil (53 mg, 59% yield). ¹H **NMR** (400 MHz, CDCl₃): δ 8.47 (s, 1H), 8.32 (s, 1H), 7.39 (d, J = 5.3 Hz, 1H), 7.33 – 7.28 (m, 1H), 7.27 – 7.25 (m, 3H), 7.24 – 7.22 (m, 3H), 6.98 (d, J = 7.9 Hz, 2H), 6.89 (s, 1H), 6.82 (t, J = 6.4 Hz, 3H), 4.17 (dd, J = 9.2, 6.4 Hz, 1H), 2.36 (s, 3H), 2.27 (s, 3H), 1.59 – 1.53 (m, 1H), 1.46 – 1.40 (m, 1H), -0.05 (s, 3H), -0.06 (s, 3H). ¹³C{¹H} **NMR** (100 MHz, CDCl₃): δ 153.3, 150.1, 148.9, 141.5, 138.8, 138.6, 138.5, 136.7, 136.1, 133.4, 129.1, 129.0, 128.7, 128.6, 127.8, 127.3, 126.2, 125.8, 122.1, 41.9, 24.4, 21.0, 15.5, -2.3, -2.8 ppm. **IR** (film): 3070, 3019, 2953, 2920, 2184, 1588, 1512, 1426, 1112, 900, 837, 700 cm⁻¹. **HRMS (ESI)**: calculated for C₂₉H₃₂SNSi⁺ [M+H]⁺ 454.2019; found 454.2013.

2.4.41 3-(4-(2-(dimethyl(phenyl)silyl)-1-(p-tolyl)ethyl)pyridin-3-yl)benzonitrile (5k)

Prepared according to general procedure from 3-(3-cyanophenyl)-4-cyanopyridine **1bk** (41 mg, 0.2 mmol, 1.0 equiv.), PhMe₂SiBpin (79 mg, 0.3 mmol, 1.5 equiv.), 4-methylstyrene **3a** (36 mg, 0.3 mmol, 1.5 equiv.) and anhydrous acetonitrile (1 mL) in the presence of $Ir(ppy)_3$ (2 mol%, 2.6 mg, 004 mmol) and Rb₂CO₃ (0.2 mmol, 1.0 equiv.). Purification by preparative TLC (petroleum PE/EA = 20:1) to afford **5k** as colorless oil (65 mg, 76% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.54 (d, *J* = 5.3 Hz, 1H), 8.24 (s,

1H), 7.62 (dt, J = 7.7, 1.4 Hz, 1H), 7.47 (d, J = 5.2 Hz, 1H), 7.39 – 7.35 (m, 1H), 7.35 – 7.32 (m, 1H), 7.29 – 7.22 (m, 4H), 7.20 – 7.14 (m, 2H), 6.97 (d, J = 7.8 Hz, 2H), 6.71 – 6.68 (m, 2H), 3.97 – 3.91 (m, 1H), 2.26 (s, 3H), 1.61 – 1.52 (m, 1H), 1.42 – 1.37 (m, 1H), -0.01 (s, 3H), -0.07 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 153.2, 149.8, 149.6, 140.9, 139.0, 138.0, 136.4, 135.0, 134.0, 133.4, 133.0, 131.3, 129.3, 129.2, 129.0, 127.9, 127.6, 122.2, 118.4, 112.6, 42.3, 24.3, 21.0, -2.1, -2.7 ppm. IR (film): 3060, 3028, 2254, 1589, 1249, 1116, 900, 724, 649 cm⁻¹. HRMS (ESI): calculated for C₂₉H₂₉N₂Si⁺ [M+H]⁺ 433.2095; found 433.2087.

2.4.42 ethyl-4-(4-(2-(dimethyl(phenyl)silyl)-1-(p-tolyl)ethyl)pyridin-3-yl)benzoate (5l)

Prepared according to general procedure from ethyl 4-(4-cyanopyridin-3-yl)benzoate **1bi** (51 mg, 0.2 mmol, 1.0 equiv.), PhMe₂SiBpin (79 mg, 0.3 mmol, 1.5 equiv.), 4-methylstyrene **3a** (36 mg, 0.3 mmol, 1.5 equiv.) and anhydrous acetonitrile (1 mL) in the presence of Ir(ppy)₃ (2 mol%, 2.6 mg, 004 mmol) and Rb₂CO₃ (0.2 mmol, 1.0 equiv.). Purification by preparative TLC (petroleum PE/EA = 20:1) to afford **5i** as colorless oil (62 mg, 62% yield). ¹H **NMR** (400 MHz, CDCl₃): δ 8.66 (d, *J* = 5.0 Hz, 1H), 8.46 (s, 1H), 8.16 (d, *J* = 8.1 Hz, 2H), 7.59 (d, *J* = 5.2 Hz, 1H), 7.52 – 7.46 (m, 1H), 7.44 – 7.38 (m, 4H), 7.27 (d, J = 8.1 Hz, 2H), 7.14 (d, *J* = 7.9 Hz, 2H), 6.96 (d, *J* = 7.9 Hz, 2H), 4.61 (q, J = 7.1 Hz, 2H), 4.31 (dd, J = 9.5, 6.1 Hz, 1H), 2.43 (s, 3H), 1.81 – 1.74 (m, 1H), 1.62 (q, J = 7.3 Hz, 4H), 0.15 (s, 3H), 0.08 (s, 3H). ¹³C{¹H} **NMR** (100 MHz, CDCl₃): δ 166.4, 153.3, 149.9, 149.3, 142.5, 141.2, 138.3, 136.2, 136.0, 133.5, 129.7, 129.7, 129.5, 129.2, 129.0, 127.8, 127.7, 122.1, 61.2, 41.8, 24.4, 21.0, 14.5, -2.2, -2.8 ppm. **IR** (film): 3070, 3046, 2980, 2954, 2362, 2157, 1981, 1718, 1609, 1585, 1230, 1178, 1111, 1024, 838, 769, 709 cm⁻¹. **HRMS (ESI)**: calculated for C₃₁H₃₄NO₂Si⁺ [M+H]⁺ 480.2353; found 480.2345.

2.4.43 4-(2-(dimethyl(phenyl)silyl)-1-(p-tolyl)ethyl)-3-(thiophen-2-yl)pyridine (5m)

Prepared according to general procedure from 3-(thiophen-2-yl)isonicotinonitrile **1bm** (37 mg, 0.2 mmol, 1.0 equiv.), PhMe₂SiBpin (79 mg, 0.3 mmol, 1.5 equiv.), 4-methylstyrene **3a** (36 mg, 0.3 mmol, 1.5 equiv.) and anhydrous acetonitrile (1 mL) in the presence of $Ir(ppy)_3$ (2 mol%, 2.6 mg, 004 mmol) and Rb₂CO₃ (0.2 mmol, 1.0 equiv.). Purification by preparative TLC (petroleum PE/EA = 20:1) to afford **5m** as colorless oil (42 mg, 51% yield). ¹**H NMR** (400 MHz, CDCl₃): δ 1 8.38 – 8.33 (m, 2H), 7.30 (dd, *J* = 5.1, 1.2 Hz, 1H), 7.26 – 7.22 (m, 2H), 7.22 – 7.19 (m, 3H), 7.17 (dt, *J* = 7.0, 1.4 Hz, 1H), 6.96 (dd, *J* = 5.2, 3.5 Hz, 1H), 6.92 (d, J = 7.9 Hz, 2H), 6.86 – 6.83 (m, 2H), 6.71 (dd, J = 3.5, 1.2 Hz, 1H), 4.42 (dd, J = 9.4, 6.3 Hz, 1H), 2.19 (s, 3H), 1.56 – 1.50 (m, 1H), 1.38 – 1.33 (m, 1H), -0.09 (s, 3H), -0.11 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 154.8, 151.2, 149.3, 141.2, 138.7, 138.1, 136.2, 133.5, 129.6, 129.2, 128.9, 128.2, 127.8, 127.4, 126.5, 122.2, 41.6, 24.3, 21.1, -2.3, -2.8 ppm. **IR** (film): 3072, 3044, 3019, 2924, 2203, 1585, 1426, 1249, 1112, 900, 836, 700 cm⁻¹. **HRMS (ESI)**: calculated for C₂₆H₂₈SNSi⁺ [M+H]⁺ 414.1706; found 414.1702.

2.4.44 4-(2-(dimethyl(phenyl)silyl)-1-(p-tolyl)ethyl)quinoline (5n)

Prepared according to general procedure from quinoline-4-carbonitrile **1bn** (31 mg, 0.2 mmol, 1.0 equiv.), PhMe₂SiBpin (79 mg, 0.3 mmol, 1.5 equiv.), 4-methylstyrene **3a** (36 mg, 0.3 mmol, 1.5 equiv.) and anhydrous acetonitrile (1 mL) in the presence of Ir(ppy)₃ (2 mol%, 2.6 mg, 004 mmol) and Rb₂CO₃ (0.2 mmol, 1.0 equiv.). Purification by preparative TLC (petroleum PE/EA = 20:1) to afford **5n** as colorless oil (24 mg, 32% yield). ¹H **NMR** (400 MHz, CDCl₃): δ 8.78 (d, J = 4.6 Hz, 1H), 8.07 (dd, J = 8.5, 1.3 Hz, 1H), 7.96 – 7.91 (m, 1H), 7.66 – 7.60 (m, 1H), 7.48 – 7.38 (m, 3H), 7.37 – 7.26 (m, 4H), 7.16 – 7.11 (m, 2H), 7.05 (d, J = 7.9 Hz, 2H), 4.82 – 4.77 (m, 1H), 2.28 (s, 3H), 1.76 – 1.66 (m, 2H), 0.10 (s, 3H), 0.07 (s, 3H) ppm. ¹³C{¹H} **NMR** (100 MHz, CDCl₃): δ 152.7, 150.2, 148.6, 141.4, 138.6, 136.3, 133.7, 130.3, 129.3, 129.1, 128.9, 127.9, 127.8, 126.9, 126.4, 123.5, 119.2, 41.3, 24.1, 21.1, - 2.2, -2.7 ppm. **IR** (film): 3092, 3020, 2950, 2924, 2362, 2176, 2011, 1587, 1510, 1426, 1249, 1112, 838, 734 cm⁻¹. **HRMS (ESI)**: calculated for C₂₆H₂₈NSi⁺ [M+H]⁺ 382.1986; found 382.1982.

2.4.45 2-(2-(dimethyl(phenyl)silyl)-1-(p-tolyl)ethyl)benzonitrile (50)

Prepared according to general procedure from phthalonitrile **1bo** (26 mg, 0.2 mmol, 1.0 equiv.), PhMe₂SiBpin (79 mg, 0.3 mmol, 1.5 equiv.), 4-methylstyrene **3a** (36 mg, 0.3 mmol, 1.5 equiv.) and anhydrous acetonitrile (1 mL) in the presence of $Ir(ppy)_3$ (2 mol%, 2.6 mg, 004 mmol) and Rb₂CO₃ (0.2 mmol, 1.0 equiv.). Purification by preparative TLC (petroleum PE/EA = 20:1) to afford **5o** as colorless oil (46 mg, 66% yield). ¹H NMR (400 MHz, CDCl₃): $\delta\delta$ 7.45 – 7.37 (m, 2H), 7.36 – 7.29 (m, 3H), 7.23 (qd, J = 6.1, 4.3 Hz, 3H), 7.16 – 7.08 (m, 3H), 6.99 (dd, J = 8.2, 2.3 Hz, 2H), 4.52 – 4.46 (m, 1H), 2.21 (s, 3H), 1.67 – 1.50 (m, 2H), 0.09 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 150.9, 141.5, 138.6, 136.3, 133.5, 133.0, 132.9, 129.3, 129.0, 127.8, 127.6, 127.6, 126.5, 118.4, 111.9, 44.6, 23.6, 21.0, -2.4, -2.9 ppm. IR (film): 3072, 3052, 2954, 2222, 1598, 1511, 1426, 1249, 1111, 904, 728 cm⁻¹. HRMS (ESI): calculated for C₂₄H₂₆NSi⁺ [M+H]⁺ 356.1829; found 356.1821.

2.4.46 4-(2-(dimethyl(phenyl)silyl)-1-(p-tolyl)ethyl)-2,5-dimethylbenzonitrile (5p)

Prepared according to general procedure from 2,5-dimethylterephthalonitrile **1bp** (31 mg, 0.2 mmol, 1.0 equiv.), PhMe₂SiBpin (79 mg, 0.3 mmol, 1.5 equiv.), 4-methylstyrene **3a** (36 mg, 0.3 mmol, 1.5 equiv.) and anhydrous acetonitrile (1 mL) in the presence of Ir(ppy)₃ (2 mol%, 2.6 mg, 004 mmol) and Rb₂CO₃ (0.2 mmol, 1.0 equiv.). Purification by preparative TLC (petroleum PE/EA = 20:1) to afford **5p** as colorless oil (39 mg, 52% yield). ¹H **NMR** (400 MHz, CDCl₃): δ 7.33 (dd, *J* = 4.8, 2.6 Hz, 2H), 7.31 – 7.24 (m, 3H), 7.22 – 7.19 (m, 2H), 6.99 (d, *J* = 4.2 Hz, 4H), 4.16 – 4.10 (m, 1H), 2.38 (s, 3H), 2.25 (s, 3H), 2.06 (s, 3H), 1.57 – 1.50 (m, 2H), 0.09 (s, 3H), 0.04 (s, 3H) ppm. ¹³C{¹H} **NMR** (100 MHz, CDCl₃): δ 149.9, 141.9, 139.3, 138.7, 136.0, 134.0, 133.9, 133.5, 129.2, 129.0, 129.0, 127.8, 127.7, 118.6, 109.9, 42.4, 24.2, 21.0, 20.2, 19.1, -2.2, -2.7 ppm. **IR** (film): 3068, 3019, 2952, 2923, 2362, 2220, 1611, 1529, 1426, 1248, 1112, 861, 731 cm⁻¹. **HRMS (ESI)**: calculated for C₂₆H₃₀NSi⁺ [M+H]⁺ 384.2142; found 384.2140.

2.4.47 2,5-dichloro-4-(2-(dimethyl(phenyl)silyl)-1-(p-tolyl)ethyl)benzonitrile (5q)

Prepared according to general procedure from 2,5-dichloroterephthalonitrile **1bq** (40 mg, 0.2 mmol, 1.0 equiv.), PhMe₂SiBpin (79 mg, 0.3 mmol, 1.5 equiv.), 4-methylstyrene **3a** (36 mg, 0.3 mmol, 1.5 equiv.) and anhydrous acetonitrile (1 mL) in the presence of $Ir(ppy)_3$ (2 mol%, 2.6 mg, 004 mmol) and Rb₂CO₃ (0.2 mmol, 1.0 equiv.). Purification by preparative TLC (petroleum PE/EA = 20:1) to afford **5q** as colorless oil (25 mg, 30% yield). ¹H **NMR** (400 MHz, CDCl₃): δ 7.44 (s, 1H), 7.32 – 7.28 (m, 3H), 7.27 – 7.21 (m, 3H), 7.03 (d, J = 5.3 Hz, 4H), 4.50 (t, J = 7.9 Hz, 1H), 2.25 (s, 3H), 1.54 (s, 1H), 1.47 – 1.42 (m, 1H), 0.13 (s, 3H), 0.06 (s, 3H) ppm. ¹³C{¹H} **NMR** (100 MHz, CDCl₃): δ 151.7, 139.7, 138.1, 136.9, 135.2, 134.3, 133.5, 132.2, 130.1, 129.5, 129.1, 127.8, 115.0, 111.8, 42.7, 23.3, 21.1, -2.2, -3.1 ppm. **IR** (film): 3072, 3026, 2954, 2235, 1589, 1512, 1467, 1250, 1112, 1084, 903, 835, 700 cm⁻¹. **HRMS (ESI)**: calculated for C₂₄H₂₄Cl₂NSi⁺ [M+H]⁺ 424.1050; found 424.1052.

2.4.48 3-(2-(dimethyl(phenyl)silyl)-1-(p-tolyl)ethyl)-2-naphthonitrile (5r)

Prepared according to general procedure from [1,1'-biphenyl]-4,4'-dicarbonitrile **1br** (41 mg, 0.2 mmol, 1.0 equiv.), PhMe₂SiBpin (79 mg, 0.3 mmol, 1.5 equiv.), 4-methylstyrene **3a** (36 mg, 0.3 mmol, 1.5 equiv.) and anhydrous acetonitrile (1 mL) in the presence of Ir(ppy)₃ (2 mol%, 2.6 mg, 004 mmol) and Rb₂CO₃ (0.2 mmol, 1.0 equiv.). Purification by preparative TLC (petroleum PE/EA = 20:1) to afford **5r** as colorless oil (51 mg, 60% yield). ¹**H NMR** (400 MHz, CDCl₃): δ 7.70 (d, J = 8.3 Hz, 2H), 7.63 (d, J = 8.5 Hz, 2H), 7.48 – 7.42 (m, 4H), 7.39 – 7.30 (m, 5H), 7.17 (dd, J = 8.2, 2.2 Hz, 2H), 7.11 – 7.06 (m, 2H), 4.13 – 4.06 (m, 1H), 2.32 (s, 3H), 1.71 – 1.66 (m, 2H), 0.12 (s, 3H), 0.10 (s, 3H) ppm. ¹³C{¹H} **NMR** (100 MHz, CDCl₃): δ 148.0, 145.5, 143.4, 139.0, 136.7, 135.8, 133.6, 132.6, 129.2, 128.9, 128.3, 127.8, 127.5, 127.5, 127.2, 119.1, 110.6, 46.6, 23.5, 21.0, -2.4, -2.6 ppm. **IR** (film): 3060, 3032, 2253,

1067, 1491, 1249, 1114, 903, 840, 700. **HRMS (ESI)**: calculated for C₃₀H₃₀NSi⁺ [M+H]⁺ 432.2142; found 432.2139.

2.4.49 4-(1-(p-tolyl)-2-(triethylsilyl)ethyl)pyridine (5s)

Prepared according to general procedure from 4-cyanopyridine **1b** (21 mg, 0.2 mmol, 1.0 equiv.), Et₃SiBpin (73 mg, 0.3 mmol, 1.5 equiv.), 4-methylstyrene **3a** (36 mg, 0.3 mmol, 1.5 equiv.) and anhydrous acetonitrile (1 mL) in the presence of $Ir(ppy)_3$ (2 mol%, 2.6 mg, 004 mmol) and Rb₂CO₃ (0.2 mmol, 1.0 equiv.). Purification by preparative TLC (petroleum PE/EA = 20:1) to afford **5s** as colorless oil (45 mg, 73% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.46 (d, J = 5.3 Hz, 2H), 7.22 – 7.18 (m, 2H), 7.16 (d, J = 8.2 Hz, 2H), 7.08 (d, J = 8.0 Hz, 2H), 3.99 (t, J = 7.8 Hz, 1H), 2.30 (s, 3H), 1.42 – 1.33 (m, 2H), 0.84 (t, J = 7.9 Hz, 9H), 0.39 – 0.33 (m, 6H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): 156.6, 149.8, 142.3, 136.3, 129.3, 127.5, 122.8, 46.3, 21.0, 18.4, 7.4, 3.5 ppm. HRMS (ESI): calculated for C₂₀H₃₀NSi⁺ [M+H]⁺ 312.2142; found 312.2133.

2.4.50 4-(2-(benzyldimethylsilyl)-1-(p-tolyl)ethyl)benzonitrile (5t)

Prepared according to general procedure from 1,4-dicyanobenzene **1a** (26 mg, 0.2 mmol, 1.0 equiv.), Me₂BnSiBpin (83 mg, 0.3 mmol, 1.5 equiv.), 4-methylstyrene **3a** (36 mg, 0.3 mmol, 1.5 equiv.) and anhydrous acetonitrile (1 mL) in the presence of $Ir(ppy)_3$ (2 mol%, 2.6 mg, 004 mmol) and Rb₂CO₃ (0.2 mmol, 1.0 equiv.). Purification by preparative TLC (petroleum PE/EA = 20:1) to afford **5t** as colorless oil (47 mg, 69% yield). ¹H NMR (400 MHz, CDCl₃): 7.75 – 7.66 (m, 2H), 7.51 – 7.47 (m, 2H),

7.42 – 7.36 (m, 2H), 7.28 – 7.22 (m, 5H), 7.13 – 7.07 (m, 2H), 4.20 (t, J = 8.0 Hz, 1H), 2.46 (s, 3H), 2.13 (s, 2H), 1.65 – 1.58 (m, 1H), 1.54 – 1.49 (m, 1H), -0.04 (s, 6H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): 153.0, 142.1, 139.9, 136.4, 132.3, 129.4, 128.3, 128.2, 128.2, 127.4, 124.2, 119.1, 109.8, 46.9, 26.0, 22.2, 21.0, -2.9 ppm. HRMS (ESI): calculated for $C_{25}H_{28}NSi^{+}$ [M+H]⁺ 370.1986; found 370.1998.

2.4.51 4-(2-(tert-butyldimethylsilyl)-1-(p-tolyl)ethyl)benzonitrile (5u)

Prepared according to general procedure from 1,4-dicyanobenzene **1a** (26 mg, 0.2 mmol, 1.0 equiv.), Me₂^tBuSiBpin (73 mg, 0.3 mmol, 1.5 equiv.), 4-methylstyrene **3a** (36 mg, 0.3 mmol, 1.5 equiv.) and anhydrous acetonitrile (1 mL) in the presence of Ir(ppy)₃ (2 mol%, 2.6 mg, 004 mmol) and Rb₂CO₃ (0.2 mmol, 1.0 equiv.). Purification by preparative TLC (petroleum PE/EA = 20:1) to afford **5u** as colorless oil (43 mg, 65% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.69 – 7.61 (m, 2H), 7.51 – 7.48 (m, 2H), 7.25 (d, J = 8.1 Hz, 2H), 7.20 (d, J = 8.0 Hz, 2H), 4.18 (t, J = 7.9 Hz, 1H), 2.41 (s, 3H), 1.54 – 1.44 (m, 2H), 0.97 (s, 9H), -0.16 (s, 3H), -0.20 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 153.3, 142.5, 136.3, 132.4, 129.4, 128.3, 127.4, 119.1, 109.8, 47.3, 26.5, 21.0, 19.3, 16.7, -5.7, -5.8 ppm. HRMS (ESI): calculated for C₂₂H₃₀NSi⁺ [M+H]⁺ 336.2142; found 336.2132.

2.4.52 4-(2-(di-tert-butylsilyl)-1-(p-tolyl)ethyl)benzonitrile (5v)

Prepared according to general procedure from 1,4-dicyanobenzene **1a** (26 mg, 0.2 mmol, 1.0 equiv.), H'Bu₂SiBpin (81 mg, 0.3 mmol, 1.5 equiv.), 4-methylstyrene **3a** (36 mg, 0.3 mmol, 1.5 equiv.)

and anhydrous acetonitrile (1 mL) in the presence of Ir(ppy)₃ (2 mol%, 2.6 mg, 004 mmol) and Rb₂CO₃ (0.2 mmol, 1.0 equiv.). Purification by preparative TLC (petroleum PE/EA = 20:1) to afford **5v** as colorless oil (53 mg, 70% yield). ¹H **NMR** (400 MHz, CDCI₃): δ 7.56 (dd, J = 8.2, 1.4 Hz, 2H), 7.39 (dd, J = 8.4, 2.0 Hz, 2H), 7.16 (dd, J = 8.3, 2.2 Hz, 2H), 7.11 (dd, J = 8.1, 1.8 Hz, 2H), 4.19 (t, J = 7.9 Hz, 1H), 3.18 (q, J = 2.7 Hz, 1H), 2.31 (s, 3H), 1.47 – 1.37 (m, 2H), 0.98 (s, 9H), 0.96 (s, 9H) ppm. ¹³C{¹H} **NMR** (100 MHz, CDCI₃): δ 152.6, 142.3, 136.2, 132.3, 129.3, 128.7, 127.6, 119.1, 109.8, 48.7, 28.8, 28.8, 21.1, 18.9, 18.8, 16.4 ppm. **HRMS (ESI)**: calculated for C₂₄H₃₄NSi⁺ [M+H]⁺ 364.2455; found 364.2444.

2.4.53 1-(3-(1-(dimethyl(phenyl)silyl)-2-(pyridin-4-yl)propan-2-yl)phenyl) 4-methyl bicyclo[2.2.2]octane-1,4-dicarboxylate (**5**w)

Prepared according to general procedure from 4-cyanopyridine **1b** (21 mg, 0.2 mmol, 1.0 equiv.), PhMe₂SiBpin (79 mg, 0.3 mmol, 1.5 equiv.), 1-methyl 4-(3-(prop-1-en-2-yl)phenyl) bicyclo[2.2.2]octane-1,4-dicarboxylate (99 mg, 0.3 mmol, 1.5 equiv.) and anhydrous acetonitrile (1 mL) in the presence of Ir(ppy)₃ (2 mol%, 2.6 mg, 004 mmol) and Rb₂CO₃ (0.2 mmol, 1.0 equiv.). Purification by preparative TLC (petroleum PE/EA = 20:1) to afford **6w** as colorless oil (54 mg, 50% yield). ¹H **NMR** (400 MHz, CDCl₃): δ 8.40 (d, J = 5.8 Hz, 2H), 7.38 – 7.33 (m, 2H), 7.32 – 7.24 (m, 3H), 7.20 (t, J = 7.9 Hz, 1H), 7.08 – 7.05 (m, 2H), 6.93 (d, J = 8.5 Hz, 1H), 6.86 – 6.80 (m, 2H), 3.64 (s, 3H), 1.98 – 1.91 (m, 6H), 1.89 – 1.82 (m, 6H), 1.75 (s, 2H), 1.52 (s, 3H), 0.01 (s, 3H), -0.02 (s, 3H) ppm. ¹³C{¹H} **NMR** (100 MHz, CDCl₃): δ 177.7, 175.9, 160.1, 150.9, 150.9, 149.5, 139.5, 133.5, 129.1, 128.9, 127.8, 124.7, 122.2, 120.1, 119.4, 51.8, 45.3, 39.1, 38.7, 30.6, 29.6, 27.8, 27.8, -1.4, -1.5 ppm. **IR** (film): 3072, 2953, 2873, 2253, 1724, 1595, 1427, 1250, 1200, 1112, 904, 837, 649 cm⁻¹. **HRMS (ESI)**: calculated for C₃₃H₃₉NO₄Si⁺ [M+H]⁺ 542.2721; found 542.2714. Spectra data are consistent with literature data.^[1]

2.4.54 (1S,2R,4S)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl 4-(1-(dimethyl(phenyl)silyl)-2-(pyridin-4yl)propan-2-yl)benzoate (**5x**)

Prepared according to general procedure from 4-cyanopyridine **1b** (21 mg, 0.2 mmol, 1.0 equiv.), PhMe₂SiBpin (79 mg, 0.3 mmol, 1.5 equiv.), (1S,2R,4S)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl 4- (prop-1-en-2-yl)benzoate (90 mg, 0.3 mmol, 1.5 equiv.) and anhydrous acetonitrile (1 mL) in the presence of Ir(ppy)₃ (2 mol%, 2.6 mg, 004 mmol) and Rb₂CO₃ (0.2 mmol, 1.0 equiv.). Purification by preparative TLC (petroleum PE/EA = 20:1) to afford **5x** as colorless oil (46 mg, 45% yield). ¹**H NMR** (400 MHz, CDCl₃): δ 8.42 (d, J = 5.8 Hz, 2H), 7.89 (d, J = 8.3 Hz, 2H), 7.39 – 7.24 (m, 5H), 7.23 – 7.18 (m, 2H), 7.09 – 7.04 (m, 2H), 5.12 – 5.06 (m, 1H), 2.50 – 2.41 (m, 1H), 2.13 – 2.05 (m, 1H), 1.82 (d, J = 3.9 Hz, 2H), 1.72 (t, J = 4.5 Hz, 1H), 1.58 (s, 3H), 1.43 – 1.25 (m, 3H), 1.10 (dd, J = 13.8, 3.5 Hz, 1H), 0.96 (s, 3H), 0.91 – 0.88 (m, 6H), 0.02 (s, 3H), -0.04 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 166.6, 159.9, 154.2, 149.6, 139.2, 133.4, 129.5, 129.0, 128.9, 127.9, 127.2, 122.2, 80.5, 49.2, 48.0, 45.6, 45.1, 37.0, 30.5, 29.6, 28.2, 27.5, 19.8, 19.0, 13.7, -1.3, -1.3 ppm. IR (film): 3072, 2954, 2878, 2253, 1712, 1593, 1407, 1426, 1281, 1113, 1016, 904, 700, 649 cm⁻¹. HRMS (ESI): calculated for C₃₃H₄₁NO₂Si⁺ [M+H]⁺ 512.2979; found 512.2976. Spectra data are consistent with literature data.^[1]

2.4.55 (5-(benzoyloxy)-2-oxohexahydro-2H-cyclopenta[b]furan-4-yl)methyl 4-(1-(dimethyl(phenyl)silyl)-2-(pyridin-4-yl)propan-2-yl)benzoate (5y)

Prepared according to general procedure from 4-cyanopyridine **1b** (21 mg, 0.2 mmol, 1.0 equiv.), PhMe₂SiBpin (79 mg, 0.3 mmol, 1.5 equiv.), ((3aR,4S,5R,6aS)-5-(benzoyloxy)-2-oxohexahydro-2Hcyclopenta[b]furan-4-yl)methyl 4-(prop-1-en-2-yl)benzoate (157 mg, 0.3 mmol, 1.5 equiv.) and anhydrous acetonitrile (1 mL) in the presence of Ir(ppy)₃ (2 mol%, 2.6 mg, 004 mmol) and Rb₂CO₃ (0.2 mmol, 1.0 equiv.). Purification by preparative TLC (petroleum PE/EA = 20:1) to afford **5y** as colorless oil (40 mg, 31% yield). ¹H **NMR** (400 MHz, CDCl₃): δ 8.44 (d, J = 5.3 Hz, 2H), 8.06 – 7.94 (m, 2H), 7.89 – 7.84 (m, 2H), 7.57 – 7.51 (m, 1H), 7.42 (t, J = 7.7 Hz, 2H), 7.36 – 7.26 (m, 5H), 7.24 – 7.20 (m, 2H), 7.08 – 7.04 (m, 2H), 5.48 – 5.43 (m, 1H), 5.14 – 5.08 (m, 1H), 4.42 – 4.32 (m, 2H), 2.99 – 2.86 (m, 2H), 2.66 – 2.55 (m, 3H), 2.42 – 2.36 (m, 1H), 1.81 (s, 2H), 1.58 (s, 3H), 0.02 (s, 3H), 0.00 (s, 3H) ppm. ¹³C{¹H} **NMR** (100 MHz, CDCl₃): δ 176.2, 166.1, 166.0, 159.6, 155.1, 149.6, 139.1, 133.4, 129.8, 129.7, 129.6, 129.5, 129.0, 128.6, 128.6, 127.9, 127.4, 122.2, 84.0, 77.4, 64.5, 51.7, 45.7, 40.7, 38.3, 35.8, 30.5, 29.5, -1.3, -1.4 ppm. **IR** (film): 3060, 3020, 2298, 2254, 1773, 1719, 1269, 1108, 1269, 1194, 1108, 903, 734, 649 cm⁻¹. **HRMS (ESI)**: calculated for C₃₈H₄₀NO₆Si⁺ [M+H]⁺ 634.2619; found 634.2607. Spectra data are consistent with literature data.^[1] 2.4.56 (3-benzhydrylazetidin-1-yl)methyl 4-(1-(dimethyl(phenyl)silyl)-2-(pyridin-4-yl)propan-2yl)benzoate (**5z**)

Prepared according to general procedure from 4-cyanopyridine **1b** (21 mg, 0.2 mmol, 1.0 equiv.), PhMe₂SiBpin (79 mg, 0.3 mmol, 1.5 equiv.), (1-benzhydrylazetidin-3-yl)methyl 4-(prop-1-en-2yl)benzoate (119 mg, 0.3 mmol, 1.5 equiv.) and anhydrous acetonitrile (1 mL) in the presence of Ir(ppy)₃ (2 mol%, 2.6 mg, 004 mmol) and Rb₂CO₃ (0.2 mmol, 1.0 equiv.). Purification by preparative TLC (petroleum PE/EA = 20:1) to afford **5z** as colorless oil (41 mg, 34% yield). ¹H **NMR** (400 MHz, CDCl₃): δ 8.48 – 8.39 (m, 2H), 7.94 – 7.86 (m, 2H), 7.44 – 7.39 (m, 4H), 7.37 – 7.16 (m, 13H), 7.08 – 7.05 (m, 2H), 4.48 (d, J = 6.8 Hz, 2H), 4.37 (s, 1H), 3.34 (t, J = 7.6 Hz, 2H), 3.01 (dd, J = 7.6, 5.9 Hz, 2H), 2.92 – 2.82 (m, 1H), 1.83 (d, J = 1.9 Hz, 2H), 0.04 (s, 3H), 0.01 (s, 3H) ppm. ¹³C{¹H} **NMR** (100 MHz, CDCl₃): δ 166.3, 159.9, 154.4, 149.7, 142.1, 139.2, 133.4, 129.5, 129.0, 128.5, 128.2, 127.9, 127.5, 127.3, 127.2, 122.2, 78.1, 66.9, 56.3, 45.6, 30.5, 29.5, 29.1, -1.3, -1.4 ppm. **IR** (film): 3068, 3025, 2952, 2831, 2252, 1716, 1593, 1490, 1408, 1250, 1111, 1016, 906, 704 cm⁻¹. **HRMS (ESI)**: calculated for C₄₀H₄₃N₂O₂Si⁺ [M+H]⁺ 611.3088; found 611.3080. Spectra data are consistent with literature data.^[1]

3. Computational Investigations

All calculations were performed with the Gaussian 16 package.^[7] Geometry optimizations were performed at M06-2X^[8]/6-31G(d,p) level of theory in conjugation with the polarizable continuum model (PCM) solvation model for acetonitrile.^[9] To get more accurate energies, single-point energy calculations were done with the same functional and solvation model using the cc-pVTZ basis set. The 3D structures of the optimized species were generated using CYLview.^[10]

Figure S2. Gibbs free energy profile of PhMe₂Si radical, styrene and 4-canopyridine radical anion.

Figure S3. Optimized structures of reactants, transition states, intermediates and product for the reaction of PhMe₂Si radical, styrene and 4-canopyridine radical anion (atom-atom distances in Å).

4. NMR Spectra

¹H NMR spectrum (400 MHz, CDCl₃) of compound 4aa.

¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound 4aa.

¹H NMR spectrum (400 MHz, CDCl₃) of compound 4ba.

¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound 4ba.

88.44 88.46 77.53 88.40 77.53 88.40 77.53

¹H NMR spectrum (400 MHz, CDCl₃) of compound **4bb**.

¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound 4bb.

¹H NMR spectrum (400 MHz, CDCl₃) of compound **4bc**.

¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound 4bc.

¹H NMR spectrum (400 MHz, CDCl₃) of compound 4bd.

 $^{13}\text{C}\{^{1}\text{H}\}$ NMR spectrum (100 MHz, CDCl_3) of compound 4bd.

¹H NMR spectrum (400 MHz, CDCl₃) of compound 4be.

¹H NMR spectrum (400 MHz, CDCl₃) of compound 4bf.

¹H NMR spectrum (400 MHz, CDCl₃) of compound 4bg.

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

¹³C{¹H} NMR spectrum (100 MHz, CDCI₃) of compound 4bg.

¹⁹F NMR (376 MHz, CDCl₃) of compound 4bg.

¹H NMR spectrum (400 MHz, CDCl₃) of compound **4bh**.

 $^{13}\text{C}\{^{1}\text{H}\}$ NMR spectrum (100 MHz, CDCl_3) of compound 4bh.

¹H NMR spectrum (400 MHz, CDCl₃) of compound 4bi.

¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound 4bi.

¹H NMR spectrum (400 MHz, CDCl₃) of compound 4bj.

^{f1 (ppm)} ¹³С{¹H} NMR spectrum (100 MHz, CDCl₃) of compound **4bj**.

¹**H NMR** spectrum (400 MHz, CDCl₃) of compound **4bk**.

¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound 4bk.

S53

8.37 8.36 7.356 7.355 7.355 7.355 7.355 7.355 7.355 7.356 7.357 7.357 7.357 7.357 7.357 7.357 7.357 7.357 7.357 7.357 7.357 7.357 7.357 7.357 7.357 7.357 7.357 7.358 7.351 7.277 7.277 7.277 7.277 7.277 7.277 7.277 7.28 7.277 7.277 7.277 7.277 7.277 7.277 7.277 7.277 7.277 7.277 7.28 7.277

¹H NMR spectrum (400 MHz, CDCl₃) of compound 4bm.

¹H NMR spectrum (400 MHz, CDCl₃) of compound 4bn.

¹H NMR spectrum (400 MHz, CDCl₃) of compound **4bo**.

¹H NMR spectrum (400 MHz, CDCl₃) of compound 4bp.

¹H NMR spectrum (400 MHz, CDCl₃) of compound 4bq.

²²⁰ 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm) ¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound **4bq**.

¹¹**B NMR** spectrum (128 MHz, CDCl₃) of compound **4bq**.

f1 (ppm)

¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound 4br.

¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound 4bs.

¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound 4bt.

²20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 ¹¹ (ppm) ¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound **4bu**.

¹H NMR spectrum (400 MHz, CDCl₃) of compound 4bv.

¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound 4bv.

 $^{13}\mbox{C}\{^1\mbox{H}\}$ NMR spectrum (100 MHz, CDCl_3) of compound 4bw.

²20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 ^{f1 (ppm)} ¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound **4bx**.

¹H NMR spectrum (400 MHz, CDCl₃) of compound 4by.

¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound 4by.

 $^{13}\text{C}\{^{1}\text{H}\}$ NMR spectrum (100 MHz, CDCl₃) of compound 4bz.

C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound 4bac.

2D NOE spectrum (400 MHz, CDCl₃) of compound 4bac

¹H NMR spectrum (400 MHz, CDCl₃) of compound **5a**.

¹H NMR spectrum (400 MHz, CDCl₃) of compound **5b**.

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -5 f1 (ppm)

¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound **5b**.

¹H NMR spectrum (400 MHz, CDCl₃) of compound **5c**.

¹H NMR spectrum (400 MHz, CDCl₃) of compound **5d**.

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

10 -10 -20 -30 -40 -50 -90 ò -60 -70 -80 -100 -110 -120 -130 -140 -150 -160 -170 -180 f1 (ppm) $^{19}\textbf{F}$ NMR spectrum (376 MHz, CDCl_3) of compound 5e.

¹³C{¹H} NMR spectrum (100 MHz, CDCI₃) of compound **5e**.

¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound **5**f.

¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound 5g.

¹H NMR spectrum (400 MHz, CDCI₃) of compound 5i.

¹H NMR spectrum (400 MHz, CDCl₃) of compound 5j.

¹H NMR spectrum (400 MHz, CDCl₃) of compound **5k**.

¹H NMR spectrum (400 MHz, CDCI₃) of compound 5I.

¹H NMR spectrum (400 MHz, CDCl₃) of compound **5m**.

7.43 7.44 7.45 7.45 7.45 7.45 7.45 7.45 7.45 7.45 7.45 7.45 7.45 7.45 7.45 7.45 7.33 7.35 7.35 7.35 7.35 7.35 7.35 7.35 7.35 7.35 7.35 7.35 7.35 7.35 7.35 7.35 7.35 7.35 7.35 7.35 7.36 7.37 7.38 7.39 7.31 7.32 7.33 7.34 7.35 7.35 7.36 7.37 7.38 7.39

¹H NMR spectrum (400 MHz, CDCl₃) of compound **50**.

¹H NMR spectrum (400 MHz, CDCl₃) of compound **5p**.

¹H NMR spectrum (400 MHz, CDCl₃) of compound **5q**.

¹H NMR spectrum (400 MHz, CDCl₃) of compound 5r.

¹H NMR spectrum (400 MHz, CDCl₃) of compound **5s**.

¹H NMR spectrum (400 MHz, CDCl₃) of compound 5t.

²²⁰ 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm) ¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound **5t.**

¹H NMR spectrum (400 MHz, CDCl₃) of compound **5u**.

 $^{13}\text{C}\{^{1}\text{H}\}$ NMR spectrum (100 MHz, CDCl₃) of compound 5w.

S98

¹H NMR spectrum (400 MHz, CDCl₃) of compound 6.

¹H NMR spectrum (400 MHz, CDCl₃) of compound 7.

¹H NMR spectrum (400 MHz, CDCI₃) of compound 8.

 $^{13}\mbox{C}{^1\mbox{H}}$ NMR spectrum (100 MHz, CDCl_3) of compound 8.

5. Energies and Cartesian Coordinates of the Optimized Structures

PhMe₂Si

M06-2X/6-311G(d,p) Electronic Energy: -600.765986 a.u. M06-2X/6-311G(d,p) Gibbs free Energy: -600.637361 a.u. M06-2X/cc-pVTZ Electronic Energy: -600.9105695 a.u.

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	14	0	-2.200526	-3. 072465	0. 273670	
2	6	0	-2.651183	-3.735241	-1.419573	
3	6	0	-3.854938	-3.372948	-2.045281	
4	6	0	-1.781914	-4.587047	-2.119881	
5	6	0	-4.180931	-3.846046	-3. 312252	
6	1	0	-4.552544	-2.714549	-1.532660	
7	6	0	-2.102881	-5.062997	-3.387025	
8	1	0	-0.840581	-4.888687	-1.666232	
9	6	0	-3.304500	-4.692979	-3.986776	
10	1	0	-5.119800	-3.556133	-3. 773972	
11	1	0	-1.417090	-5.724681	-3.907178	
12	1	0	-3.556964	-5.063198	-4.975363	
13	6	0	-1.076166	-4.286871	1.183339	
14	1	0	-0.856427	-3.920851	2.189723	
15	1	0	-1.557669	-5.266564	1.274020	
16	1	0	-0.122910	-4.424451	0.666834	
17	6	0	-3.756248	-2.712233	1.281798	
18	1	0	-4.374587	-3.611596	1.374611	
19	1	0	-3.488216	-2.377738	2.287453	
20	1	0	-4.365032	-1.928139	0.824650	

Styrene

M06-2X/6-311G(d,p) Electronic Energy: -309.5099356 a.u. M06-2X/6-311G(d,p) Gibbs free Energy: -309.406730 a.u. M06-2X/cc-pVTZ Electronic Energy: -309.6244497 a.u.

Center Atomic		Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Ζ	
1	6	0	-2.774676	-2.288413	0.065202	
2	6	0	-1.431566	-2.188260	-0.295865	
3	6	0	-0.824765	-0.943742	-0.401608	
4	6	0	-1.550075	0.229382	-0.154799	

0.218346	0.113327	-2.893564	0	6	5
0.324636	-1.132306	-3.503848	0	6	6
0.149971	-3.262343	-3.245553	0	1	7
-0.488246	-3.086371	-0.853229	0	1	8
-0.663071	-0.881408	0.226987	0	1	9
0.421077	1.015140	-3.465234	0	1	10
0.611739	-1.199232	-4.548348	0	1	11
-0.269846	1.572155	-0.952097	0	6	12
-0.843349	1.874579	0.212476	0	6	13
0.150886	2.378654	-1.550914	0	1	14
-0.876920	2.898052	0.567933	0	1	15
-1.306103	1.123326	0.844919	0	1	16

4-canopyridine radical anion

M06-2X/6-311G(d,p) Electronic Energy: -340.3947714 a.u. M06-2X/6-311G(d,p) Gibbs free Energy: -340.340466 a.u. M06-2X/cc-pVTZ Electronic Energy: -340.609116 a.u.

Center	Atomic	Atomic	Coord	dinates (Ang	tes (Angstroms)		
Number	Number	Туре	Х	Y	Z		
1	6	0	-1.468928	-2.122529	-0.274858		
2	6	0	-0.820590	-0.922052	-0.402538		
3	6	0	-1.530680	0.306688	-0.155556		
4	6	0	-2.910845	0.128535	0.216547		
5	6	0	-3.435676	-1.133942	0.307724		
6	1	0	-0.909246	-3.040650	-0.467362		
7	1	0	0.226951	-0.894494	-0.689132		
8	1	0	-3.532317	0.995100	0.424141		
9	1	0	-4. 484781	-1.243492	0.591693		
10	6	0	-0.931409	1.565243	-0.267842		
11	7	0	-0.427147	2.624011	-0.362198		
12	7	0	-2.774166	-2.304060	0.076348		

TS1

M06-2X/6-311G(d,p) Electronic Energy: -910.282174 a.u. M06-2X/6-311G(d,p) Gibbs free Energy: -910.031327 a.u. M06-2X/cc-pVTZ Electronic Energy: -910.5381606 a.u.

Center Atomic		Atomic	Coordinates (Angstroms)			
Number	Number	Number Type		Y	Z	
1	6	0	6.217785	0.448948	4.074895	
2	6	0	6.750043	0.279440	2.796840	
3	6	0	6.084917	0.781268	1.686166	
4	6	0	4.863517	1.460382	1.825985	

5	6	0	4. 346786	1.630205	3.118768
6	6	0	5. 013577	1.129438	4. 231241
7	1	0	6.741609	0.057360	4.940548
8	1	0	7.693292	-0.241751	2.667273
9	1	0	6.520627	0.653628	0.699743
10	1	0	3. 405245	2.159147	3.243515
11	1	0	4. 591986	1.270512	5.221322
12	6	0	4. 110971	1.984414	0.683083
13	6	0	4. 321507	1.691510	-0.617115
14	1	0	3. 261961	2.616676	0.937702
15	1	0	3.741508	2.174234	-1.395077
16	1	0	5.172822	1.104197	-0.948857
17	14	0	2. 833538	-0.694429	-0.793610
18	6	0	1.909639	-1.517462	-2.202406
19	6	0	0.561903	-1.217670	-2.461216
20	6	0	2.553397	-2.419900	-3.065111
21	6	0	-0.115545	-1.797894	-3.528740
22	1	0	0.030832	-0.524024	-1.812804
23	6	0	1.880611	-3.003504	-4.133661
24	1	0	3. 596876	-2.676050	-2.894724
25	6	0	0. 542914	-2.693194	-4.368903
26	1	0	-1.159035	-1.554949	-3. 705079
27	1	0	2. 397978	-3.703265	-4.783004
28	1	0	0. 016091	-3.147372	-5.202148
29	6	0	4. 217532	-1.812214	-0. 163968
30	1	0	4. 672291	-1.371911	0. 728628
31	1	0	3. 830665	-2.802000	0.100666
32	1	0	5.006617	-1.946839	-0.909380
33	6	0	1.644325	-0.244242	0.599946
34	1	0	1.014695	-1.098232	0.869185
35	1	0	2. 215503	0.054509	1.484057
36	1	0	0.990055	0.588739	0.326823

IM2

M06-2X/6-311G(d,p) Electronic Energy: -910.331454 a.u. M06-2X/6-311G(d,p) Gibbs free Energy: -910.077428 a.u. M06-2X/cc-pVTZ Electronic Energy: -910.5866586 a.u.

Center Atomic		Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	6	0	7.000394	1.003151	3.346469	
2	6	0	6.946405	0.508336	2.042238	
3	6	0	5.791697	0.629440	1.286262	
4	6	0	4.634577	1.257032	1.815237	
5	6	0	4.714777	1.750551	3. 143615	

6	6	0	5.872524	1.626006	3. 889191
7	1	0	7.907765	0.905200	3.932574
8	1	0	7.817269	0.022754	1.612563
9	1	0	5.772019	0.234185	0.275607
10	1	0	3.841648	2.235973	3.571596
11	1	0	5.903275	2.014514	4.902456
12	6	0	3. 432218	1.406210	1.075876
13	6	0	3. 192950	0.898345	-0.296478
14	1	0	2.597326	1.880415	1.585443
15	1	0	2.453104	1.519574	-0.815241
16	1	0	4.100036	0.901063	-0.911247
17	14	0	2.494011	-0.880265	-0.255008
18	6	0	2.058577	-1.386793	-2.015719
19	6	0	1.083267	-0.679267	-2.735235
20	6	0	2.690003	-2.460777	-2.656679
21	6	0	0.751464	-1.027203	-4.040630
22	1	0	0.568984	0.159658	-2.268946
23	6	0	2.363432	-2.816404	-3.963806
24	1	0	3.448676	-3.033658	-2.128645
25	6	0	1.393561	-2.099052	-4.657484
26	1	0	-0.006656	-0.465504	-4.577606
27	1	0	2.865107	-3.653223	-4. 439899
28	1	0	1.137227	-2.373685	-5.675923
29	6	0	3. 764257	-2.063081	0.461874
30	1	0	4.060187	-1.739909	1.464375
31	1	0	3. 353703	-3.074896	0.537105
32	1	0	4.670213	-2.110324	-0.150147
33	6	0	0.942213	-0.869130	0.807296
34	1	0	0.486142	-1.862358	0.841418
35	1	0	1. 181874	-0.567646	1.831530
36	1	0	0.194810	-0.171530	0.416557

TS2

M06-2X/6-311G(d,p) Electronic Energy: -1250.7694513 a.u. M06-2X/6-311G(d,p) Gibbs free Energy: -1250.436685 a.u. M06-2X/cc-pVTZ Electronic Energy: -1251.2129727 a.u.

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	6	0	7. 284011	0. 443877	3. 242522	
2	6	0	7.206633	0.175246	1.870813	
3	6	0	6.041505	0.389550	1.155555	
4	6	0	4.862853	0.900203	1. 781452	
5	6	0	4.969576	1.163233	3. 181354	
6	6	0	6.145406	0.941008	3.880736	

7	1	0	8. 200711	0.263797	3. 795151
8	1	0	8.080481	-0.209617	1.349006
9	1	0	6.025571	0.182599	0.089298
10	1	0	4.091357	1.538584	3. 700672
11	1	0	6.173920	1.153577	4.947854
12	6	0	3.693898	1.254809	1.073212
13	6	0	3. 370032	0.783819	-0.315684
14	1	0	2.842894	1.564545	1.677199
15	1	0	2. 599517	1.435270	-0.760174
16	1	0	4.239753	0.853763	-0.984253
17	14	0	2. 704918	-0.980450	-0.281636
18	6	0	1.992621	-1.475209	-1.975138
19	6	0	0.946015	-0.730734	-2, 542332
20	6	0	2. 480817	-2. 560018	-2, 716072
20	6	0	0 409099	-1 052333	-3 785226
21 99	1	0	0.549354	0 192192	-2 000/112
22	I G	0	1 050759	-2 801076	2.000412
∠3 04	0	0	1.900702	-2.091870	-9.919009
24	1	0	3. 293498	-3. 159754	-2. 312093
25	6	0	0.911800	-2.137993	-4. 499858
26	1	0	-0. 399729	-0.456753	-4. 199336
27	1	0	2. 349621	-3.738647	-4. 513897
28	1	0	0. 497118	-2.392342	-5. 471075
29	6	0	4. 030837	-2.233406	0.185874
30	1	0	4. 475186	-1.951188	1.144795
31	1	0	3.615448	-3.243390	0.272580
32	1	0	4.840569	-2.255367	-0.550333
33	6	0	1.286084	-1.083701	0.958181
34	1	0	0.848527	-2.086210	0.985980
35	1	0	1.655226	-0.831512	1.956409
36	1	0	0. 491813	-0.372565	0.708029
37	6	0	3. 708383	4.647872	3.077526
38	6	0	4. 571738	4.040488	2. 183282
39	6	0	4.077574	3.692058	0.898851
40	6	0	2. 780143	4.176033	0. 572191
41	6	0	2.027061	4.773854	1.559154
42	1	0	4. 066637	4.871577	4, 082496
43	1	0 0	5, 584361	3. 784071	2. 468647
44	1	Ű Ű	2 380435	4 033640	-0 426050
15	1	0	1 015970	5 106941	1 397000
40	I C	0	1.010279	0.100241	-0 144097
40	0	0	4. 981209	J. 298310	-0.144087
47	7	0	5.707846	3.006173	-1.003146
	_	-	0 / · ·	= 0 < 1 < 5 < 1	0 0

IM3

M06-2X/6-311G(d,p) Electronic Energy: -1250.7862207 a.u. M06-2X/6-311G(d,p) Gibbs free Energy: -1250.449907 a.u.

M06-2X/cc-pVTZ Electronic Energy: -1251.2389446 a.u.

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	6	0	6. 989643	-0. 207683	3. 192504	
2	6	0	7.156211	0.056748	1.834275	
3	6	0	6.141093	0.669353	1.106241	
4	6	0	4. 932903	1.030030	1. 718544	
5	6	0	4. 791389	0.782270	3. 089065	
6	6	0	5.803660	0.164191	3. 819349	
7	1	0	7.780290	-0.692771	3. 757551	
8	1	0	8.082574	-0.216725	1. 337219	
9	1	0	6. 289723	0.878241	0.051147	
10	1	0	3.871943	1.091277	3. 579314	
11	1	0	5.665914	-0.023353	4.880519	
12	6	0	3.817124	1.697986	0.954916	
13	6	0	3. 491296	0.997787	-0.372070	
14	1	0	2.920452	1.681130	1. 585694	
15	1	0	2.669018	1.552817	-0.844797	
16	1	0	4. 337989	1.062444	-1.069049	
17	14	0	2. 938018	-0.791116	-0. 175757	
18	6	0	2.053471	-1.320403	-1.768394	
19	6	0	0.925024	-0.613970	-2.213343	
20	6	0	2.480640	-2.406133	-2. 543659	
21	6	0	0.250369	-0.976333	-3. 375336	
22	1	0	0.567027	0.240651	-1.641806	
23	6	0	1.813380	-2.776283	-3.710360	
24	1	0	3.354695	-2.974691	-2.234231	
25	6	0	0.694707	-2.061848	-4.127760	
26	1	0	-0.619578	-0.411164	-3.696951	
27	1	0	2. 167877	-3.621173	-4.294130	
28	1	0	0.172340	-2.346356	-5.036569	
29	6	0	4. 340196	-2.010958	0.142469	
30	1	0	4. 785860	-1.821592	1.123191	
31	1	0	3. 970166	-3.042033	0. 125013	
32	1	0	5.137048	-1.918167	-0.602361	
33	6	0	1.703178	-0.904069	1.244828	
34	1	0	1.267656	-1.905336	1.314181	
35	1	0	2. 204587	-0.679556	2. 192058	
36	1	0	0.889412	-0.182664	1.121202	
37	6	0	3. 275533	4. 592260	2. 755378	
38	6	0	4. 289057	3.935454	2. 120291	
39	6	0	4. 050659	3.277694	0. 783193	
40	6	0	2.846282	3. 946953	0.164099	
41	6	0	1.943412	4.606879	0.949936	
42	1	0	3. 470711	4.946298	3.772364	
----	---	---	-----------	----------	-----------	
43	1	0	5.248059	3.788499	2.606882	
44	1	0	2.684108	3.851419	-0.904873	
45	1	0	1.035390	4.976556	0.462689	
46	6	0	5.229006	3.426476	-0.110908	
47	7	0	6.136990	3.512460	-0.826938	
48	7	0	2.049514	4.906870	2.265380	

TS4

M06-2X/6-311G(d,p) Electronic Energy: -1250.7681439 a.u. M06-2X/6-311G(d,p) Gibbs free Energy: -1250.433287 a.u. M06-2X/cc-pVTZ Electronic Energy: -1251.2223953 a.u.

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Ζ	
1	6	0	6. 837933	-0. 377459	3. 108373	
2	6	0	7.043757	0.155902	1.837252	
3	6	0	6.026987	0.843282	1.180759	
4	6	0	4.776858	1.017946	1.790240	
5	6	0	4. 592488	0.497559	3.075196	
6	6	0	5.606063	-0.199136	3.730260	
7	1	0	7.632550	-0.921195	3.611125	
8	1	0	8.005173	0.032362	1.347116	
9	1	0	6.201869	1.263383	0.195670	
10	1	0	3. 633805	0.645597	3.567311	
11	1	0	5. 432039	-0.598561	4.725416	
12	6	0	3.614950	1.694936	1.084549	
13	6	0	3. 300637	1.002152	-0.252786	
14	1	0	2.741434	1.555122	1.738024	
15	1	0	2. 412259	1.467334	-0.700283	
16	1	0	4.117195	1.184616	-0.962231	
17	14	0	2.936743	-0.842490	-0.125388	
18	6	0	2. 111643	-1.376660	-1.747870	
19	6	0	0.887118	-0.810315	-2.134138	
20	6	0	2.677388	-2.331149	-2.602796	
21	6	0	0. 253281	-1.179668	-3.316601	
22	1	0	0. 418843	-0.059962	-1.499248	
23	6	0	2. 051981	-2.707481	-3.790509	
24	1	0	3.628683	-2.788366	-2.340518	
25	6	0	0.836697	-2.132604	-4.149076	
26	1	0	-0.692860	-0.722899	-3.592069	
27	1	0	2. 515182	-3.447342	-4.437150	
28	1	0	0.347261	-2.421881	-5.074500	
29	6	0	4. 446875	-1.935479	0.148238	
30	1	0	4.852367	-1.779116	1.152601	

31	1	0	4.182295	-2.993564	0.043603
32	1	0	5.244563	-1.705531	-0.564922
33	6	0	1.697754	-1.155398	1.265502
34	1	0	1.366699	-2.198284	1.270127
35	1	0	2.156623	-0.937519	2.235035
36	1	0	0.814009	-0.517677	1.161977
37	6	0	3.820420	5.170087	2.519064
38	6	0	4.243700	3.905295	2.179214
39	6	0	3. 729988	3.239513	1.007746
40	6	0	2. 597752	3.946596	0.459450
41	6	0	2.268958	5.208192	0.900408
42	1	0	4.282039	5.654395	3.382532
43	1	0	5.028689	3. 430913	2.760319
44	1	0	2.045000	3. 522691	-0.373278
45	1	0	1.438243	5.724262	0.413684
46	6	0	5.152881	3.306810	-0.403029
47	7	0	5. 930134	3. 563115	-1.237333
48	7	0	2.849067	5.876045	1.913137

Ρ

M06-2X/6-311G(d,p) Electronic Energy: -1157.9739101 a.u. M06-2X/6-311G(d,p) Gibbs free Energy: -1157.641293 a.u. M06-2X/cc-pVTZ Electronic Energy: -1158.3140038 a.u.

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number Number		Туре	Х	Y	Ζ	
1	6	0	6.930162	-0. 169834	2.909111	
2	6	0	6.964690	0.587948	1.738439	
3	6	0	5.802708	1.173495	1.251285	
4	6	0	4.585431	1.004843	1.918874	
5	6	0	4.565164	0.265212	3. 101031	
6	6	0	5.729632	-0.323135	3. 594274	
7	1	0	7.837152	-0.629704	3.287539	
8	1	0	7.901179	0.722176	1.206473	
9	1	0	5.834116	1.770921	0.343107	
10	1	0	3.627586	0.143944	3.638369	
11	1	0	5.695357	-0.900501	4.512687	
12	6	0	3. 308117	1.583991	1.331477	
13	6	0	2.980286	0.933745	-0.022462	
14	1	0	2.494724	1.338245	2.028778	
15	1	0	2.034122	1.341028	-0.403849	
16	1	0	3.745239	1.202811	-0.763763	
17	14	0	2.824026	-0.958929	-0.030508	
18	6	0	2.001523	-1.405866	-1.667633	
19	6	0	0.685487	-0.997568	-1.933637	

20	6	0	2.668406	-2.136481	-2.659612
21	6	0	0.060023	-1.303742	-3.137994
22	1	0	0.133693	-0.430335	-1.185470
23	6	0	2.050468	-2.446756	-3.869565
24	1	0	3. 688680	-2.471562	-2.488462
25	6	0	0.744701	-2.030553	-4.109950
26	1	0	-0.959504	-0.978077	-3.320029
27	1	0	2. 587792	-3.013812	-4.623511
28	1	0	0.260373	-2.271592	-5.051065
29	6	0	4. 491823	-1.820865	0.072470
30	1	0	4.946789	-1.684968	1.058020
31	1	0	4.378355	-2.895086	-0.106055
32	1	0	5. 191679	-1.425280	-0.670499
33	6	0	1.705957	-1.501987	1.384880
34	1	0	1.493290	-2.572419	1.313780
35	1	0	2.178928	-1.317688	2.354043
36	1	0	0.749607	-0.969700	1.368014
37	6	0	3. 701814	5.199209	2. 437037
38	6	0	3. 629452	3.813792	2. 471899
39	6	0	3. 391483	3.106599	1.289388
40	6	0	3.246132	3.857017	0.126172
41	6	0	3. 341558	5.247460	0.197917
42	1	0	3. 883189	5. 759513	3.351470
43	1	0	3. 766716	3.282569	3. 409729
44	1	0	3. 057492	3. 383238	-0.830409
45	1	0	3.231403	5.843392	-0.705768
46	7	0	3. 563022	5.924724	1.322022

CN⁻

M06-2X/6-311G(d,p) Electronic Energy: -92.7921816 a.u. M06-2X/6-311G(d,p) Gibbs free Energy: -92.806220 a.u. M06-2X/cc-pVTZ Electronic Energy: -92.9592314 a.u.

Center Atomic		Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	6	0	-0. 931923	1. 564165	-0. 267746	
2	7	0	-0. 426633	2.625089	-0.362294	

6. Reference

[1] L. Gao, X, Liu, G. Li, S. Chen, J. Cao, G. Wang, S. Li, Org. Lett. 2022, 24, 5698–5703.

[2] (a) E. Bergamaschi, V. J. Mayerhofer, and C. J. Teskey, ACS Catal. 2022, 12, 14806–14811. (b) E. Georgiou, D. Spinnato, K. Chen, P. Melchiorre, and K. Muniz, Chem. Sci., 2022, 13, 8060–8064.

[3] (a) T. A. Boebel, J. F. Hartwig, Organometallics 2008, 27, 6013–6019; (b) R. Shishido, M. Uesugi, R. Takahashi, T. Mita, T. Ishiyama, K. Kubota, H. Ito, J. Am. Chem. Soc. 2020, 142, 14125–14133; (c) T. Takeuchi, R. Shishido, K. Kubota, H. Ito, Chem. Sci. 2021, 12, 11799–11804.

[4] H. Guo, X. Chen, C. Zhao and W. He, Chem. Commun., 2015, 51, 17410-17412.

[5] M. Linnemannstçns, J. Schwabedissen, B. Neumann, H. G. Stammler, R. J. F. Berger and N. W. Mitzel, Chem. Eur. J. 2020, 26, 2169–2173.

[6] W. Zheng, Y. Xu, H. Luo, Y. Feng, J. Zhang, and L. Lin, Org. Lett. 2022 24, 7145-7150.

[7] Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

[8] a) Y. Zhao, N. E Schultz, D. G.Truhlar, J. Chem. Theory. Comput.2006, 2, 364; b) Y. Zhao, D. G.Truhlar, J. Chem. Phys.2006, 125, 194101; c) Y. Zhao, D. G. Truhlar, J. Phys. Chem. A 2006,110, 13126.

[9] J. Tomasi, M. Persico, Chem. Rev. 1994, 94, 2027.

[10] CYLview, 1.0b; C. Y. Legault, Université de Sherbrooke, 2009 (http://www.cylview.org)