Supporting Information

Mild and selective transfer hydrogenation of biomass-derived furfural

to furfuryl alcohol over Cu/ZnO/Al₂O₃ with methanediol as hydrogen

donor

Shubin Cheng,^{a,b} Qian Lei,^{a,b} Conger Deng,^a Linlin Liang,^a Yan Chen,^{a,b} Huiwen Meng,^{a,b} Weixin Lei,^a and Honglin Chen *^{a,b}

Supplementary figures and data

Catalysts.				
Catalyst	$S_{BET} \ (m_2/g)$	d _{Cu} (nm)	V _p (cm ³ /g)	D _{average} (nm)
CZA-fresh	75.6	6.6	0.216	5.7
CZA-6h-108	71.0	13.7	0.129	7.3
CZA-6h-180	79.5	13.0	0.120	6.0

Table S1 Comparison of textural properties of fresh (0h) and reacted (6 h) CZA

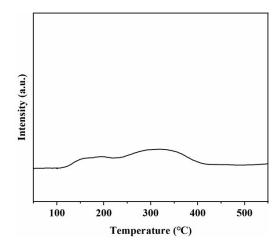


Fig. S1. The CO₂-TPD spectra of the purchased catalysts.

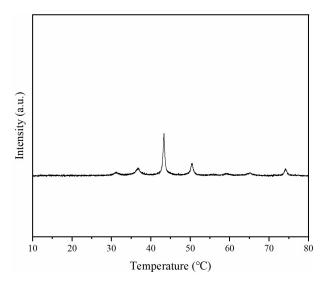


Fig. S2. XRD spectra of the used CZA catalyst at 180°C.

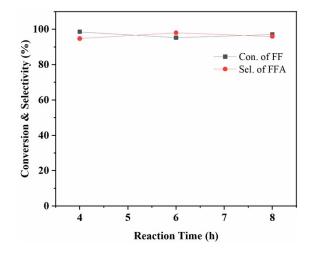


Fig. S3. The stability of CZA catalysts during the CTH of FF to FFA with formaldehyde water as hydrogen donor. Reaction conditions: FF (5 wt%), formaldehyde (5 wt%), water (15 wt%), solvent (1,3-dioxolane), catalyst (15 mL), T =108°C, P=0.1 MPa, τ =1.2 h⁻¹, N₂ atmosphere.

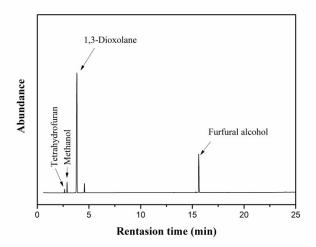
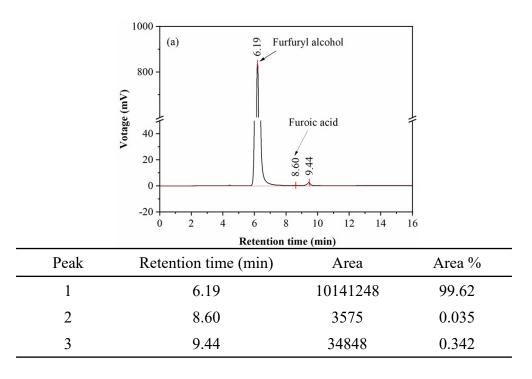



Fig. S4. GC-MS spectrum of the liquid phase product of CZA-catalyzed transfer hydrogenation of furfural with methanediol as hydrogen donor (108 $^{\circ}$ C).

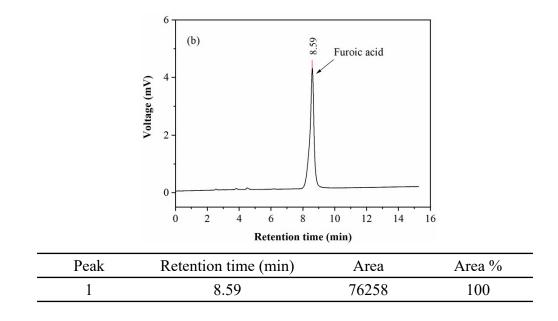


Fig. S5. High-performance liquid chromatography (HPLC) of (a) CTH product at 108°C and (b) ~0.1 wt‱ furoic acid standard substance.