Supporting Information

Antisolvent Effects in Green Solvent Engineering of FAbased Quasi-2D Ruddlesden-Popper Perovskite Films for Efficient Solar Cells

Guoshuai Zhang^a, Jun Tang^a, Chenming Wang^a, Xianyao Wu^a, Jie Chen^a, Xi Wang^a, Kai

Wang^a, Xixiang Zhu^a, Haomiao Yu^a, Jinpeng Li^{*a}

a. Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, China

Fig. S1 The optical image solution of FA-based quasi-2D perovskite in TEP.

Solvents	Boiling Point(°C)	Viscosity	Polarity	GHS symbol
N,N-Dimethylf- ormamide (DMF)	153	1.3	6.4	
Chlorobenzene (CB)	132	0.8	2.70	
Triethyl phosphate (TEP)	219	1.6	3.30	()
Dibutyl ether (DBE)	143	0.7	0.72	<u>!</u>
Petroleum ether(PE)	60~90	0.3	0.01	1.

Table S1 Physical properties of solvents and antisolvents.

Fig. S2 The photograph of films prepared from TEP without dipping antisolvent, (a) the unannealed film; (b) the annealed perovskite film.

Fig. S3 The UV absorption spectra of intermediate phase and quasi-2D perovskite film prepared from DBE and PE. (a) DBE; (b) PE.

Fig. S4 The distribution histogram of grain sizes from FA-based quasi-2D perovskite films fabricated with (a) DBE (b) PE.

Fig. S5 The steady-state PL spectra from top (film) to bottom (glass) side of prepared films.

Fig. S6 The out-plane curves derived from GIWAXS patterns.

Fig. S7 The decay kinetics of different phases curves derived from TA spectral patterns.

Antisolvent	n-	$ au_{\text{\tiny et}}$ (ps)	$ au_1$ (ps)	$ au_2$ (ps)	τ ₃ (ps)
S	value				
DBE	n=1	/	2.15	30.24	133.0
	n=∞	1.04	195.5	836.8	3141
PE	n=1	/	0.216	3.257	72.22
	n=∞	0.90	136.4	672.4	3630.0

Table S2 The fitting results from transient absorption spectra.

Fig. S8 The cross-sectional SEM image of FA-based quasi-2D perovskite film fabricated with antisolvent of PE.

Fig. S9 The *J*-*V* curves obtained from reverse and forward scan of the best PSCs prepared from different antisolvents. (a) DBE; (b) PE.

Fig. S10 Water contact angle images of the FA-based quasi-2D perovskite films fabricated with antisolvent of DBE and PE.

Table S3 The performance parameters of different n value FA-based quasi-2D perovskite solar cells prepared from traditional toxic solvent and green solvent system.

Solvents	Perovskites	n	V _{oc} (V)	<i>J_{sc}</i> (mA cm⁻²)	FF(%)	PCE(%)	Ref.
DMF/CB	$BA_2FA_8Pb_9I_{28}$	9	1.102	18.89	63.22	13.16	1
DMF/CB	$BA_2FA_8Pb_9I_{28}$	9	1.098	21.09	68.17	15.01	2
DMF/CB	(FPEA ₂ FA ₈ Pb ₉ I ₂₈)	9	1.07	20.88	72	16.15	3
DMF/CB	$EA_2FA_8Pb_9I_{28}$	9	1.09	21.89	73.05	17.4	4
DMF/IPA	(ThMA) ₂ FA ₄ Pb ₅ I ₁₆	5	1.075	23.39	75.8	19.06	5
DMF/		F	1 1 2	22.42	76 71	10 11	C
Anisole	(<i>p</i> -FPEA) ₂ (FA) ₄ PD ₅ I ₁₆	Э	1.13	22.13	/6./1	19.11	0
DMF	(4F-PEA) ₂ FA ₄ Pb ₅ I ₁₆	5	1.18	21.7	80.35	21.07	7
DMF	PDAFA ₃ Pb ₄ I ₁₃	4	1.10	17.30	72.5	13.8	8
DMF	$PDA_{0.9}PA_{0.2}FA_3Pb_4I_{13}$	4	1.09	18.9	77.7	16.0	9
DMF/IPA	$BA_2FA_3Pb_4I_{13}$	4	1.062	21.62	78.96	18.14	10
DMF	BDA(FA) ₃ Pb ₄ I ₁₃	4	1.15	19.5	76.4	17.2	11
DMF	$BA_2FA_2Pb_3I_{10}$	3	0.98	11.89	59	6.88	12
	$BA_2FA_3Pb_4I_{13}$	4	1.00	20.83	68.7	14.31	This
TEP/DEE							Work
		4	1.02	23.34	72.5	17.42	This
IEP/PE	ва ₂ га ₃ гр ₄ I ₁₃		1.03				Work

n defines the number of inorganic octahedron $(MX_6)^{4-}$ slabs.

Antisolvent	A ₁	$ au_1$ (ns)	A ₂	$ au_{2}$ (ns)	Average life time (ns)
S					
DBE	60%	38.1	40%	137.0	160
PE	33%	27.2	67%	220.9	78

Table S4 The fitting results of TRPL.

Table S5 The fitting results of impedance spectroscopy spectra.

Antisolvents	R _s (Ω) R _{rec} (Ω		
DEE	53.11	7984	
PE	34.5	56676	

Reference

[1] Y. Li, H. Li, L. Tian, Q. Wang, F. Wu, F. Zhang, L. Du, Y. Huang, *Journal of Materials Science: Materials in Electronics*, 2020, **31**, 12301-12308.

[2] X. Shen , Y. Li, H. Li, Q. Wang , Z. Ma , C. Peng , W. Zhang , Y. Huang, *Materials Science in Semiconductor Processing*, 2022,**138**, 106296.

[3] Y. Wei, B. Chen, F. Zhang, Y. Tian, X. Yang, B. Cai, J. Zhao, Sol. RRL, 2021, 5, 2000661.

[4] H. Zheng, G. Liu, L. Zhu, J. Ye, X. Zhang, A. Alsaedi, T. Hayat, X. Pan, S. Dai, Adv. Energy Mater., 2018, 8, 1800051.

[5] H. Lai, D. Lu, Z. Xu, N. Zheng, Z. Xie, Y. Liu, Adv. Mater., 2020, 32, 2001470.

[6] Y. Zhang, M. Chen, T. He, H. Chen, Z. Zhang, H. Wang, H. Lu, Q. Ling, Z. Hu, Y. Liu, Y.

Chen, G. Long, Adv. Mater., 2023, 35, 2210836.

[7] H. Lai, D. Lu, Z. Xu, N. Zheng, Z. Xie, Y. Liu, Adv. Mater., 2020, 32, 2001470.

[8] L. Cheng, Z. Liu, S. Li, Y. Zhai, X. Wang, Z. Qiao, Q. Xu, K. Meng, Z. Zhu, G. Chen, *Angew. Chem., Int. Ed.*, 2021, **133**, 869-877.

[9] L. Cheng, K. Meng, Z. Qiao, Y. Zhai, R.e Yu, L. Pan, B. Chen, M. Xiao, G. Chen, Adv. Mater., 2022, 34, 2106380.

[10] W. Kong, F. Zeng, Z. Su, T. Wang, L. Qiao, T. Ye, L. Zhang, R. Sun, J. Barbaud, F. Li,

X. Gao, R. Zheng, X. Yang, Adv. Energy Mater., 2022, 12, 2202704.

[11] G. Wu, T. Liu, M. Hu, Z. Zhang, S. Li, L. Xiao, J. Guo, Y. Wang, A. Zhu, W. Li, H.

Zhou, Y. Zhang, R. Chen, G. Xing, *Adv. Mater.*, 2023, **35**, 2303061.

[12] J. Yan, W. Fu, X. Zhang, J. Chen, W. Yang, W. Qiuc, G. Wu, F. Liu, P. Heremansc, H. Chen, Mater. Chem. Front., 2017, 2, 121-128.