Supporting information

Fully biobased, catalyst-free vitrimers from tannic acid: facile combination of mechanical robustness, recyclability and sustainability

Jie Li^a, Benzhi Ju^{a,} * and Shufen Zhang^a

*Corresponding author: Jubenzhi@dlut.edu.cn

¹ State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR

China

Table S1 Formulations

	EVO ([epoxy]=0.075 mol	tannic acid	Maleic anhydride
S3	ESO=20.00 g	8.51 g	7.36 g, 0.075 mol
S4	ESO=20.00 g	6.38 g	7.36 g, 0.075 mol
S5	ESO=20.00 g	5.06 g	7.36 g, 0.075 mol
L3	ELO=12.68 g	8.51 g	7.36 g, 0.075 mol
L4	ELO=12.68 g	6.38 g	7.36 g, 0.075 mol
L5	ELO=12.68 g	5.06 g	7.36 g, 0.075 mol

Table S2 Summary of thermomechanical properties of pristine vitrimers

	Tensile strength/MPa	Elongation at break/%	Young's Modulus/MPa*	Rubbery Platform at T _g +80°C/MPa	Crosslink density /mol·cm ⁻³	Tg/°C	T _{d5} /°C
S3	35.2±3.0	18.1 ± 0.4	365.8	4.49	436.6	76.2	292
S4	27.7 ± 0.9	15.6 ± 0.6	325.7	4.54	432.1	68.5	307
S5	21.9 ± 1.1	26.6 ± 6.7	224.7	5.41	505.3	59.5	322
L3	52.4±4.1	$8.0{\pm}1.4$	520.3	6.68	578.3	109.7	282
L4	47.2±1.3	7.8 ± 0.6	737.9	14.80	1259.7	117.9	256
L5	51.6±2.4	$11.0{\pm}1.1$	519.9	15.85	1296.7	136.9	291

*calculated using 2% stress on the representative tensile curves

	Tensile strength/MPa	Elongation at break/%	Young's Modulus/MPa*	Storage modulus at Tg +80°C/MPa	Crosslink density /mol·cm ^{-3**}	Tg/°C	T _{d5} /°C
S3-r3	19.0±0.7	17.2±2.4	375.8	0.147	14.41	56.1	261
S4-r3	$18.0{\pm}1.8$	30.9 ± 13.4	328.0	0.374	37.59	45.5	265
S5-r3	14.6±0.3	59.7±5.1	206.0	2.005	200.79	47.2	296
L3-r3	17.0±0.2	4.0 ± 0.1	401.0	1.972	175.83	96.5	266
L4-r3	13.9±1.0	$4.4{\pm}0.1$	323.7	1.734	156.10	92.2	271
L5-r3	25.8 ± 2.6	7.7 ± 0.1	314.7	1.583	146.42	80.3	274

Table S3 Summary of thermomechanical properties of 3rd recycled vitrimers

*calculated using 2% stress on the representative tensile curves

Calculation of activation energies for viscous flow of S3 and L3 vitrimers

Characteristic relaxation time (τ^* , s) indicating the time it takes for *G* to reduce to 1/e of the initial modulus at different temperatures were obtained from the stress relaxation experiments :

Table 54 characteristic relaxation times (3) or 55 and E5 vitimers							
	160°C	170°C	180°C	190°C	200°C		
S3	5870	3590	2399	1520			
L3		5570	1963	1216	524		

Table S4 Characteristic relaxation times (s) of S3 and L3 vitrimers

The natural logarithm of τ^* was plotted versus 1000/T, where T indicates the absolute temperature (K). Linear fittings y = ax + b were obtained:

Table S5 Arrhenius fitting parameters for viscous flow of S3 and L3 vitrimers

sample	a	b
S3	8.94098 ± 0.1998	-11.9701±0.44624
L3	15.88668 ± 1.44212	-27.30334 ± 3.15052

Because the viscous flow of vitrimers can be described using Arrhenius Equation:

$$\ln\left(\tau^*\right) = \frac{E_a}{RT} + \ln\left[\frac{1}{100}\right](\tau_0)$$

where ${}^{E_{a}}$ (kJ/mol) represents the activation energy for vitirmer viscous flow, R = 8.314 J/mol·K⁻¹ is the universal gas constant, T is the absolute temperature (K). ${}^{E_{a}}$ is then given by:

 $E_a = a \times R$

Figure S1 Stress relaxation curves of a)ESO-based vitrimers at 170°C and b)ELO-based vitrimers at 180°C

Figure S2 FT-IR spectra od pristine and 3rd recycled a)S3 and b)L3 vitrimers

Figure S3 Microscopic photos of cracks on ELO-based vitrimers before and after undergoing a scratchhealing procedure

Figure S4 SEM images of vitrimer samples. Obtained on a scanning electron microscope (SU8220, Hitachi, Japan)

Figure S5 Isothermal TGA results for S3 and L3 vitrimers in air, with residual mass fractions at 1 h an 2 h marked.

Figure S6 Photos of the L4-r2 vitrimer powder and the recycled L4-r3 sample. The loss ratio of recycling was 1.77%.

Figure S7 Adhesive test results. a) equipment for lap-shear test; b) a photo of failed Q235 steel plates bonded using L5 glue. Clear adhesive failure can be observed; c) lap-shear strength of ELO-based vitrimers.

Figure S8 Bonded Q235 steel plates using $2 \sim 3$ drops of L5 glue can afford a bucket weighing 11.2 kg. The size of steel plates was 2 cm \times 5 cm.

Figure S9 a) viscosity of L5 vitrimer glue. Obtained on a Ubbelohde Viscometer equipped with a 2# rotor, 6 rpm; b) photos of L5 vitrimer glue. It kept stable at 10°C for at least 7 days.

Figure S10 Weather resistance tests using an L3 vitrimer piece. a) UV exposure (365 mm, 24 W) for 50 h; b) water dripping for 8 days (1 drop per second); c) hot air blowing for 36 hours.

	1 2	``````````````````````````````````````				,
Ref. NO.	Tensile strength (virgin)/ MPa	Reprocessing condition	Tensile strength (1 st recycled) /MPa	Epoxy resin	Dynamic covalent bond	Catalyst
1	37.4	190°C/20 MPa/5 min	~33	ESO	Schiff base	none
2	3.49	180°C/20 MPa/10 min	~2.5	ESO	disulfide	none
3	16.62	160°C/10 MPa/1 h	~14	ESO	DTE	Zn(acac) ₂
4	3.1	200°C/20 MPa/135 min	1.4	ESO	DTE	TBD
5	0.6	Not reported		ESO	DTE	none
6	23	160°C/3 ton/10 min	19	ELO	boronic ester	none
7	1.8	130°C/10 MPa/15 min	~1.5	ESO	DTE	none
8	7.4	160°C/10 MPa/3 h	8.9	ESO	DTE	none
L5	52.4		28.9			
1.4	47.2	170°C/20	35.6	ELO		
L3	51.6	MPa/2 h	36.9			
\$5	21.0		. 20.5		DTE	none
SJ S1	21.9	160°C/15	20.5	ESO		
5 4 53	27.7	MPa/2 h	24.9	ESO		
	55.2	200°C/10	51.5	hisphenol A		
9	~70	MPa/2 h	~70	epoxy	DTE	none
10	~55	240°C/3 min	~50	bisphenol A epoxy	DTE	$Zn(acac)_2$
11	10.98	100°C/60 min	9.07	derived epoxy	disulfide	none
12	0.18	100°C	~0.18	derived epoxies	DTE	$Zn(acac)_2$
13	94.1	Not reported		bisphenol A epoxy	DTE	none
14	28.7			ESO		
15	23			ESO		
13	40			ELO		
16	0.68			ESO		
17	7.85			ESO		

Table S6 Comprehensive comparison of reported EVO vitrimers (ref.1~8 and this work), other epoxy vitrimers (ref.9~13) and regular EVO thermosets (ref.13~17)

(1) Zhao, X.-L.; Liu, Y.-Y.; Weng, Y.; Li, Y.-D.; Zeng, J.-B. Sustainable Epoxy Vitrimers from Epoxidized Soybean Oil and Vanillin. Acs Sustain Chem Eng 2020, 8 (39), 15020-15029. DOI: 10.1021/acssuschemeng.0c05727.

(2) Liu, Y.-Y.; He, J.; Li, Y.-D.; Zhao, X.-L.; Zeng, J.-B. Biobased, reprocessable and weldable epoxy vitrimers from epoxidized soybean oil. Industrial Crops and Products 2020, 153. DOI: 10.1016/j.indcrop.2020.112576.

(3) Yang, X.; Guo, L.; Xu, X.; Shang, S.; Liu, H. A fully bio-based epoxy vitrimer: Self-healing, triple-shape memory and reprocessing triggered by dynamic covalent bond exchange. Materials & Design 2020, 186. DOI: 10.1016/j.matdes.2019.108248.

(4) Wu, J.; Yu, X.; Zhang, H.; Guo, J.; Hu, J.; Li, M.-H. Fully Biobased Vitrimers from Glycyrrhizic Acid and Soybean Oil for Self-Healing, Shape Memory, Weldable, and Recyclable Materials. Acs Sustain Chem Eng 2020. DOI: 10.1021/acssuschemeng.0c01047.

(5) Altuna, F. I.; Pettarin, V.; Williams, R. J. J. Self-healable polymer networks based on the cross-linking of epoxidised soybean oil by an aqueous citric acid solution. Green Chem 2013, 15 (12). DOI: 10.1039/c3gc41384e.

(6) Sangaletti, D.; Ceseracciu, L.; Marini, L.; Athanassiou, A.; Zych, A. Biobased boronic ester vitrimer resin from epoxidized linseed oil for recyclable carbon fiber composites. Resources, Conservation and Recycling 2023, 198. DOI: 10.1016/j.resconrec.2023.107205.

(7) Li, C.; Ju, B.; Zhang, S. Fully bio-based hydroxy ester vitrimer synthesized by crosslinking epoxidized soybean oil with doubly esterified starch. Carbohydr Polym 2023, 302, 120442. DOI: 10.1016/j.carbpol.2022.120442.

(8) Li, J.; Ju, B.; Zhang, S. Catalyst-free, sustainable epoxy vitrimers from epoxidized soybean oil and natural sugar alcohols. Industrial Crops and Products 2023, 205. DOI: 10.1016/j.indcrop.2023.117466.

(9) Liu, Y.; Ma, S.; Li, Q.; Wang, S.; Huang, K.; Xu, X.; Wang, B.; Zhu, J. Dynamic transfer auto-catalysis of epoxy vitrimers enabled by the carboxylic acid/epoxy ratio based on facilely synthesized trifunctional monoesterified cyclic anhydrides. Eur Polym J 2020, 135. DOI: 10.1016/j.eurpolymj.2020.109881.

(10) Montarnal, D.; Capelot, M.; Tournilhac, F.; Leibler, L. Silica-Like Malleable Materials from Permanent Organic Networks. 2011, 334 (6058), 965-968. DOI: doi:10.1126/science.1212648.

(11) Ma, Z. Y.; Wang, Y.; Zhu, J.; Yu, J. R.; Hu, Z. M. Bio-Based Epoxy Vitrimers: Reprocessibility, Controllable Shape Memory, and Degradability. J Polym Sci Pol Chem 2017, 55 (10), 1790-1799. DOI: 10.1002/pola.28544.

(12) Zhao, S.; Abu-Omar, M. M. Catechol-Mediated Glycidylation toward Epoxy Vitrimers/Polymers with Tunable Properties. Macromolecules 2019, 52 (10), 3646-3654. DOI: 10.1021/acs.macromol.9b00334.

(13) Hao, C.; Liu, T.; Zhang, S.; Liu, W.; Shan, Y.; Zhang, J. Triethanolamine-Mediated Covalent Adaptable Epoxy Network: Excellent Mechanical Properties, Fast Repairing, and Easy Recycling. Macromolecules 2020, 53 (8), 3110-3118. DOI: 10.1021/acs.macromol.9b02243.

(14) Li, Y.-D.; Jian, X.-Y.; Zhu, J.; Du, A.-K.; Zeng, J.-B. Fully biobased and high performance epoxy thermosets from epoxidized soybean oil and diamino terminated polyamide 1010 oligomers. Polymer Testing 2018, 72, 140-146. DOI: 10.1016/j.polymertesting.2018.10.010.

(15) Tsujimoto, T.; Takeshita, K.; Uyama, H. Bio-based Epoxy Resins from Epoxidized Plant Oils and Their Shape Memory Behaviors. Journal of the American Oil Chemists' Society 2016, 93 (12), 1663-1669. DOI: 10.1007/s11746-016-2907-5.

(16) Pansumdaeng, J.; Kuntharin, S.; Harnchana, V.; Supanchaiyamat, N. Fully bio-based epoxidized soybean oil thermosets for high performance triboelectric nanogenerators. Green Chem 2020, 22 (20), 6912-6921. DOI: 10.1039/d0gc01738h.

(17) Jian, X.-Y.; He, Y.; Li, Y.-D.; Wang, M.; Zeng, J.-B. Curing of epoxidized soybean oil with crystalline oligomeric poly(butylene succinate) towards high performance and sustainable epoxy resins. Chem Eng J 2017, 326, 875-885. DOI: 10.1016/j.cej.2017.06.039.