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Experimental section

Chemicals

The following chemicals were used without further treatment: zinc nitrate 

hexahydrate (Zn(NO3)2·6H2O), nickel nitrate hexahydrate (Ni(NO3)2·6H2O), ferric 

nitrate nonahydrate (Fe(NO3)3·9H2O), cobalt nitrate hexahydrate (Co(NO3)2·6H2O), 

urea (H2NCONH2), sodium hypophosphite monohydrate (NaH2PO2·H2O), hydrazine 

hydrate (N2H4·H2O), and potassium hydroxide (KOH) were purchased from Aladdin 

Reagents Ltd. Commercial Pt/C (carbon containing 20 wt% Pt) and nickel foam (NF) 

were provided by Hesen Corporation and Shenzhen Kejingxing Technology Company, 

respectively.

Characterizations

The phase of the electrocatalysts was examined by X-ray diffraction (XRD, 

Rigaku Smartlab diffractometer). The morphology of the electrocatalysts was recorded 

by transmission electron microscopy (TEM, JEM-2100F) and scanning electron 

microscope (SEM, SU8010, Hitachi). X-ray photoelectron spectroscopy (XPS, VG 

Scientific ESCALab250i-XL) was carried out to measure valence states of the catalysts.

Electrochemical measurements

Electrochemical HER and HzOR performance were measured employing 

CHI760e workstation in a three-electrode cell with 1 M KOH and 1 M KOH with 0.5 

M N2H4·H2O electrolyte, respectively. The catalysts/NF was served as working 

electrode, and Pt sheet and SCE were used as counter electrode and reference electrode, 

respectively. The HER and HzOR activities were measured by linear sweep 
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voltammetry (LSV) with IR compensation at 5 mV·s-1. All potentials were related to 

reversible hydrogen electrode (RHE): ERHE = ESCE + 0.059pH + 0.241 without special 

illustration. Electrochemical surface area (ECSA) was measured by cyclic voltammetry 

(CV) with different scan rates to determine the double-layer capacitance (Cdl). 

Electrochemical impedance spectroscopy (EIS) was performed from 105 to10-2 Hz. The 

stability of the samples was determined by chronoamperometry and multi-current plot. 

The overall hydrazine splitting (OHzS) and overall water splitting (OWS) were 

performed in a double-electrode electrolyzer by employing Fe-NiCoZnP/NF as both 

cathodic and anodic electrodes in 1 M KOH with 0.5 M N2H4·H2O and 1 M KOH, 

respectively.

DFT Calculations

Theoretically calculations were performed with Vienna Ab Initio Simulation 

Package (VASP) according to density functional theory (DFT). Electronic exchange-

correction interaction was determined by GGA with Predew-Burke and Ernzerhof 

(PBE). The energy cutoff of 450 eV and iteration of 10-5 eV were adopted. A 15 Å 

vacuum was employed to separate the slab in z direction. A k-point mesh (331) was 

applied. The Gibbs free energy (∆G) for the intermediates was calculated by ∆G = ∆E 

+ ∆ZPE - T∆S, where ∆E, ∆ZPE and ∆S are the adsorption energy change, zero-point 

energy change and entropy change, respectively.
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Fig. S1 SEM images of (a) Fe-NiCoZnP/NF and (b-d) NiCoZnP/NF.

Fig. S2 XPS survey spectra of NiCoZnP/NF and Fe-NiCoZnP/NF.
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Fig. S3 HER CV plots of (a) Fe-NiCoZnP/NF; (b) NiCoZnP/NF; (c) Pt/C and (d) NF 

at various scan rates in 1 M KOH electrolyte.

Fig. S4 HER LSV plots of Fe-NiCoZnP/NF, NiCoZnP/NF and Pt/C after averaged by 

ECSA.
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Fig. S5 LSV plots of Fe-NiCoZnP/NF before and after HER stability tests.

Fig. S6 SEM images of Fe-NiCoZnP/NF after HER stability test.

Fig. S7 TEM images of Fe-NiCoZnP/NF after HER stability test.



7

Fig. S8 (a) HADDF-STEM image and (b-f) TEM-EDS mapping images of Fe, Ni, Co, 

Zn and P of Fe-NiCoZnP/NF after HER stability test.

Fig. S9 XRD pattern of Fe-NiCoZnP/NF after HER stability test.
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Fig. S10 EIS results of Fe-NiCoZnP/NF before and after HER stability tests and the 

inset equivalent circuit model.

Fig. S11 LSV curves of Fe-NiCoZnP/NF in 1.0 M KOH with various N2H4 H2O 

concentration.
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Fig. S12 LSV curves of Fe-NiCoZnP/NF at different scan rates in 1 M KOH with 0.5 

M N2H4 H2O electrolyte.

Fig. S13 HzOR CV plots of (a) Fe-NiCoZnP/NF; (b) NiCoZnP/NF; (c) Pt/C and (d) 

NF at various scan rates in 1 M KOH with 0.5 M N2H4 H2O electrolyte.
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Fig. S14 HzOR LSV curves of Fe-NiCoZnP/NF, NiCoZnP/NF and Pt/C after 

averaged by ECSA.

Fig. S15 HzOR LSV curves of Fe-NiCoZnP/NF before and after HzOR stability tests.
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Fig. S16 SEM images of Fe-NiCoZnP/NF after HzOR stability test.

Fig. S17 TEM images of Fe-NiCoZnP/NF after HzOR stability test.
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Fig. S18 (a) HADDF-STEM image and (b-f) TEM-EDS mapping images of Fe, Ni, 

Co, Zn and P of Fe-NiCoZnP/NF after HzOR stability test.

Fig. S19 XRD pattern of Fe-NiCoZnP/NF after HzOR stability test.
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Fig. S20 EIS results of Fe-NiCoZnP/NF before and after HzOR stability tests.

Fig. S21 Top (upper) and side (lower) views of the optimized structures of (a-b) 

NiCoZnP/NF and (c-d) Fe-NiCoZnP/NF.
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Fig. S22 (a) NiCoZnP/NF and (b) Fe-NiCoZnP/NF models with serial numbers.

Fig. S23 Charge density distribution for the interface of Fe-NiCoZnP/NF.

Fig. S24 Chronopotentiometic plots of Fe-NiCoZnP/NF ǀǀ Fe-NiCoZnP/NF couple for 

120 h at 100 mA cm-2.
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Fig. S25 LSV curves of Fe-NiCoZnP/NF ǀǀ Fe-NiCoZnP/NF couple before and after 

chronopotentiometry (CP) tests.
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Table S1 A survey of the catalytic performance of various electrocatalysts for HER.

Electrolyte
Electrocatalytic 

performance
Electrocatalysts

KOH

(mol·L-1)

j

(mA·cm-2)

Overpotential 

(mV)

Ref.

Ni-Co-P/NF 1.0

10

100

1000

37

115

280

[S1]

Fe-Ni2Pv 1.0
100

1000

87

~200
[S2]

FeNiP-NPHC 1.0
10

100

65

182
[S3]

N-Ni5P4@CoP/CFP 1.0 10 56 [S4]

(Fe1-xCox)2P/Ni3N 1.0 100 113 [S5]

PW-Co3N/NF 1.0
10

100

41

130
[S6]

Ni2P/Zn-Ni-P 1.0 10 63 [S7]

NiP2-650(c/m) 1.0 10 63 [S8]

FeNiP@p-NPCF/CC 1.0 10 89 [S9]

V-Ni2P/Ni12P5 1.0 10 62 [S10]

Ru SAs-Ni2P 1.0 10 57 [S11]

NiP2/NiSe2 1.0
10

100

93

160
[S12]

Ni5P4-xIx/Ni2P 1.0 10 45 [S13]
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Fe (pFe/FeP) 1.0 100 380 [S14]

O-NiMoP/NF 1.0 10 54 [S15]

Fe-NiCoZnP/NF 1.0

10

100

1000

35

89

121

This work

Table S2 A survey of the catalytic performance of various electrocatalysts for HzOR

Electrolyte
Electrocatalytic 

performance
Electrocatalysts

N2H4/KOH 

(mol·L-1)

j 

(mA·cm-2)

Potential

(mV vs. RHE)

Ref.

N-Ni5P4@CoP/CFP 0.1,1.0
10

100

-32

60
[S4]

Cu1Co2-Ni2P/NF 0.1, 1.0 10 -52 [S16]

NiMo/Ni2P/NF 0.5, 1.0
10

100

-17

32
[S17]

Ru1-NiCoP 0.3, 1.0 10 -60 [S18]

Ru/PNC 0.5, 1.0 10 -20.4 [S19]

Ni-C HNSA 0.1, 1.0 10 -20 [S20]

Ni(OH)2/Ni2P/NF 0.5, 1.0
10

100

-14

73.9
[S21]

RuFe-Ni2P@NF 0.5, 1.0
100

1000

~40

~230
[S22]

P/Fe-NiSe2 0.7, 1.0 100 200 [S23]

FHNNP/NF 0.4, 1.0 10 -44 [S24]
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100 0.1

NiCo-MoNi4 0.1, 1.0 10 -30 [S25]

Ru-FeP4/IF 0.5, 1.0 1000 335 [S26]

CoFeNiCrMnP/NF 0.4, 1.0
10

100

-79

-62
[S27]

CoH-CoPv@CFP 0.5, 1.0 10 -60 [S28]

Ni NCNA 0.3, 1.0 10 -26 [S29]

10 -82
Fe-

NiCoZnP/NF
0.5, 1.0 100

1000

-46

15
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Table S3 The cell voltage comparisons of OHzS.

Electrolyte Electrocatalytic performance

Electrocatalysts N2H4/KOH 

(mol·L-1)
j (mA·cm-2)

Cell voltage 

(V)

Ref.

FeNiP-NPHC 0.5, 1.0 10 0.05 [S3]

Ni2P/Zn-Ni-P 0.1, 1.0
10

100

0.165

0.558
[S7]

FeNiP@p-NPCF/CC 0.5, 1.0 10 0.05 [S9]

Cu1Co2-Ni2P/NF 0.1, 1.0
10

100

0.16

0.39
[S16]

P/Fe-NiSe2 0.7, 1.0
10

100

0.09

0.445
[S23]

Ni3N-Co3NPNAs/NF 0.1, 1.0
10

100

~0.15

0.668
[S30]
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NiCo@C/MXene 0.5, 1.0
10

100

~0.05

~0.36 [S31]

Ru2P/C-PAN 0.3, 1.0
10

100

0.03

0.35
[S32]

Ni(Cu)@NiFeP/NM 0.5,1.0
10

100

0.147

0.491
[S33]

CoP/NCNT-CP 0.5, 1.0 10 0.89 [S34]

0.03
Fe-NiCoZnP/NF 0.5, 1.0

10

100 0.33

This 

work
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