Supporting Information

Visible-light-driven three-component annulation for the synthesis of

highly functionalized 2-iminothiazolidin-4-ones without

photocatalysts

Beining Yang,¹ Yatang Wang,¹ Xiaojuan Yang,¹ Yinyin Li,¹ Zhiying Zhang,¹

Xiaofeng Hua,¹ Lu Ouyang,² Lvyin Zheng,*1 and Wei Guo*1

¹Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China

²School of Pharmacy, Gannan Medical University, Ganzhou 341000, Jiangxi, P. R.

China

Fax: (+86) 0797-8393536; *E-mail: zhenglvyin@126.com; guoweigw@126.com

List of Contents

1. General Information	S2
2. Representative Procedure for the Synthesis of α-Diazoesters	S2
3. Representative Procedure for the Synthesis of 2-Iminothiazolidin-4-one	es S3
4. X-Ray Crystallography Data of 5n	S3
5. Evaluation of Green Chemistry Metrics for the Synthesis of 4a	S8
6. GC-MS of Compound 8	
7. Characterization Data	S10
8. NMR Spectra	S38

1. General Information

Melting points were obtained using a digital melting point apparatus and are uncorrected. Infrared (IR) spectra data were measured on an infrared spectrometer using KBr pellets. ¹H and ¹³C{¹H} NMR spectra were recorded on a Bruker Advance 400 nuclear magnetic resonance (400 MHz NMR) spectrometer using CDCl₃ or DMSO- d_6 as the solution and tetramethylsilane (TMS) as the internal standard. Gas chromatography-mass spectrometry (GC-MS) data were collected using electron ionization. The data of high resolution mass spectrometry (HRMS) were recorded on a high-resolution mass spectrometer (LCMS-IT-TOF). The crystal data were recorded on a diffractometer (Rigaku Oxford diffraction supernova dual source, Cu at zero) equipped with an AtlasS2 charge-coupled device using Cu Kα radiation (1.54178 Å) in a scan mode. The reaction proceeded on the photoreaction instrument (WP-TEC-1020L, WATTCAS, China) with a heating mantle and a condenser system. The distance from the light source to the irradiation vessel is 5 mm. Thin-layer chromatography (TLC) and column chromatography were performed on commercially available 100-400 mesh silica gel. The starting materials, including isothiocyanates and amines were purchased from Innochem (Beijing) Technology Co., Ltd. of China. Unless otherwise noted, all purchased chemicals were used without further purification.

2. Representative Procedure for the Synthesis of a-Diazoesters¹

Methyl arylacetate (10 mmol) and 4-acetamidobenzenesulfonyl azide (12 mmol, 1.2 equiv.) were dissolved in anhydrous MeCN (15 mL) and cooled to 0 °C. Then, DBU (15 mmol, 1.5 equiv.) was added drop-wise, and the mixture was stirred for overnight. Upon complete consumption of the starting materials, the reaction mixture was quenched with saturated aqueous solution of NH₄Cl (5 mL), and the water layer was extracted with ethyl acetate (3×30 mL), washed with brine (3×10 mL), dried over NaSO₄, and concentrated under reduced pressure. The residue was purified by flash chromatography on a silica gel using petroleum ether/ethyl acetate (v/v = 15/1) as an eluent to afford the desired product.

3. Representative Procedure for the Synthesis of 2-Iminothiazolidin-4-ones

In a flame-dried test tube with a stir bar, isothiocyanatobenzene **1a** (27.0 mg, 0.20 mmo1), phenylmethanamine **2a** (21.4 mg, 0.20 mmo1), and methyl 2-diazo-2-phenylacetate **3a** (17.6 mg, 0.10 mmo1) were added into CH₃CN (2.0 mL). The reaction was performed under a 10 W white LED at room temperature for 1.5-3.0 h. After the completion of the reaction, the solvent was evaporated and then filtered through an inch of silica gel. The filtrate was concentrated and purified by flash chromatography on a silica gel using petroleum ether/ethyl acetate (v/v = 8/1) as an eluent to provide the desired product **4a** (30.1 mg, yield of 84%).

4. X-Ray Crystallography Data of 5n

The crystal growth procedure: Compound **5n** (20 mg) was dissolved into 1 mL of ethyl acetate, and then petroleum ether (2 mL) was added into the mixture. The mixture was evaporated slowly at room temperature to provide crystal **5n**. The ellipsoid contour % probability is 50%.

Figure S1. The Crystal Structure of 5n

The CCDC number of **5n** is 2328961, the detail information please see **5n**.cif document.

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) gw01-hcg

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: gw01-hcg

Bond precision:	C-C = 0.0050 A	Wavelength=1.54184									
Cell:	a=5.71587(8) alpha=90	b=16.8188(3) c=20.0111(3) beta=90.7375(13) gamma=90									
Temperature:	293 К										
	Calculated	Reported									
Volume	1923.59(5)	1923.59(5)									
Space group	P 21/n	P 1 21/n 1									
Hall group	-P 2yn	-P 2yn									
Moiety formula	C22 H17 C1 N2 O :	S C22 H17 C1 N2 O S									
Sum formula	C22 H17 C1 N2 O :	S C22 H17 C1 N2 O S									
Mr	392.89	392.88									
Dx,g cm-3	1.357	1.357									
Z	4	4									
Mu (mm-1)	2.880	2.880									
F000	816.0	816.0									
F000'	820.73										
h, k, lmax	7,21,25	7,21,25									
Nref	4044	3872									
Tmin, Tmax	0.694,0.750	0.792,1.000									
Tmin'	0.601										

Correction method= # Reported T Limits: Tmin=0.792 Tmax=1.000 AbsCorr = MULTI-SCAN

Data completeness= 0.957 Theta(max) = 76.608

R(reflections)= 0.0685(3643) Npar= 244 S = 1.008

wR2(reflections) = 0.1876(3872)

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test.

Alert level	С															
PLAT230_ALERT_2_C	Hir	shfe	ld T	est	Dif	f fo	r	C21		0	22				7.	0 s.u.
PLAT241_ALERT_2_C	Hig	h	Mai	nMo	1' U	Jeq a	s (Compar	ed	to Nei	ghbo	rs	of		C1	9 Check
PLAT242_ALERT_2_C	Low	2 I	Mai	nMo	1' U	Jeq a	s (Compar	ed	to Nei	ghbo	rs	of		C1	7 Check
PLAT340_ALERT_3_C	Low	Bon	d Pr	eci	sior	on	C	-C Bon	ds					0.0	049	5 Ang.
PLAT906_ALERT_3_C	Lar	ge K	Val	ue	in t	he A	na	lysis	of	Varian	ce .			2	.52	4 Check
PLAT911_ALERT_3_C	Mis	sing	FCF	Re	fl E	Betwe	en	Thmin	&	STh/L=		0.6	00		1	1 Report
6	3	0,	1	0	1,	-1	1	1,	0	3 2,	3	18	2,	-1	1	4,
-1	2	4,	-6	9	4,	1	0	5,	0	11 19,	0	11	20,			
-																
Alert level	G															

PLAT003_ALERT_2_G Number of Uiso or Uij Restrained non-H Atoms ... PLAT072_ALERT_2_G SHELXL First Parameter in WGHT Unusually Large 2 Report 0.10 Report PLAT177_ALERT_4_G The CIF-Embedded .res File Contains DELU Records 1 Report PLAT178_ALERT_4_G The CIF-Embedded .res File Contains SIMU Records PLAT188_ALERT_3_G A Non-default SIMU Restraint Value has been used 1 Report 0.0004 Report PLAT199_ALERT_3_G A Non-default SIMU Restraint Value has been used PLAT199_ALERT_1_G Reported __cell_measurement_temperature (K) PLAT200_ALERT_1_G Reported __diffrn_ambient_temperature (K) PLAT860_ALERT_3_G Number of Least-Squares Restraints PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600 PLAT913_ALERT_3_G Missing # of Very Strong Reflections in FCF 293 Check 293 Check 7 Note 160 Note 1 Note 0 3 2, PLAT933_ALERT_2_G Number of HKL-OMIT Records in Embedded .res File 1 Note 1 0 5, PLAT941_ALERT_3_G Average HKL Measurement Multiplicity 3.4 Low 10.31 Note PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density. 0 Info 0 ALERT level A = Most likely a serious problem - resolve or explain

0 ALERT level B = A potentially serious problem, consider carefully 6 ALERT level C = Check. Ensure it is not caused by an omission or oversight 14 ALERT level G = General information/check it is not something unexpected

2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data

7 ALERT type 2 Indicator that the structure model may be wrong or deficient 7 ALERT type 3 Indicator that the structure quality may be low

3 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 06/01/2024; check.def file version of 05/01/2024

5. Evaluation of Green Chemistry Metrics for the Synthesis of 4a

Table S1 Evaluation of green chemistry metrics for the synthesis of 4a using astoichiometric (equimolar) amount of reactants.

MS (EI, 70 eV) *m/z* 252, 220, 191, 178, 165, 121, 115, 91, 77.

Methyl α -*Diazo-\alpha-phenylacetate* (*3a*).² Eluent: petroleum ether/ethyl acetate (v/v = 15/1); red oil in 74% yield (1.30 g, 7.40 mmol); IR (KBr, cm⁻¹) 3060, 3026, 2953, 2845, 2089, 1706, 1598, 1576, 1499, 1435, 1353, 1287, 1250, 1193, 1155, 1077, 1052, 1026, 909, 756, 691; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.49-7.46 (m, 2H), 7.40-7.36 (m, 2H), 7.20-7.16 (m, 1H), 3.86 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 165.6, 129.0, 125.9, 125.5, 124.0, 63.3, 52.0.

Methyl 2-Diazo-2-(4-fluorophenyl)acetate (**3b**).² Eluent: petroleum ether/ethyl acetate (v/v = 15/1); orange oil in 70% yield (1.36 g, 7.00 mmol); IR (KBr, cm⁻¹) 3047, 3003, 2956, 2848, 2092, 1705, 1606, 1511, 1438, 1349, 1289, 1251, 1193, 1160, 1102, 1045, 1013, 911, 833, 741; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.44 (dd, J = 8.8, 5.2 Hz, 2H), 7.09 (t, J = 8.7 Hz, 2H), 3.86 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 165.6, 161.0 (d, J = 245.0 Hz), 125.9 (d, J = 8.0 Hz), 121.2 (d, J = 3.0 Hz), 116.0 (d, J = 22.0 Hz), 62.5, 52.1.

Methyl α -(4-Chlorophenyl)- α -diazoacetate (3c).² Eluent: petroleum ether/ethyl acetate (v/v = 15/1); orange solid in 72% yield (1.51 g, 7.20 mmol); mp 52-54 °C; IR (KBr, cm⁻¹) 3076, 3045, 3001, 2954, 2920, 2849, 2098, 1698, 1657, 1497, 1437, 1410, 1358, 1281, 1250, 1195, 1045, 834, 815, 741; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.41-7.38 (m, 2H), 7.34-7.31 (m, 2H), 3.85 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 165.2, 131.4, 129.1, 125.0, 124.1, 63.0, 52.1.

Ethyl α -(*4-Bromophenyl*)- α -*diazoacetate* (*3d*).³ Eluent: petroleum ether/ethyl acetate (v/v = 15/1); orange solid in 86% yield (2.30 g, 8.60 mmol); mp 53-55 °C; IR (KBr, cm⁻¹) 2990, 2911, 2102, 1698, 1585, 1489, 1390, 1371, 1339, 1274, 1239, 1172, 1078, 1048, 828, 815; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.46-7.44 (m, 2H), 7.34-7.32 (m, 2H), 4.31 (q, *J* = 7.1 Hz, 2H), 1.32 (t, *J* = 7.1 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 164.7, 131.9, 125.2, 124.9, 119.1, 63.2, 61.2, 14.5.

Methyl α -*Diazo-\alpha-(4-methoxyphenyl)acetate (3e)*.³ Eluent: petroleum ether/ethyl acetate (v/v = 10/1); red solid in 52% yield (1.07 g, 5.20 mmol); mp 46-47 °C;IR (KBr, cm⁻¹) 3002, 2954, 2838, 2085, 1703, 1610, 1513, 1437, 1351, 1297, 1258, 1184, 1157, 1051, 1029, 829, 740; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.38 (d, *J* = 8.9 Hz, 2H), 6.94 (d, *J* = 8.9 Hz, 2H), 3.85 (s, 3H), 3.81 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 166.2, 158.1, 126.0, 116.9, 114.6, 60.4, 55.4, 52.0.

Methyl α -(3-Chlorophenyl)- α -diazoacetate (3f).² Eluent: petroleum ether/ethyl acetate (v/v = 15/1); orange solid in 54% yield (1.13 g, 5.40 mmol); mp 52-53 °C; IR (KBr, cm⁻¹) 3008, 2957, 2919, 2850, 2093, 1698, 1595, 1562, 1482, 1441, 1359, 1246, 1161, 1047, 892, 777, 740; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.52 (s, 1H), 7.31-7.27 (m, 2H), 7.12 (dt, *J* = 7.0, 1.9 Hz, 1H), 3.85 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 165.0, 135.0, 130.0, 127.7, 125.7, 123.6, 121.5, 63.2, 52.1.

Methyl α -(*3-Bromophenyl*)- α -*diazoacetate* (*3g*).² Eluent: petroleum ether/ethyl acetate (v/v = 15/1); orange solid in 56% yield (1.40 g, 5.50 mmol); mp 51-53 °C; IR (KBr, cm⁻¹) 3072, 3001, 2953, 2092, 1707, 1591, 1557, 1479, 1437, 1355, 1247, 1193, 1157, 1047, 993, 886, 776, 719; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.67 (t, *J* = 1.9

Hz, 1H), 7.35 (d, J = 7.8 Hz, 1H), 7.27 (d, J = 7.9 Hz, 1H), 7.21 (t, J = 7.9 Hz, 1H), 3.85 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 164.9, 130.3, 128.7, 128.0, 126.4, 123.1, 122.0, 63.1, 52.1.

Methyl α -(2-*Chlorophenyl*)- α -*diazoacetate* (3*h*).² Eluent: petroleum ether/ethyl acetate (v/v = 15/1); yellow oil in 68% yield (1.43 g, 6.80 mmol); IR (KBr, cm⁻¹) 3070, 3000, 2953, 2844, 2099, 1710, 1590, 1480, 1435, 1352, 1287, 1243, 1194, 1158, 1077, 1029, 916, 756, 708; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.52 (d, *J* = 7.8 Hz, 1H), 7.38 (d, *J* = 7.8 Hz, 1H), 7.30-7.21 (m, 2H), 3.80 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 165.8, 133.7, 132.3, 130.0, 129.6, 127.1, 123.9, 61.8, 52.2.

(Z)-3-Benzyl-5-phenyl-2-(phenylimino)thiazolidin-4-one (4a). Eluent: petroleum ether/ethyl acetate (v/v = 8/1); yellow liquid in 84% yield (30.1 mg, 0.08 mmol); IR (KBr, cm⁻¹) 3061, 3031, 2922, 2850, 1725, 1627, 1591, 1491, 1452, 1425, 1381, 1333, 1266, 1154, 1077, 1027, 976, 834, 737, 697; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.51 (d, *J* = 8.0 Hz, 2H), 7.34-7.26 (m, 10H), 7.10 (t, *J* = 8.0 Hz, 1H), 7.00 (d, *J* = 8.0 Hz, 2H), 5.12-4.99 (m, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 172.9, 152.7, 148.0, 136.2, 135.6, 129.3, 129.2, 129.1, 128.9, 128.6, 128.3, 128.0, 124.8, 121.2, 51.8, 46.7; MS (EI, 70 eV) *m*/z 358, 270, 207, 121, 91, 77; HRMS (ESI) *m*/z [M + H]⁺ calcd for C₂₂H₁₉N₂OS 359.1213, found 359.1230.

(Z)-3-Benzyl-2-((4-ethylphenyl)imino)-5-phenylthiazolidin-4-one (4b). Eluent: petroleum ether/ethyl acetate (v/v = 8/1); colorless liquid in 83% yield (32.2 mg, 0.08 mmol); IR (KBr, cm⁻¹) 3062, 3030, 2963, 2929, 2871, 1723, 1627, 1603, 1569, 1505, 1495, 1454, 1426, 1380, 1330, 1177, 1153, 1079, 974, 839, 755, 698; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.52 (d, *J* = 7.9 Hz, 2H), 7.34-7.15 (m, 10H), 6.93 (d, *J* = 7.9 Hz, 2H), 5.13-5.00 (m, 3H), 2.62 (q, *J* = 7.7 Hz, 2H), 1.22 (t, *J* = 7.7 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 172.9, 152.2, 145.5, 140.7, 136.2, 135.7, 129.1, 128.8, 128.6, 128.5, 128.3, 127.9, 121.0, 51.7, 46.6, 28.4, 15.7; MS (EI, 70 eV) *m*/z 386, 268, 165, 121, 91, 77; HRMS (ESI) *m*/z [M + H]⁺ calcd for C₂₄H₂₃N₂OS 387.1526, found 387.1543.

(Z)-3-Benzyl-2-((4-methoxyphenyl)imino)-5-phenylthiazolidin-4-one (4c). Eluent: petroleum ether/ethyl acetate (v/v = 5/1); yellow liquid in 81% yield (31.4 mg, 0.08 mmol); IR (KBr, cm⁻¹) 3062, 3033, 3003, 2950, 2834, 1727, 1621, 1506, 1454, 1426, 1381, 1290, 1247, 1172, 1079, 1032, 975, 834, 783, 716, 697; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.50 (d, *J* = 8.0 Hz, 2H), 7.31-7.23 (m, 8H), 6.97-6.84 (m, 4H), 5.10-4.98 (m, 3H), 3.71 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 172.9, 157.0, 152.2, 141.1, 136.3, 135.8, 129.2, 129.1, 128.8, 128.6, 128.3, 128.0, 122.3, 114.6, 55.5, 51.7, 46.7; MS (EI, 70 eV) *m/z* 388, 300, 121, 91, 77; HRMS (ESI) *m/z* [M + H]⁺ calcd for C₂₃H₂₁N₂O₂S 389.1318, found 389.1336.

(Z)-3-Benzyl-2-((4-fluorophenyl)imino)-5-phenylthiazolidin-4-one (4d). Eluent: petroleum ether/ethyl acetate (v/v = 8/1); yellow liquid in 58% yield (21.8 mg, 0.06 mmol); IR (KBr, cm⁻¹) 3063, 3032, 2946, 1727, 1624, 1503, 1453, 1427, 1378, 1265, 1231, 1150, 1092, 1079, 1029, 975, 924, 838, 794, 695; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.51-7.48 (m, 2H), 7.35-7.27 (m, 8H), 7.04-6.93 (m, 4H), 5.13-4.99 (m, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 172.8, 160.1 (d, *J* = 241.0 Hz), 153.2 (d, *J* = 2.0 Hz), 143.9 (d, *J* = 3.0 Hz), 136.0, 135.4, 129.1, 129.0, 128.9, 128.6, 128.2, 128.0, 122.5 (d, *J* = 8.0 Hz), 116.0 (d, *J* = 23.0 Hz), 51.7, 46.6; MS (EI, 70 eV) *m*/z 376, 258, 225, 121, 91, 77; HRMS (ESI) *m*/z [M + H]⁺ calcd for C₂₂H₁₈N₂OSF 377.1118, found 377.1133.

(Z)-3-Benzyl-2-((4-chlorophenyl)imino)-5-phenylthiazolidin-4-one (4e). Eluent: petroleum ether/ethyl acetate (v/v = 8/1); colorless liquid in 68% yield (26.7 mg, 0.07 mmol); IR (KBr, cm⁻¹) 3087, 3063, 3032, 2946, 1726, 1627, 1587, 1485, 1453, 1426, 1379, 1330, 1265, 1234, 1154, 1084, 1011, 975, 835, 732, 697; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.48 (d, *J* = 8.0 Hz, 2H), 7.31-7.24 (m, 10H), 6.91 (d, *J* = 8.0 Hz, 2H), 5.08-4.95 (m, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 172.8, 153.5, 146.6, 136.1, 135.5, 130.1, 129.5, 129.2, 129.1, 129.0, 128.7, 128.3, 128.1, 122.7, 51.9, 46.7; MS (EI, 70 eV) *m*/z 392, 304, 121, 91, 77; HRMS (ESI) *m*/z [M + H]⁺ calcd for C₂₂H₁₈N₂OSCl 393.0823, found 393.0838.

(Z)-3-Benzyl-2-((4-bromophenyl)imino)-5-phenylthiazolidin-4-one (4f). Eluent: petroleum ether/ethyl acetate (v/v = 8/1); yellow liquid in 74% yield (32.3 mg, 0.07 mmol); IR (KBr, cm⁻¹) 3086, 3063, 3032, 2947, 1726, 1634, 1581, 1482, 1454, 1427, 1378, 1265, 1233, 1151, 1100, 1070, 1007, 974, 832, 733, 696; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.47 (d, *J* = 8.0 Hz, 2H), 7.40 (d, *J* = 8.0 Hz, 2H), 7.29-7.25 (m, 8H), 6.87-6.84 (m, 2H), 5.07-4.95 (m, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 172.8, 153.4, 147.0, 136.0, 135.4, 132.4, 129.2, 129.1, 129.0, 128.7, 128.3, 128.1, 123.1, 117.9, 51.9, 46.7; MS (EI, 70 eV) *m/z* 438, 320, 121, 91, 77; HRMS (ESI) *m/z* [M + H]⁺ calcd for C₂₂H₁₈N₂OSBr 437.0318, found 437.0336.

(Z)-3-Benzyl-5-phenyl-2-((4-(trifluoromethyl)phenyl)imino)thiazolidin-4-one (4g). Eluent: petroleum ether/ethyl acetate (v/v = 8/1); yellow liquid in 59% yield (25.1 mg, 0.06 mmol); IR (KBr, cm⁻¹) 3065, 3033, 2947, 1729, 1609, 1512, 1495, 1454, 1380, 1320, 1240, 1106, 1065, 1014, 976, 923, 848, 753, 697; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.56 (d, *J* = 8.3 Hz, 2H), 7.50-7.48 (m, 2H), 7.32-7.23 (m, 8H), 7.06 (d, *J* = 8.3 Hz, 2H), 5.09-4.96 (m, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 172.8, 154.1, 151.2 (q, *J* = 1.0 Hz), 136.0, 135.3, 129.3, 129.1, 129.0, 128.7, 128.3, 128.2, 126.6 (d, *J* = 4.0 Hz), 126.9, 125.5 (d, *J* = 270.0 Hz), 121.6, 51.9, 46.8; MS (EI, 70 eV) *m/z* 426, 308, 121, 91, 77; HRMS (ESI) *m/z* [M + H]⁺ calcd for C₂₃H₁₈N₂OSF₃ 427.1087, found 427.1100.

(Z)-4-((3-Benzyl-4-oxo-5-phenylthiazolidin-2-ylidene)amino)benzonitrile (4h). Eluent: petroleum ether/ethyl acetate (v/v = 5/1); colorless liquid in 67% yield (25.7 mg, 0.07 mmol); IR (KBr, cm⁻¹) 3063, 3033, 2947, 2225, 1729, 1629, 1590, 1497, 1426, 1378, 1334, 1241, 1154, 1108, 1079, 979, 846, 736, 700; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.59-7.56 (m, 2H), 7.47 (d, *J* = 7.5 Hz, 2H), 7.35-7.26 (m, 8H), 7.05 (d, *J* = 7.5 Hz, 2H), 5.17-4.97 (m, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 172.7, 154.4, 152.0, 135.7, 135.0, 133.5, 129.3, 129.1, 129.0, 128.7, 128.3, 128.2, 122.2, 119.1, 108.0, 52.0, 46.8; MS (EI, 70 eV) *m/z* 383, 265, 232, 121, 91, 77; HRMS (ESI) *m/z* [M + H]⁺ calcd for C₂₃H₁₈N₃OS 384.1165, found 384.1184.

(Z)-3-Benzyl-2-((3-methoxyphenyl)imino)-5-phenylthiazolidin-4-one (4i). Eluent: petroleum ether/ethyl acetate (v/v = 8/1); yellow liquid in 74% yield (28.7 mg, 0.07 mmol); IR (KBr, cm⁻¹) 3063, 3031, 3005, 2939, 2834, 1724, 1633, 1595, 1485, 1453, 1428, 1380, 1330, 1282, 1264, 1137, 1079, 1043, 977, 859, 781, 743, 697; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.51 (d, *J* = 4.0 Hz, 2H), 7.34-7.19 (m, 9H), 6.68-6.56 (m, 3H), 5.12-4.99 (m, 3H), 3.76 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 172.9, 160.5, 152.9, 149.2, 136.1, 135.6, 130.1, 129.13, 129.05, 128.8, 128.6, 128.3, 128.0, 113.4, 110.3, 107.1, 55.3, 51.7, 46.6; MS (EI, 70 eV) *m/z* 388, 300, 121, 91, 77; HRMS (ESI) *m/z* [M + H]⁺ calcd for C₂₃H₂₁N₂O₂S 389.1318, found 389.1338.

(Z)-3-Benzyl-2-((3-chlorophenyl)imino)-5-phenylthiazolidin-4-one (4j). Eluent: petroleum ether/ethyl acetate (v/v = 8/1); colorless liquid in 61% yield (23.9 mg, 0.06 mmol); IR (KBr, cm⁻¹) 3063, 3032, 2946, 1721, 1589, 1494, 1469, 1453, 1426, 1335, 1264, 1228, 1154, 1075, 1029, 977, 873, 785, 734, 692; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.47 (d, *J* = 7.8 Hz, 2H), 7.32-7.17 (m, 9H), 7.07-7.00 (m, 2H), 6.86 (d, *J* = 7.8 Hz, 1H), 5.08-4.95 (m, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 172.8, 153.9, 149.3, 136.0, 135.4, 134.8, 130.4, 129.2, 129.1, 129.0, 128.7, 128.3, 128.1, 124.8, 121.6, 119.5, 51.9, 46.7; MS (EI, 70 eV) *m/z* 392, 357, 121, 91, 77; HRMS (ESI) *m/z* [M + H]⁺ calcd for C₂₂H₁₈N₂OSCI 393.0823, found 393.0843.

(Z)-3-Benzyl-2-((3-bromophenyl)imino)-5-phenylthiazolidin-4-one (4k). Eluent: petroleum ether/ethyl acetate (v/v = 8/1); colorless liquid in 74% yield (32.3 mg, 0.07 mmol); IR (KBr, cm⁻¹) 3062, 3031, 2947, 1727, 1631, 1582, 1494, 1469, 1454, 1426, 1378, 1332, 1227, 1154, 1079, 1029, 977, 851, 783, 729, 695; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.47 (d, *J* = 7.8 Hz, 2H), 7.31-7.10 (m, 11H), 6.90 (d, *J* = 7.8 Hz, 1H), 5.07-4.94 (m, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 172.8, 154.0, 149.4, 136.0, 135.4, 130.7, 129.3, 129.1, 129.0, 128.7, 128.4, 128.2, 127.7, 124.5, 122.9, 120.0, 51.9, 46.7; MS (EI, 70 eV) *m/z* 438, 357, 121, 91, 77; HRMS (ESI) *m/z* [M + H]⁺ calcd for C₂₂H₁₈N₂OSBr 437.0318, found 437.0336.

(Z)-3-Benzyl-2-((2-chlorophenyl)imino)-5-phenylthiazolidin-4-one (41). Eluent: petroleum ether/ethyl acetate (v/v = 8/1); yellow liquid in 56% yield (22.0 mg, 0.06 mmol); IR (KBr, cm⁻¹) 3063, 3032, 2946, 1728, 1630, 1584, 1495, 1472, 1454, 1427, 1379, 1332, 1263, 1165, 1079, 1057, 1032, 976, 839, 756, 729, 698; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.54 (d, *J* = 7.8 Hz, 2H), 7.37-7.10 (m, 10H), 6.97-6.94 (m, 2H), 5.11-4.99 (m, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 172.9, 155.2, 145.4, 136.0, 135.5, 130.4, 129.3, 129.0, 128.7, 128.4, 128.2, 127.7, 126.7, 125.8, 122.1, 52.1, 46.9; MS (EI, 70 eV) *m*/z 392, 357, 121, 91, 77; HRMS (ESI) *m*/z [M + H]⁺ calcd for C₂₂H₁₈N₂OSCl 393.0823, found 393.0842.

(Z)-3-Benzyl-2-((2-bromophenyl)imino)-5-phenylthiazolidin-4-one (4m). Eluent: petroleum ether/ethyl acetate (v/v = 8/1); colorless liquid in 67% yield (29.2 mg, 0.07 mmol); IR (KBr, cm⁻¹) 3062, 3032, 2946, 1729, 1633, 1581, 1495, 1467, 1454, 1428, 1379, 1332, 1261, 1164, 1119, 1079, 1045, 1028, 975, 837, 755, 725, 697; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.56-7.52 (m, 3H), 7.28-7.14 (m, 9H), 6.95-6.85 (m, 2H), 5.11-4.98 (m, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 172.9, 155.2, 146.8, 136.0, 135.4, 133.5, 129.32, 129.27, 129.0, 128.7, 128.4, 128.2, 126.1, 121.9, 116.8, 52.1, 46.9; MS (EI, 70 eV) *m/z* 438, 357, 121, 91, 77; HRMS (ESI) *m/z* [M + H]⁺ calcd for C₂₂H₁₈N₂OSBr 437.0318, found 437.0342.

(Z)-3-Benzyl-5-phenyl-2-((2-(trifluoromethyl)phenyl)imino)thiazolidin-4-one (4n). Eluent: petroleum ether/ethyl acetate (v/v = 8/1); yellow liquid in 62% yield (26.4 mg, 0.06 mmol); IR (KBr, cm⁻¹) 3065, 3034, 2946, 1730, 1634, 1601, 1579, 1491, 1453, 1427, 1380, 1319, 1264, 1170, 1129, 1056, 1034, 977, 842, 760, 698; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.80 (d, *J* = 7.9 Hz, 1H), 7.68-7.65 (m, 2H), 7.56 (t, *J* = 7.8 Hz, 1H), 7.48-7.39 (m, 8H), 7.29 (t, *J* = 7.6 Hz, 1H), 7.16 (d, *J* = 8.0 Hz, 1H), 5.29-5.15 (m, 3H); ¹³C {¹H} NMR (100 MHz, CDCl₃, ppm) δ 172.9, 154.8, 146.5, 135.9, 135.4, 132.8, 129.3, 129.1, 129.0, 128.6, 128.3, 128.1, 127.0 (q, *J* = 5.0 Hz), 125.4, 123.0 (d, *J* = 284.0 Hz), 122.5 (q, *J* = 30.0 Hz), 119.9, 52.0, 46.9; MS (EI, 70 eV) *m*/z 426, 308, 275, 121, 91, 77; HRMS (ESI) *m*/z [M + H]⁺ calcd for C₂₃H₁₈N₂OSF₃ 427.1087, found 427.1107.

(Z)-3-Benzyl-2-((2,4-dimethoxyphenyl)imino)-5-phenylthiazolidin-4-one (40). Eluent: petroleum ether/ethyl acetate (v/v = 3/1); yellow liquid in 60% yield (25.1 mg, 0.06 mmol); IR (KBr, cm⁻¹) 3063, 3031, 3002, 2937, 2835, 1723, 1636, 1584, 1504, 1454, 1381, 1330, 1208, 1165, 1126, 1080, 1033, 911, 824, 731, 699; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.58 (d, *J* = 8.5 Hz, 2H), 7.34-7.28 (m, 8H), 6.85 (d, *J* = 8.5 Hz, 1H), 6.53 (d, *J* = 2.6 Hz, 1H), 6.44 (dd, *J* = 8.5, 2.6 Hz, 1H), 5.16-5.03 (m, 3H), 3.80 (s, 3H), 3.77 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 173.0, 157.9, 153.9, 151.9, 136.2, 135.8, 130.6, 129.2, 129.1, 128.7, 128.5, 128.3, 127.9, 121.6, 104.1, 100.1, 55.9, 55.5, 51.8, 46.6. MS (EI, 70 eV) *m/z* 418, 387, 269, 121, 91, 77; HRMS (ESI) m/z [M + H]⁺ calcd for C₂₄H₂₃N₂O₃S 419.1424, found 419.1458.

(Z)-3-Benzyl-2-((2,4-dichlorophenyl)imino)-5-phenylthiazolidin-4-one (4p). Eluent: petroleum ether/ethyl acetate (v/v = 8/1); white solid in 61% yield (26.0 mg, 0.06 mmol); mp 100-101 °C; IR (KBr, cm⁻¹) 3063, 3032, 2927, 1730, 1632, 1555, 1471, 1454, 1428, 1378, 1331, 1164, 1100, 1080, 1056, 822, 783, 713, 698; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.52 (d, J = 8.5 Hz, 2H), 7.39-7.12 (m, 10H), 6.88 (d, J = 8.5 Hz, 1H), 5.11-4.98 (m, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 172.8, 155.7, 144.0, 135.8, 135.2, 130.3, 130.1, 129.3, 129.2, 129.0, 128.7, 128.3, 128.2, 127.8, 127.6, 122.8, 52.1, 46.8; MS (EI, 70 eV) *m/z* 426, 307, 121, 91, 77; HRMS (ESI) *m/z* [M + H]⁺ calcd for C₂₂H₁₇N₂OSCl₂ 427.0433, found 427.0467.

(Z)-3-Benzyl-2-((3,4-dichlorophenyl)imino)-5-phenylthiazolidin-4-one (4q). Eluent: petroleum ether/ethyl acetate (v/v = 8/1); white solid in 61% yield (26.0 mg, 0.06 mmol); mp 115-117 °C; IR (KBr, cm⁻¹) 3088, 3064, 3032, 2947, 1727, 1629, 1584, 1495, 1468, 1378, 1332, 1264, 1165, 1125, 1079, 1027, 978, 876, 821, 735, 698; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.46 (d, *J* = 8.6 Hz, 2H), 7.34-7.09 (m, 10H), 6.82 (dt, *J* = 8.6, 2.1 Hz, 1H), 5.10-4.94 (m, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 172.7, 154.4, 147.5, 135.9, 135.2, 133.0, 131.0, 129.3, 129.1, 129.0, 128.7, 128.3, 128.20, 128.17, 123.3, 121.0, 51.9, 46.8; MS (EI, 70 eV) *m/z* 426, 357, 121, 91, 77; HRMS (ESI) *m/z* [M + H]⁺ calcd for C₂₂H₁₇N₂OSCl₂ 427.0433, found 427.0454.

(Z)-3-Benzyl-2-((3,5-bis(trifluoromethyl)phenyl)imino)-5-phenylthiazolidin-4-one (4r). Eluent: petroleum ether/ethyl acetate (v/v = 8/1); yellow liquid in 77% yield (38.0 mg, 0.08 mmol); IR (KBr, cm⁻¹) 3089, 3066, 3035, 2952, 1734, 1630, 1496, 1455, 1430, 1378, 1350, 1277, 1127, 1080, 981, 943, 890, 847, 722, 700; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.64 (s, 1H), 7.50 (d, *J* = 8.0 Hz, 2H), 7.45 (s, 2H), 7.38-7.28 (m, 8H), 5.20-5.01 (m, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 172.7, 155.7, 149.3, 135.6, 134.7, 132.7 (q, *J* = 33.0 Hz), 129.3, 129.2, 129.0, 128.7, 128.3, 128.2, 124.6, 121.8 (q, *J* = 3.0 Hz), 118.2 (q, *J* = 4.0 Hz), 52.0, 46.8; MS (EI, 70 eV) *m/z* 494, 376, 343, 272, 118, 91, 77; HRMS (ESI) *m/z* [M + H]⁺ calcd for C₂₄H₁₇N₂OSF₆ 495.0960, found 495.0984.

(Z)-3-Benzyl-2-(mesitylimino)-5-phenylthiazolidin-4-one (4s). Eluent: petroleum ether/ethyl acetate (v/v = 8/1); colorless liquid in 61% yield (24.4 mg, 0.06 mmol); IR (KBr, cm⁻¹) 3087, 3064, 3031, 2943, 2916, 2856, 1725, 1642, 1606, 1494, 1478, 1454, 1427, 1379, 1330, 1266, 1226, 1174, 1140, 1079, 1030, 976, 855, 736, 718, 697; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.51-7.48 (m, 2H), 7.31-7.24 (m, 8H), 6.82 (s, 2H), 5.15-5.01 (m, 3H), 2.22 (s, 3H), 1.99 (s, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 173.0, 152.7, 143.3, 136.2, 135.9, 133.6, 129.2, 129.02, 128.99, 128.8, 128.6, 128.1, 128.0, 51.9, 46.6, 20.9, 17.9; MS (EI, 70 eV) *m/z* 400, 385, 269, 225, 91, 77; HRMS (ESI) *m/z* [M + H]⁺ calcd for C₂₅H₂₅N₂OS 401.1682, found 401.1712.

(Z)-3-Benzyl-2-(naphthalen-1-ylimino)-5-phenylthiazolidin-4-one (4t). Eluent: petroleum ether/ethyl acetate (v/v = 8/1); yellow liquid in 66% yield (26.9 mg, 0.07 mmol); IR (KBr, cm⁻¹) 3057, 2945, 1726, 1642, 1577, 1498, 1452, 1427, 1378, 1333, 1264, 1186, 1150, 1079, 1014, 980, 859, 777, 738, 700; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.78 (d, *J* = 8.2 Hz, 1H), 7.65-7.54 (m, 4H), 7.46-7.26 (m, 11H), 7.06 (d, *J* = 7.3 Hz, 1H), 5.24-5.10 (m, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 173.1, 153.2, 144.5, 136.3, 135.5, 134.4, 129.2, 129.0, 128.9, 128.8, 128.3, 128.1, 128.0, 127.7, 126.5, 125.73, 125.72, 125.0, 123.6, 115.1, 51.9, 47.0; MS (EI, 70 eV) *m/z* 408, 331, 257, 121, 91, 77; HRMS (ESI) *m/z* [M + H]⁺ calcd for C₂₆H₂₁N₂OS 409.1369, found 409.1388.

(*Z*)-3-Benzyl-2-(methylimino)-5-phenylthiazolidin-4-one (4u). Eluent: petroleum ether/ethyl acetate (v/v = 8/1); colorless liquid in 34% yield (10.1 mg, 0.03 mmol); IR (KBr, cm⁻¹) 3061, 3029, 2945, 1722, 1640, 1494, 1451, 1419, 1363, 1303, 1177, 1104, 1026, 858, 777, 729, 697; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.41-7.24 (m, 10H), 5.17 (s, 1H), 4.62-4.52 (m, 2H), 3.29 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 172.8, 152.5, 139.2, 135.7, 129.1, 128.8, 128.5, 128.3, 127.6, 127.1, 55.6, 51.9, 30.0; MS (EI, 70 eV) *m*/*z* 296, 205, 145, 118, 91, 77; HRMS (ESI) *m*/*z* [M + H]⁺ calcd for C₁₇H₁₇N₂OS 297.1056, found 297.1059.

(Z)-3-Benzyl-2-(cyclohexylimino)-5-phenylthiazolidin-4-one (4v). Eluent: petroleum ether/ethyl acetate (v/v = 8/1); white solid in 47% yield (17.1 mg, 0.05 mmol); mp 90-92 °C; IR (KBr, cm⁻¹) 3063, 3032, 2928, 2853, 1719, 1644, 1586, 1495, 1451, 1426, 1386, 1330, 1180, 1078, 1029, 977, 910, 860, 731, 698; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.46 (d, *J* = 8.0 Hz, 2H), 7.33-7.22 (m, 8H), 5.07-4.85 (m, 3H), 3.21-3.15 (m, 1H), 1.78-1.72 (m, 4H), 1.61-1.29 (m, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 172.7, 147.5, 136.6, 136.4, 129.2, 129.1, 128.7, 128.34, 128.27, 127.7, 61.2, 51.5, 46.3, 33.7, 33.6, 25.8, 24.5; MS (EI, 70 eV) *m/z* 364, 273, 245, 118, 91, 77; HRMS (ESI) *m/z* [M + H]⁺ calcd for C₂₂H₂₅N₂OS₂ 365.1682, found 365.1702.

(*Z*)-3-(4-Methylbenzyl)-5-phenyl-2-(phenylimino)thiazolidin-4-one (5a). Eluent: petroleum ether/ethyl acetate (v/v = 8/1); yellow solid in 75% yield (27.9 mg, 0.08 mmol); mp 113-115 °C; IR (KBr, cm⁻¹) 3058, 3030, 2946, 2923, 1724, 1634, 1593, 1515, 1489, 1452, 1425, 1379, 1331, 1156, 835, 770, 724, 695; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.41 (d, *J* = 8.0 Hz, 2H), 7.33-7.25 (m, 7H), 7.12-7.08 (m, 3H), 7.00 (d, *J* = 8.0 Hz, 2H), 5.08-4.94 (m, 3H), 2.31 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 172.9, 152.8, 148.1, 137.7, 135.7, 133.2, 129.31, 129.26, 129.2, 129.1, 128.8, 128.3, 124.8, 121.2, 51.8, 46.4, 21.3; MS (EI, 70 eV) *m/z* 372, 284, 254, 105, 77; HRMS (ESI) *m/z* [M + H]⁺ calcd for C₂₃H₂₁N₂OS 373.1369, found 373.1387.

(Z)-3-(4-Chlorobenzyl)-5-phenyl-2-(phenylimino)thiazolidin-4-one (**5b**). Eluent: petroleum ether/ethyl acetate (v/v = 8/1); white solid in 54% yield (21.2 mg, 0.05 mmol); mp 124-126 °C; IR (KBr, cm⁻¹) 3062, 3031, 2947, 1725, 1634, 1593, 1490, 1452, 1425, 1379, 1330, 1156, 1093, 1016, 980, 903, 803, 770, 724, 695; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.45 (d, *J* = 8.0 Hz, 2H), 7.35-7.25 (m, 9H), 7.12 (t, *J* = 8.0 Hz, 1H), 6.99 (d, *J* = 8.0 Hz, 2H), 5.10-4.94 (m, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 172.8, 152.6, 147.8, 135.4, 134.6, 133.9, 130.7, 129.4, 129.2, 128.9, 128.8, 128.2, 124.9, 121.1, 51.8, 45.9; MS (EI, 70 eV) *m/z* 392, 274, 257, 125, 77; HRMS (ESI) *m/z* [M + H]⁺ calcd for C₂₂H₁₈N₂OSCl 393.0823, found 393.0840.

(*Z*)-3-(4-bromobenzyl)-5-phenyl-2-(phenylimino)thiazolidin-4-one (5c). Eluent: petroleum ether/ethyl acetate (v/v = 8/1); white solid in 66% yield (28.8 mg, 0.07 mmol); mp 116-118 °C; IR (KBr, cm⁻¹) 3061, 3030, 2947, 1725, 1635, 1593, 1488, 1453, 1425, 1378, 1330, 1157, 1105, 1071, 1013, 903, 833, 799, 769, 725, 695; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.41 (d, *J* = 8.3 Hz, 2H), 7.39-7.25 (m, 9H), 7.11 (t, *J* = 7.4 Hz, 1H), 6.98 (d *J* = 8.3 Hz, 2H), 5.10-4.92 (m, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 172.8, 152.6, 147.8, 135.4, 135.1, 131.7, 131.0, 129.4, 129.2, 128.9, 128.2, 124.9, 122.1, 121.1, 51.8, 46.0; MS (EI, 70 eV) *m/z* 438, 287, 136, 121, 77; HRMS (ESI) *m/z* [M + H]⁺ calcd for C₂₂H₁₈N₂OSBr 437.0318, found 437.0339.

(Z)-5-phenyl-2-(phenylimino)-3-(4-(trifluoromethyl)benzyl)thiazolidin-4-one (5d). Eluent: petroleum ether/ethyl acetate (v/v = 8/1); yellow solid in 53% yield (22.6 mg, 0.05 mmol); mp 116-118 °C; IR (KBr, cm⁻¹) 3062, 3032, 2937, 1726, 1631, 1593, 1490, 1453, 1424, 1380, 1323, 1157, 1111, 1067, 1020, 982, 904, 818, 770, 725, 696; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.60-7.55 (m, 4H), 7.34-7.26 (m, 7H), 7.11 (t, *J* = 8.2 Hz, 1H), 6.99 (d, *J* = 8.2 Hz, 2H), 5.13-5.01 (m, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 172.9, 152.5, 147.7, 140.0, 139.9 (d, *J* = 2.0 Hz), 135.3, 130.2 (q, *J* = 32.0 Hz), 129.4, 129.3, 129.2, 129.0, 128.2, 125.6 (q, *J* = 4.0 Hz), 125.0, 122.8, 121.1, 51.8, 46.1; MS (EI, 70 eV) *m*/z 426, 338, 307, 159, 77; HRMS (ESI) *m*/z [M + H]⁺ calcd for C₂₃H₁₈N₂OSF₃ 427.1087, found 427.1107.

(Z)-3-(3-methylbenzyl)-5-phenyl-2-(phenylimino)thiazolidin-4-one (5e). Eluent: petroleum ether/ethyl acetate (v/v = 8/1); yellow liquid in 58% yield (21.6 mg, 0.06 mmol); IR (KBr, cm⁻¹) 3060, 3030, 2947, 2866, 1727, 1633, 1490, 1452, 1425, 1375, 1266, 1152, 1096, 1073, 1026, 1002, 976, 910, 834, 770, 694; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.31-7.17 (m, 10H), 7.08 (t, *J* = 8.3 Hz, 2H), 6.99 (d, *J* = 8.3 Hz, 2H), 5.08-4.94 (m, 3H), 2.30 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 173.0, 152.8, 148.1, 138.2, 136.2, 135.7, 129.8, 129.4, 129.2, 128.9, 128.8, 128.6, 128.4, 126.1, 124.8, 121.3, 51.8, 46.7, 21.6; MS (EI, 70 eV) *m/z* 372, 284, 254, 105, 77; HRMS (ESI) *m/z* [M + H]⁺ calcd for C₂₃H₂₁N₂OS 373.1369, found 373.1398.

(Z)-3-(3-methoxybenzyl)-5-phenyl-2-(phenylimino)thiazolidin-4-one (**5**f). Eluent: petroleum ether/ethyl acetate (v/v = 5/1); yellow liquid in 71% yield (27.5 mg, 0.07 mmol); IR (KBr, cm⁻¹) 3060, 3031, 3003, 2950, 2835, 1730, 1648, 1492, 1453, 1433, 1381, 1329, 1290, 1264, 1232, 1152, 1054, 985, 834, 770, 740, 696; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.45-.32 (m, 8H), 7.24-7.12 (m, 5H), 6.95 (d, *J* = 8.1 Hz, 1H), 5.23-5.09 (m, 3H), 3.85 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 172.9, 159.8, 152.8, 148.0, 137.6, 135.7, 129.6, 129.4, 129.2, 128.8, 128.3, 124.8, 121.3, 121.2, 114.2, 113.9, 55.3, 51.7, 46.6; MS (EI, 70 eV) *m/z* 388, 300, 270, 121, 77; HRMS (ESI) *m/z* [M + H]⁺ calcd for C₂₃H₂₁N₂O₂S 389.1318, found 389.1338.

(Z)-3-(3-fluorobenzyl)-5-phenyl-2-(phenylimino)thiazolidin-4-one (5g). Eluent: petroleum ether/ethyl acetate (v/v = 8/1); yellow liquid in 54% yield (20.3 mg, 0.05 mmol); IR (KBr, cm⁻¹) 3062, 3031, 2930, 1725, 1634, 1592, 1488, 1452, 1425, 1380, 1331, 1254, 1157, 1075, 987, 943, 834, 770, 749, 695; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.35-7.22 (m, 10H), 7.12 (t, *J* = 8.0 Hz, 1H), 7.00 (d, *J* = 8.0 Hz, 3H), 5.13-4.98 (m, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 172.8, 162.8 (d, *J* = 245.0 Hz), 152.6, 147.7, 138.4 (d, *J* = 7.0 Hz), 135.4, 130.1 (d, *J* = 8.0 Hz), 129.3, 129.2, 128.9, 128.2, 124.9, 124.6 (d, *J* = 3.0 Hz), 121.1, 115.9 (d, *J* = 22.0 Hz), 114.9 (d, *J* = 21.0 Hz), 51.7, 46.1 (d, *J* = 2.0 Hz); MS (EI, 70 eV) *m/z* 376, 257, 225, 121, 109, 77; HRMS (ESI) *m/z* [M + H]⁺ calcd for C₂₂H₁₈N₂OSF 377.1118, found 377.1138.

(Z)-3-(3-chlorobenzyl)-5-phenyl-2-(phenylimino)thiazolidin-4-one (5h). Eluent: petroleum ether/ethyl acetate (v/v = 8/1); yellow liquid in 50% yield (19.6 mg, 0.05 mmol); IR (KBr, cm⁻¹) 3062, 3031, 2928, 2853, 1727, 1635, 1594, 1490, 1452, 1425, 1378, 1330, 1154, 1077, 1026, 982, 899, 833, 770, 726, 696; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.52 (t, *J* = 1.9 Hz, 1H), 7.39-7.22 (m, 10H), 7.15-7.11 (m, 1H), 7.02-6.99 (m, 2H), 5.14-4.96 (m, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 172.8, 152.5, 147.7, 137.9, 135.4, 134.4, 129.8, 129.3, 129.2, 129.1, 128.9, 128.20, 128.18, 127.2, 124.9, 121.1, 51.7, 46.0; MS (EI, 70 eV) *m/z* 392, 274, 257, 125, 77; HRMS (ESI) *m/z* [M + H]⁺ calcd for C₂₂H₁₈N₂OSCI 393.0823, found 393.0843.

(Z)-3-(3-bromobenzyl)-5-phenyl-2-(phenylimino)thiazolidin-4-one (5i). Eluent: petroleum ether/ethyl acetate (v/v = 8/1); yellow liquid in 63% yield (27.5 mg, 0.06 mmol); IR (KBr, cm⁻¹) 3061, 3030, 2943, 1725, 1631, 1591, 1486, 1426, 1378, 1330, 1156, 1072, 983, 900, 768, 698; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.67 (s, 1H), 7.39 (t, *J* = 8.0 Hz, 2H), 7.32-7.25 (m, 7H), 7.15-7.07 (m, 2H), 7.00 (d, *J* = 8.0 Hz, 2H), 5.07-4.91 (m, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 172.8, 152.6, 147.8, 138.3, 135.5, 132.0, 131.2, 130.2, 129.4, 129.2, 129.0, 128.3, 127.7, 125.0, 122.6, 121.2, 51.8, 46.0; MS (EI, 70 eV) *m/z* 438, 287, 136, 121, 77; HRMS (ESI) *m/z* [M + H]⁺ calcd for C₂₂H₁₈N₂OSBr 437.0318, found 437.0339.

(Z)-5-phenyl-2-(phenylimino)-3-(3-(trifluoromethyl)benzyl)thiazolidin-4-one (5j). Eluent: petroleum ether/ethyl acetate (v/v = 8/1); colorless liquid in 54% yield (23.0 mg, 0.05 mmol); IR (KBr, cm⁻¹) 3063, 3031, 2948, 1726, 1635, 1593, 1490, 1453, 1427, 1380, 1326, 1163, 1125, 1074, 909, 834, 794, 770, 751, 724, 696; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.81 (s, 1H), 7.66 (d, *J* = 7.7 Hz, 1H), 7.54 (d, *J* = 7.9 Hz, 1H), 7.42-7.25 (m, 8H), 7.13-6.98 (m, 3H), 5.15-5.02 (m, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 172.8, 152.6, 147.7, 137.0, 135.4, 132.5, 131.0 (q, *J* = 32.0 Hz), 129.4, 129.2, 129.1, 129.0, 128.2, 125.8 (q, *J* = 3.0 Hz), 125.0, 124.9 (q, *J* = 4.0 Hz), 124.2 (q, *J* = 271.0 Hz), 121.1, 51.8, 46.0; MS (EI, 70 eV) *m/z* 426, 388, 307, 159, 77; HRMS (ESI) *m/z* [M + H]⁺ calcd for C₂₃H₁₈N₂OSF₃ 427.1087, found 427.1106.

(Z)-3-(2-Methylbenzyl)-5-phenyl-2-(phenylimino)thiazolidin-4-one (5k). Eluent: petroleum ether/ethyl acetate (v/v = 8/1); yellow liquid in 45% yield (16.7 mg, 0.05 mmol); IR (KBr, cm⁻¹) 3060, 3028, 2949, 1727, 1636, 1592, 1491, 1451, 1378, 1334, 1223, 1160, 1013, 901, 835, 769, 741, 696; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.34-7.29 (m, 8H), 7.16-7.08 (m, 4H), 6.97 (d, *J* = 8.5 Hz, 2H), 5.17-5.02 (m, 3H), 2.43 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 173.0, 152.7, 147.9, 136.3, 135.5, 134.0, 130.5, 129.3, 129.2, 128.9, 128.3, 127.6, 127.2, 126.1, 124.8, 121.1, 51.8, 44.2, 19.6; MS (EI, 70 eV) *m/z* 372, 284, 254, 105, 77; HRMS (ESI) *m/z* [M + H]⁺ calcd for C₂₃H₂₁N₂OS 373.1369, found 373.1385.

(Z)-3-(2-Methoxybenzyl)-5-phenyl-2-(phenylimino)thiazolidin-4-one (51). Eluent: petroleum ether/ethyl acetate (v/v = 5/1); yellow liquid in 56% yield (21.7 mg, 0.06 mmol); IR (KBr, cm⁻¹) 3060, 3030, 2946, 2838, 1727, 1634, 1592, 1492, 1458, 1379, 1338, 1245, 1161, 1114, 1027, 997, 900, 836, 755, 696; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.35-7.26 (m, 7H), 7.21 (d, *J* = 7.7 Hz, 2H), 7.07 (t, *J* = 7.7 Hz, 1H), 6.96-6.81 (m, 4H), 5.19-5.05 (m, 3H), 3.73 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 172.6, 157.3, 152.6, 148.1, 135.8, 129.2, 129.1, 128.8, 128.7, 128.3, 128.0, 124.7, 123.8, 121.2, 120.4, 110.5, 55.4, 51.8, 42.4; MS (EI, 70 eV) *m/z* 388, 357, 269, 121, 77; HRMS (ESI) *m/z* [M + H]⁺ calcd for C₂₃H₂₁N₂O₂S 389.1318, found 389.1337.

(Z)-3-(2-Fluorobenzyl)-5-phenyl-2-(phenylimino)thiazolidin-4-one (5m). Eluent: petroleum ether/ethyl acetate (v/v = 8/1); yellow liquid in 53% yield (19.9 mg, 0.05 mmol); IR (KBr, cm⁻¹) 3062, 3031, 2933, 1729, 1624, 1593, 1492, 1455, 1426, 1383, 1233, 1160, 1104, 1074, 1027, 982, 904, 832, 756, 726, 695; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.38-7.19 (m, 9H), 7.12-7.01 (m, 3H), 6.97 (d, *J* = 8.0 Hz, 2H), 5.20-5.10 (m, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 172.6, 160.9 (d, *J* = 246.0 Hz), 152.2, 147.8, 135.5, 129.8 (d, *J* = 3.0 Hz), 129.5 (d, *J* = 8.0 Hz), 129.3, 129.2, 128.9, 128.3, 124.8, 124.1 (d, *J* = 4.0 Hz), 122.9 (d, *J* = 14.0 Hz), 121.2, 115.6 (d, *J* = 22.0 Hz), 51.7, 40.7 (d, *J* = 5.0 Hz); MS (EI, 70 eV) *m*/z 376, 288, 257, 109, 77; HRMS (ESI) *m*/z [M + H]⁺ calcd for C₂₂H₁₈N₂OSF 377.1118, found 377.1140.

(Z)-3-(2-Chlorobenzyl)-5-phenyl-2-(phenylimino)thiazolidin-4-one (5n). Eluent: petroleum ether/ethyl acetate (v/v = 8/1); yellow liquid in 43% yield (16.9 mg, 0.04 mmol); IR (KBr, cm⁻¹) 3062, 3029, 2936, 1728, 1631, 1590, 1486, 1446, 1414, 1380, 1338, 1160, 1049, 992, 903, 835, 754, 696; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.38-7.28 (m, 8H), 7.23-7.14 (m, 3H), 7.09 (t, *J* = 8.0 Hz, 1H), 6.96 (d, *J* = 8.0 Hz, 2H), 5.25-5.15 (m, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 172.7, 152.2, 147.7, 135.3, 133.2, 133.1, 129.8, 129.3, 129.2, 129.0, 128.8, 128.3, 127.9, 126.9, 124.9, 121.2, 51.8, 44.5; MS (EI, 70 eV) *m/z* 392, 274, 257, 125, 77; HRMS (ESI) *m/z* [M + H]⁺ calcd for C₂₂H₁₈N₂OSCl 393.0823, found 393.0843.

(Z)-3-(2-Bromobenzyl)-5-phenyl-2-(phenylimino)thiazolidin-4-one (50). Eluent: petroleum ether/ethyl acetate (v/v = 8/1); yellow liquid in 57% yield (24.9 mg, 0.06 mmol); IR (KBr, cm⁻¹) 3061, 3029, 2930, 1728, 1629, 1590, 1488, 1445, 1412, 1380, 1337, 1272, 1233, 1159, 1073, 992, 903, 835, 746, 696; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.54 (d, *J* = 8.0 Hz, 1H), 7.40- 7.24 (m, 8H), 7.19-7.08 (m, 3H), 6.97 (d, *J* = 7.9 Hz, 2H), 5.22-5.13 (m, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 172.6, 152.1, 147.6, 135.3, 134.7, 133.1, 129.3, 129.2, 128.94, 128.92, 128.3, 127.49, 127.47, 124.9, 123.0, 121.2, 51.8, 47.0; MS (EI, 70 eV) *m/z* 438, 287, 136, 121, 77; HRMS (ESI) *m/z* [M + H]⁺ calcd for C₂₂H₁₈N₂OSBr 437.0318, found 437.0342.

(Z)-3-(3,5-Dimethoxybenzyl)-5-phenyl-2-(phenylimino)thiazolidin-4-one (**5***p*). Eluent: petroleum ether/ethyl acetate (v/v = 3/1); yellow liquid in 63% yield (26.3 mg, 0.06 mmol); IR (KBr, cm⁻¹) 3060, 3030, 3002, 2938, 2838, 1726, 1630, 1455, 1430, 1379, 1329, 1296, 1228, 1205, 1151, 1070, 989, 929, 833, 771, 728, 696; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.33-7.26 (m, 7H), 7.11-6.98 (m, 3H), 6.67 (d, *J* = 2.3 Hz, 2H), 6.39 (t, *J* = 2.3 Hz, 1H), 5.09-4.92 (m, 3H), 3.70 (s, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 172.9, 161.0, 152.8, 148.0, 138.3, 135.7, 129.3, 129.1, 128.8, 128.3, 124.8, 121.2, 106.7, 100.3, 55.4, 51.7, 46.7; MS (EI, 70 eV) *m/z* 418, 300, 268, 121, 91, 77; HRMS (ESI) *m/z* [M + H]⁺ calcd for C₂₄H₂₃N₂O₃S 419.1424, found 419.1458.

(Z)-3-(3,4-Dichlorobenzyl)-5-phenyl-2-(phenylimino)thiazolidin-4-one (5q). Eluent: petroleum ether/ethyl acetate (v/v = 8/1); yellow liquid in 57% yield (24.3 mg, 0.06 mmol); IR (KBr, cm⁻¹) 3062, 3031, 2948, 1723, 1635, 1593, 1489, 1471, 1453, 1424, 1377, 1329, 1206, 1157, 1074, 1032, 983, 906, 823, 770, 730, 695; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.62 (d, *J* = 1.9 Hz, 1H), 7.36-7.26 (m, 9H), 7.11 (t, *J* = 7.9 Hz, 1H), 7.00 (d, *J* = 7.9 Hz, 2H), 5.11-4.90 (m, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 172.8, 152.5, 147.6, 136.2, 135.3, 132.6, 132.2, 131.1, 130.6, 129.4, 129.2, 129.0, 128.6, 128.2, 125.0, 121.2, 51.8, 45.4; MS (EI, 70 eV) *m/z* 426, 308, 275, 159, 77; HRMS (ESI) *m/z* [M + H]⁺ calcd for C₂₂H₁₇N₂OSCl₂ 427.0433, found 427.0455.

(Z)-3-(Cyclohexylmethyl)-5-phenyl-2-(phenylimino)thiazolidin-4-one (**5***r*). Eluent: petroleum ether/ethyl acetate (v/v = 8/1); white solid in 46% yield (16.7 mg, 0.05 mmol); mp 133-135 °C; IR (KBr, cm⁻¹) 3061, 3031, 2924, 2851, 1727, 1639, 1593, 1491, 1450, 1427, 1387, 1342, 1172, 1132, 1074, 1026, 956, 908, 833, 769, 725, 695; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.45-7.19 (m, 8H), 7.11 (d, *J* = 7.8 Hz, 2H), 5.19 (s, 1H), 3.87 (d, *J* = 7.4 Hz, 2H), 2.12-1.74 (m, 6H), 1.38-1.11 (m, 5H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 173.2, 153.5, 148.3, 135.8, 129.3, 129.1, 128.8, 128.3, 124.7, 121.1, 51.7, 49.3, 36.0, 30.80, 30.74, 26.4, 25.84, 25.82; MS (EI, 70 eV) *m/z* 364, 281, 269, 118, 77; HRMS (ESI) *m/z* [M + H]⁺ calcd for C₂₂H₂₅N₂OS 365.1682, found 365.1702.

(Z)-5-Phenyl-2-(phenylimino)-3-(thiophen-2-ylmethyl)thiazolidin-4-one (5s). Eluent: petroleum ether/ethyl acetate (v/v = 8/1); white solid in 63% yield (22.9 mg, 0.06 mmol); mp 109-111 °C; IR (KBr, cm⁻¹) 3062, 3030, 2946, 1725, 1634, 1592, 1489, 1452, 1420, 1382, 1325, 1184, 1139, 1074, 1025, 976, 904, 831, 770, 696; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.33-7.30 (m, 2H), 7.28-7.17 (m, 7H), 7.12-7.05 (m, 3H), 6.90 (dd, J = 5.1, 3.5 Hz, 1H), 5.23-5.13 (m, 2H), 5.03 (s, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 172.3, 152.3, 147.9, 137.4, 135.5, 129.4, 129.2, 128.9, 128.6, 128.3, 126.7, 126.3, 124.9, 121.3, 51.9, 41.1; MS (EI, 70 eV) *m/z* 364, 269, 246, 97, 77; HRMS (ESI) *m/z* [M + H]⁺ calcd for C₂₀H₁₇N₂OS₂ 365.0777, found 365.0796.

(Z)-3-(Naphthalen-1-ylmethyl)-5-phenyl-2-(phenylimino)thiazolidin-4-one (5t). Eluent: petroleum ether/ethyl acetate (v/v = 8/1); yellow liquid in 38% yield (15.5 mg, 0.04 mmol); IR (KBr, cm⁻¹) 3059, 2950, 1730, 1634, 1593, 1489, 1452, 1433, 1419, 1375, 1350, 1317, 1237, 1212, 1157, 1017, 834, 772, 728, 696; ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.36 (d, *J* = 8.1 Hz, 1H), 7.86 (d, *J* = 7.9 Hz, 1H), 7.80 (d, *J* = 8.2 Hz, 1H), 7.60 (d, *J* = 7.1 Hz, 1H), 7.54-7.30 (m, 10H), 7.11 (t, *J* = 7.4 Hz, 1H), 6.97 (d, *J* = 8.2 Hz, 2H), 5.64-5.48 (m, 2H), 5.20 (d, *J* = 30.8 Hz, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 173.0, 152.7, 147.8, 135.5, 133.9, 131.5, 131.0, 129.3, 129.1, 128.9, 128.8, 128.5, 128.3, 126.9, 126.4, 125.8, 125.2, 124.8, 123.9, 121.1, 51.7, 44.6; MS (EI, 70 eV) *m/z* 408, 372, 257, 141, 115, 77; HRMS (ESI) *m/z* [M + H]⁺ calcd for C₂₆H₂₁N₂OS 409.1369, found 409.1386.

(Z)-3-Benzyl-5-(4-fluorophenyl)-2-(phenylimino)thiazolidin-4-one (6a). Eluent: petroleum ether/ethyl acetate (v/v = 8/1); white solid in 68% yield (25.6 mg, 0.07 mmol); mp 108-110 °C; IR (KBr, cm⁻¹) 3063, 3033, 2948, 1724, 1634, 1592, 1509, 1489, 1426, 1380, 1331, 1231, 1159, 1079, 1015, 975, 848, 770, 755, 697; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.49 (d, J = 7.9 Hz, 2H), 7.32-7.18 (m, 7H), 7.10-6.92 (m, 5H), 5.12-4.96 (m, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 172.7, 162.9 (d, J = 247.0 Hz), 152.5, 148.0, 136.2, 131.4, 130.2 (d, J = 8.0 Hz), 129.4, 129.1, 128.7, 128.1, 124.9, 121.2, 116.2 (d, J = 22.0 Hz), 51.0, 46.7; MS (EI, 70 eV) *m/z* 376, 258, 225, 121, 91, 77; HRMS (ESI) *m/z* [M + H]⁺ calcd for C₂₂H₁₈N₂OSF 377.1118, found 377.1138.

(Z)-3-Benzyl-5-(4-chlorophenyl)-2-(phenylimino)thiazolidin-4-one (**6b**). Eluent: petroleum ether/ethyl acetate (v/v = 8/1); white solid in 71% yield (27.8 mg, 0.07 mmol); mp 118-119 °C; IR (KBr, cm⁻¹) 3062, 3032, 2947, 1724, 1634, 1593, 1490, 1454, 1427, 1381, 1331, 1153, 1091, 1015, 975, 840, 769, 755, 697; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.49 (d, *J* = 8.0 Hz, 2H), 7.34-7.25 (m, 7H), 7.18 (d, *J* = 8.0 Hz, 2H), 7.11 (t, *J* = 8.0 Hz, 1H), 6.99 (d, *J* = 8.0 Hz, 2H), 5.10-4.97 (m, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 172.5, 152.3, 147.8, 136.0, 134.8, 134.0, 129.7, 129.4, 129.3, 129.1, 128.6, 128.1, 124.9, 121.1, 51.0, 46.7; MS (EI, 70 eV) *m/z* 392, 240, 155, 91, 77; HRMS (ESI) *m/z* [M + H]⁺ calcd for C₂₂H₁₈N₂OSCI 393.0823, found 393.0844.

(Z)-3-Benzyl-5-(4-bromophenyl)-2-(phenylimino)thiazolidin-4-one (6c). Eluent: petroleum ether/ethyl acetate (v/v = 8/1); white solid in 73% yield (31.8 mg, 0.07 mmol); mp 119-121 °C; IR (KBr, cm⁻¹) 3061, 3032, 2942, 1725, 1629, 1589, 1488, 1425, 1380, 1331, 1155, 1074, 1010, 976, 836, 763, 698; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.49 (d, *J* = 8.0 Hz, 2H), 7.36 (d, *J* = 8.0 Hz, 2H), 7.32-7.24 (m, 5H), 7.09 (t, *J* = 8.0 Hz, 3H), 6.99 (d, *J* = 8.0 Hz, 2H), 5.08-4.95 (m, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 172.4, 152.3, 147.9, 136.1, 134.6, 132.3, 130.0, 129.5, 129.1, 128.7, 128.2, 125.0, 123.0, 121.2, 51.1, 46.8; MS (EI, 70 eV) *m/z* 438, 273, 240, 91, 77; HRMS (ESI) *m/z* [M + H]⁺ calcd for C₂₂H₁₈N₂OSBr 437.0318, found 437.0338.

(Z)-3-Benzyl-5-(4-methoxyphenyl)-2-(phenylimino)thiazolidin-4-one (6d). Eluent: petroleum ether/ethyl acetate (v/v = 5/1); white solid in 52% yield (20.2 mg, 0.05 mmol); mp 113-115 °C; IR (KBr, cm⁻¹) 3061, 3032, 2934, 2837, 1724, 1641, 1590, 1512, 1490, 1456, 1424, 1379, 1332, 1255, 1175, 1077, 1030, 842, 769, 698; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.51 (d, *J* = 8.0 Hz, 2H), 7.33-7.08 (m, 8H), 6.99 (d, *J* = 8.0 Hz, 2H), 6.83 (d, *J* = 8.0 Hz, 2H), 5.12-4.99 (m, 3H), 3.73 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 173.2, 160.0, 152.8, 148.0, 136.2, 129.5, 129.3, 129.1, 128.6, 128.0, 127.5, 124.7, 121.2, 114.6, 55.4, 51.3, 46.6; MS (EI, 70 eV) *m*/z 388, 240, 148, 91, 77; HRMS (ESI) *m*/z [M + H]⁺ calcd for C₂₃H₂₁N₂O₂S 389.1318, found 389.1338.

(Z)-3-Benzyl-5-(3-chlorophenyl)-2-(phenylimino)thiazolidin-4-one (6e). Eluent: petroleum ether/ethyl acetate (v/v = 8/1); yellow liquid in 55% yield (21.6 mg, 0.06 mmol); IR (KBr, cm⁻¹) 3062, 3032, 2946, 1724, 1637, 1593, 1489, 1477, 1454, 1428, 1381, 1331, 1153, 1079, 1027, 975, 899, 756, 697; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.51 (d, *J* = 8.0 Hz, 2H), 7.35-7.10 (m, 10H), 7.00 (d, *J* = 8.0 Hz, 2H), 5.12-4.99 (m, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 172.3, 152.1, 147.8, 137.4, 136.0, 135.0, 130.4, 129.4, 129.1, 128.6, 128.4, 128.1, 126.6, 124.9, 121.1, 51.1, 46.8; MS (EI, 70 eV) *m/z* 392, 240, 207, 91, 77; HRMS (ESI) *m/z* [M + H]⁺ calcd for C₂₂H₁₈N₂OSCl 393.0823, found 393.0842.

(Z)-3-Benzyl-5-(3-bromophenyl)-2-(phenylimino)thiazolidin-4-one (6f). Eluent: petroleum ether/ethyl acetate (v/v = 8/1); yellow liquid in 46% yield (20.1 mg, 0.04 mmol); IR (KBr, cm⁻¹) 3061, 3032, 2943, 1725, 1632, 1590, 1488, 1424, 1381, 1332, 1156, 1075, 1027, 976, 889, 757, 696; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.50 (d, J = 7.7 Hz, 2H), 7.43-7.40 (m, 2H), 7.34-7.27 (m, 5H), 7.21-7.10 (m, 3H), 7.00 (d, J = 8.3 Hz, 2H), 5.11-4.98 (m, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 172.3, 152.1, 147.8, 137.7, 136.0, 132.0, 131.3, 130.6, 129.4, 129.1, 128.7, 128.1, 127.0, 124.9, 123.1, 121.1, 51.0, 46.8; MS (EI, 70 eV) *m/z* 438, 273, 240, 91, 77; HRMS (ESI) *m/z* [M + H]⁺ calcd for C₂₂H₁₈N₂OSBr 437.0318, found 437.0340.

(*Z*)-3-Benzyl-5-(2-chlorophenyl)-2-(phenylimino)thiazolidin-4-one (**6**g). Eluent: petroleum ether/ethyl acetate (v/v = 8/1); yellow liquid in 41% yield (16.1 mg, 0.04 mmol); IR (KBr, cm⁻¹) 3062, 3032, 2941, 1725, 1635, 1590, 1486, 1426, 1383, 1332, 1156, 1077, 1042, 977, 837, 748, 698; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.57 (d, *J* = 8.0 Hz, 2H), 7.35-7.28 (m, 6H), 7.18-7.07 (m, 4H), 6.97 (d, J = 7.8 Hz, 2H), 5.53 (s, 1H), 5.11 (s, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 172.2, 152.9, 147.9, 136.0, 134.4, 133.9, 130.2, 130.1, 129.8, 129.4, 128.6, 128.1, 127.7, 124.8, 121.2, 49.4, 46.8; MS (EI, 70 eV) *m*/z 392, 240, 207, 148, 97, 77; HRMS (ESI) *m*/z [M + H]⁺ calcd for C₂₂H₁₈N₂OSCl 393.0823, found 393.0843.

*Methyl 1,2-diphenylcyclopropane-1-carboxylate (8).*⁴ Eluent: petroleum ether/ethyl acetate (v/v = 7/1); white solid in 35% yield (8.8 mg, 0.04mmol); ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.41-7.24 (m, 10H), 5.17 (s, 1H), 4.57 (q, *J* = 8.0 Hz, 2H), 3.29 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 172.8, 152.5, 139.3, 135.7, 129.1, 128.9, 128.5, 128.3, 127.6, 127.1, 55.6, 51.9, 30.0. MS (EI, 70 eV) *m/z* 252, 220, 191, 178, 165, 121, 115, 91, 77.

1-Benzyl-3-phenylthiourea (9).⁵ ¹H NMR (400 MHz, DMSO-*d*₆, ppm) δ 9.64 (s, 1H), 8.17 (s, 1H), 7.44 (d, *J* = 7.4 Hz, 2H), 7.35-7.30 (m, 6H), 7.27-7.23 (m, 1H), 7.11 (t, *J* = 8.1 Hz, 1H), 4.75 (d, *J* = 5.7 Hz, 2H); ¹³C{¹H} NMR (100 MHz, DMSO-*d*₆, ppm) δ 181.3, 139.6, 139.5, 129.1, 128.8, 127.9, 127.4, 124.8, 123.8, 47.7;

References:

(1) H. M. L. Davies, T. Hansen, M. R. Churchill, Catalytic asymmetric C-H activation of alkanes and tetrahydrofuran, *J. Am. Chem. Soc.*, 2000, **122**, 3063–3070.

(2) H. Keipour, T. Ollevier, Iron-catalyzed carbene insertion reactions of α -diazoesters into SiH bonds, *Org. Lett.* 2017, **19**, 5736-5739.

(3) B. Muriel, J. Waser, Azide radical initiated ring opening of cyclopropenes Leading to alkenyl nitriles and polycyclic aromatic compounds, *Angew. Chem. Int. Ed.*, 2021, **60**, 4075-4079.

(4) T. Xiao, M. Mei, Y. He, L. Zhou, Blue light-promoted cross-coupling of aryldiazoacetates and diazocarbonyl compounds, *Chem. Commun.*, 2018, **54**, 8865–8868.

(5) M. Zhao, Y. Guo, Q. Wang, L. Liu, S. Zhang, W. Guo, L.-P. Wu, F. G. Qiu, Synthesis of 2-iminothiazolidin-4-ones via copper-catalyzed [2 + 1 + 2] tandem annulation, *RSC Adv.*, 2023, **13**, 2220-2224.

8. NMR Spectra

¹³C{¹H} NMR of 3a in CDCl₃ (100 MHz)

¹³C{¹H} NMR of 3b in CDCl₃ (100 MHz)

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR of 3d in CDCl₃ (100 MHz)

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR of 3e in CDCl₃ (100 MHz)

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR of 3f in CDCl3 (100 MHz)

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR of 3g in CDCl₃ (100 MHz)

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR of 3h in CDCl₃ (100 MHz)

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR of 3i in CDCl3 (100 MHz)

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR of 4a in CDCl₃ (100 MHz)

¹³C{¹H} NMR of 4b in CDCl₃ (100 MHz)

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR of 4c in CDCl₃ (100 MHz)

¹³C{¹H} NMR of 4d in CDCl₃ (100 MHz)

¹³C{¹H} NMR of 4e in CDCl₃ (100 MHz)

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR of 4f in CDCl₃ (100 MHz)

¹³C{¹H} NMR of 4g in CDCl₃ (100 MHz)

¹³C{¹H} NMR of 4h in CDCl₃ (100 MHz)

¹³C{¹H} NMR of 4i in CDCl₃ (100 MHz)

¹³C{¹H} NMR of 4j in CDCl₃ (100 MHz)

¹³C{¹H} NMR of 4k in CDCl₃ (100 MHz)

¹³C{¹H} NMR of 4l in CDCl₃ (100 MHz)

¹³C{¹H} NMR of 4m in CDCl₃ (100 MHz)

¹³C{¹H} NMR of 4n in CDCl₃ (100 MHz)

¹³C{¹H} NMR of 4p in CDCl₃ (100 MHz)

¹³C{¹H} NMR of 4q in CDCl₃ (100 MHz)

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR of 4r in CDCl₃ (100 MHz)

¹³C{¹H} NMR of 4s in CDCl₃ (100 MHz)

¹³C{¹H} NMR of 4t in CDCl₃ (100 MHz)

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR of 4u in CDCl₃ (100 MHz)

¹³C{¹H} NMR of 4v in CDCl₃ (100 MHz)

¹H NMR of 5a in CDCl₃ (400 MHz)

¹³C{¹H} NMR of 5a in CDCl₃ (100 MHz)

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR of 5b in CDCl₃ (100 MHz)

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR of 5c in CDCl₃ (100 MHz)

¹³C{¹H} NMR of 5d in CDCl₃ (100 MHz)

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR of 5e in CDCl₃ (100 MHz)

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR of 5f in CDCl3 (100 MHz)

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR of 5g in CDCl₃ (100 MHz)

¹³C{¹H} NMR of 5h in CDCl₃ (100 MHz)

¹³C{¹H} NMR of 5i in CDCl₃ (100 MHz)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR of 5j in CDCl₃ (100 MHz)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹³C{¹H} NMR of 5k in CDCl₃ (100 MHz)

¹³C{¹H} NMR of 5l in CDCl₃ (100 MHz)

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR of 5m in CDCl3 (100 MHz)

¹³C{¹H} NMR of 5n in CDCl₃ (100 MHz)

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR of 50 in CDCl₃ (100 MHz)

¹³C{¹H} NMR of 5p in CDCl₃ (100 MHz)

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR of 5q in CDCl₃ (100 MHz)

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR of 5r in CDCl₃ (100 MHz)

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR of 5s in CDCl₃ (100 MHz)

¹H NMR of 5t in CDCl₃ (400 MHz)

¹³C{¹H} NMR of 5t in CDCl₃ (100 MHz)

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR of 6a in CDCl₃ (100 MHz)

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR of 6b in CDCl₃ (100 MHz)

¹³C{¹H} NMR of 6c in CDCl₃ (100 MHz)

¹³C{¹H} NMR of 6d in CDCl₃ (100 MHz)

¹³C{¹H} NMR of 6e in CDCl₃ (100 MHz)

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR of 6f in CDCl₃ (100 MHz)

¹H NMR of 6g in CDCl₃ (400 MHz)

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR of 6g in CDCl₃ (100 MHz)

¹³C{¹H} NMR of 8 in CDCl₃ (100 MHz)

¹³C{¹H} NMR of 9 in DMSO-*d*₆ (100 MHz)