Multiscale Investigation of the Mechanism of Biomass Deconstruction in

the Dimethyl isosorbide/Water Co-Solvent Pretreatment System

Shuang Yang^{a,b,c,¥}, Mood Mohan^{d,¥}, Xiangbo Gao^{a,b,c}, Xianpeng Yang^{a,b}, Jiawei Zhu^e,

Jeremy C. Smith^f, Lei Wang^{a,b,*}

^a Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China

^b Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China

^c College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China

^d Biosciences Division and Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States

^e College of Chemistry and Materials Engineering, Zhejiang A & F University, Hangzhou 311300, China

^f Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States

[¥]Equally contributed to the manuscript.

Corresponding author(s)

* E-mail: wang_lei@westlake.edu.cn (L. Wang)

	Pulp composition					Lignin	Hemicellulose	
	Glu	XY	GM	AG	TL	removal efficiency	removal efficiency	Cellulose retention
Eucalyptus	50.2%	12.9%	1.9%	1.25%	31.1%	-		100%
60 min_10:0	81.6%	4.4%	0.8%	0.3%	12.6%	79.4%	81.7%	82.4%
60 min_9:1	92.7%	0.40%	0.2%	-	6.8%	91.2%	98.6%	77.5%
60 min_8:2	77.5%	4.3%	1.4%		16.7%	71.3%	80.5%	82.8%

Table.S1 Composition of original and pretreated substrates, lignin removal efficiency and cellulose retention under various conditions.¹

Note:

^a Reaction condition: 1.5 g substrate in 15 ml co-solvent, 120 °C;

^b Glu: glucan, XY: xylan, GM: glucomannan, AG: arabinogalactan, TL: total lignin;

^c-: not detected.

Lignin/Solvent	DMI	H ₂ O	Simulations box size (Å)			
system	molecules	molecules	Х	Y	Ζ	
H ₂ O	-	8000	63.95	63.95	63.95	
DMI	1015	-	66.04	66.04	66.04	
DMI/H ₂ O (9:1)	914	800	65.87	65.87	65.87	
DMI/H ₂ O (8:2)	812	1600	65.65	65.65	65.65	
DMI/H ₂ O (1:1)	508	4000	65.08	65.08	65.08	

Table.S2 Summary of the molecular dynamics simulation system.

Table.S3 Assignment of Raman band for the main components.

Raman shift	Component	Assignment	
(cm ⁻¹)			
2945	C ^a , H ^b , L ^c	CH stretching in OCH ₃ asymmetric	
		vibration	
2897*	С	CH and CH ₂ strectching	
1660*	L	C=C in coniferyl alcohol and coniferaldehyde	
		C=O in coniferaldehyde	
1605*	L	Aryl ring stretching vibration	
1330	С	HCC and HOC vibration	
1227	L	Aryl-O of aryl OH and aryl OCH_3	
		Guaiacyl ring vibration	
1121	С, Н	Heavy atom (CC and CO) strectching	
1098	С, Н	Heavy atom (CC and CO) strectching	

a Cellulose. b Hemicellulose. c Lignin.

* For integral imaging.

The calculation formulas of non-bonded interaction energies

The total non-bonded interaction energies ($^{I.E.non - bonded}$) between lignin and DMI/water are calculated as:

$$I.E_{Non-bonded}^{total} (kJ / mol) = E_{elec} + E_{vdW}$$
(S1)

Here, E_{elec} is the electrostatic energy (in kJ/mol) and E_{vdW} is the vdW energies (in kJ/mol). Further, the electrostatic and vdW interactions between lignin and DMI/water are calculated as following equations:

$$E_{elec} = E_{elec}^{complex \ (lignin+DMI/water)} - \left(E_{elec}^{lignin} + E_{elec}^{DMI/water}\right) \tag{S2}$$

$$E_{vdW} = E_{vdW}^{complex \ (lignin+DMI/water)} - \left(E_{vdW}^{lignin} + E_{vdW}^{DMI/water}\right) \tag{S3}$$

 $E_{elec}^{complex}$ and $E_{vdW}^{complex}$ are the electrostatic and vdW energies of complex mixture (lignin/DMI or lignin/water). E_{elec}^{lignin} and $E_{vdW}^{DMI/water}$ and E_{vdW}^{lignin} and $E_{vdW}^{DMI/water}$ are the individual electrostatic and vdW energies of lignin and DMI/or water, respectively.

Figure.S1 The 3D macrostructures of the *Eucalyptus* cross-sections before and after DMI/H₂O pretreatment.

Figure.S2 Changes in fluorescence intensity of *Eucalyptus* cell walls before and after DMI/ H_2O co-solvent pretreatment. (a,b,c,d) Green fluorescent. (e,f,g,h) DsRed fluorescent. (i,j,k,l) Merge.

Figure.S3 Milled wood lignin (MWL) solubility in DMI/H_2O co-solvent at 10:0, 9:1 and 8:2 volume ratio.

Lignin in DMI/H₂O (8:2)

Lignin in DMI/H₂O (1:1)

Figure.S4 Representative snapshots of lignin from the simulation trajectories in H_2O , DMI/ H_2O (9:1), DMI/ H_2O (8:2), and DMI/ H_2O (1:1) systems. Carbon, oxygen, and hydrogen atoms are colored in cyan, red, and white, respectively.

Lignin in DMI/H₂O (9:1)

Lignin in DMI/H₂O (8:2)

Lignin in DMI/H₂O (1:1)

Figure.S5 Representative snapshots of lignin-DMI/H₂O simulation trajectories. yellow, red, and blue colors represent lignin, DMI, and H₂O, respectively.

Figure.S6 Representative MD snapshot of lignin-DMI/H₂O interactions in DMI/H₂O at 9:1 volume ratio. Carbon, oxygen, and hydrogen atoms are colored in cyan, red, and white, respectively.

References

1. S. Yang, X. Yang, X. Meng and L. Wang, *Green Chemistry*, 2022, 24, 4082-4094.