Supporting Information

Direct Trifluoromethylthiolation of Terminal Alkynes Mediated by a

Hypervalent Trifluoromethylthio-Iodine(III) Reagent; Boosting Effect of

Fluorinated Alcohol

Yu-Xin Cheng,[‡] Xiao-Guang Yang,[‡] Feng-Huan Du,[‡] and Chi Zhang*

State Key Laboratory of Elemento-Organic Chemistry, The Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China

zhangchi@nankai.edu.cn

Table of Contents

General information
1. General procedure for the preparation of hypervalent trifluoromethylthio-iodine(III)
reagent TFTI3
2. Optimization of Reaction Conditions4
2.1 Conditional Screening4
3. General procedure for direct trifluoromethylthiolation of terminal alkynes4
3.1 General Procedure A (GP A)4
3.2 General Procedure B (GP B)5
3.2 General Procedure B (GP C)5
4. Characterization of the obtained products
5. Comparative results of reactivity of other trifluoromethylthio transfer reagents13
6. Recovery of PFTB and <i>N</i> -acetyl-2-iodobenzamide13
7. A KIE experiment
8. Transformations of Products14
Nuclear overhauser effect spectroscopy of 415
9. Details of DFT calculations for the mechanism16
9.1 Energy comparison and non-covalent interaction analysis of TS2 and TS2'17
References
NMR Spectra of Corresponding Compounds

General information. ¹H, ¹³C, and ¹⁹F NMR were recorded on the Bruker AV 400 (400 MHz, 100 MHz, and 376 MHz, respectively). ¹H NMR chemical shifts were determined relative to internal standard TMS ($\delta = 0.0$ ppm), ¹³C NMR chemical shifts were determined relative to the deuterated solvents, and ¹⁹FNMR chemical shifts were determined relative to inter-standard PhCF₃ ($\delta = -62.8$ ppm). Chemical shifts (δ) were reported in ppm, and coupling constants (*J*) were in Hertz (Hz). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiple, br = broad. Mass spectra were acquired on Q Exactive GC-Orbitrap MS (EI), and Varian 7.0T FTMS (ESI). IR spectra were obtained on a Bruker Alpha FT-IR Spectrometer. Reactions were monitored by thin-layer chromatography (TLC) carried out on Huanghai HSGF254 plates. Preparative TLC was performed on Xincheng GF254 preparative TLC plates. Silica gel (200-300 mesh) was purchased from Anhui Liangchen Co., China.

Materials: All solvents were purified according to the purification handbook *Purification of Laboratory Chemicals* before use. Unless otherwise noted, other reagents and starting materials were purchased from commercial sources and used as received.

1. General procedure for the preparation of hypervalent trifluoromethylthio-iodine(III) reagent TFTI

AgSCF₃ was prepared according to the reported literature.^[1]

$$H_{2} \xrightarrow{Ac_{2}O(3.0 \text{ equiv.})}_{100 \text{ °C}, 1.5 \text{ h}} \xrightarrow{I \xrightarrow{O}}_{90\%} \xrightarrow{I \xrightarrow{BuOCI (1.5 \text{ equiv.})}}_{6} \xrightarrow{CI \xrightarrow{V}}_{H} \xrightarrow{AgSCF_{3}(1.2 \text{ equiv.})}_{CHCl_{3}, \text{ rt}, 12 \text{ h}} \xrightarrow{I \xrightarrow{BuOCI (1.5 \text{ equiv.})}}_{S1} \xrightarrow{CHCl_{3}, \text{ rt}, 1.5 \text{ h}}$$

2-iodobenzamide (11.86 g, 48 mmol, 1.0 equiv.), acetic anhydride (20 mL, 144 mmol, 3.0 equiv.), and 8 drops of conc. H₂SO₄ were placed into a high-pressure autoclave equipped with a stirring bar. The reaction mixture was stirred in an oil bath at 100 °C for 1.5 h. When the reaction was complete, EtOAc (200 mL) was added and the brown solution was washed with saturated NaHCO₃ aq. (3 × 50 mL). The combined organic phase was dried over MgSO₄, filtered, and the solvent was removed under reduced pressure. The crude mixture was purified by flash column chromatography (Eluent: EtOAc: petroleum ether = 1:3) to give of *N*-acetyl-2-iodobenzamide **6** (12.5 g) in 90% yield as a colorless solid. ¹H NMR (400 MHz, CDCl₃) δ 8.92 (br, 1H), 7.86 (d, *J* = 7.9 Hz, 1H), 7.39 (d, *J* = 4.4 Hz, 2H), 7.15-7.11 (m, 1H), 2.49 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.6, 167.8, 140.1, 139.9, 132.0, 128.2, 128.1, 91.9, 25.3 ppm.

t-BuOCl (4.88 g, 45 mmol, 1.5 equiv.) was added to a solution of **6** (8.67 g, 30 mmol, 1.0 equiv.) in 40 mL CHCl₃. The reaction mixture was stirred at room temperature for 12 h in dark under air. When the reaction was complete, the precipitate was filtered and washed with Et₂O (4 × 10 mL) to give 2-acetyl-1-chloro-1,2-dihydro-3*H*-1 λ^3 -benzo[*d*][1,2]iodazol-3-one **S1** (9.1 g) in 94% yield as a colorless solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.43 (d, *J* = 8.3 Hz, 1H), 8.13-8.06 (m, 2H), 7.88 (t, *J* = 7.3 Hz, 1H), 2.56 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 174.4, 161.9, 136.9, 134.4, 131.8, 131.6, 128.1, 115.0, 25.4 ppm.

AgSCF₃ (6.27 g, 30 mmol, 1.2 equiv.), **S1** (8.08 g, 25 mmol, 1.0 equiv.) were placed into an oven-dried two-necked 100 mL flask equipped with a stirring bar under an argon atmosphere. Then 50 mL of freshly distilled CHCl₃ was added and the reaction was stirred at room temperature in dark for 1.5 h. When the reaction was complete, the precipitate was filtered and washed with DCM (4 × 40 mL). The filtrate was collected and the solvent was removed under reduced pressure. The residue was washed with Et₂O (3 × 10 mL) to give 2-acetyl-1-((trifluoromethyl)thio)-1,2-dihydro-3*H*-1 λ ³- benzo[*d*][1,2]iodazol-3-one **TFTI** (8.7 g) in 89% yield as a colorless solid. ¹H NMR (400 MHz, CDCl₃) δ 8.48 (d, *J* = 8.4 Hz, 1H), 8.26 (dd, *J* = 7.5 Hz, 1.6, 1H), 7.89 (dt, *J* = 7.2, 1.6 Hz, 1H), 7.79 (t, *J* = 7.2 Hz, 1H), 2.63 (s, 3H); ¹⁹F NMR (376 MHz, CDCl₃) δ -29.66 (s, 3 F); ¹³C NMR (100MHz, CDCl₃) δ 176.7, 161.3, 136.2, 134.5, 132.4, 131.7, 130.5 (q, *J* = 309.1 Hz), 127.1, 113.1, 26.1 ppm.

2. Optimization of Reaction Conditions

2.1 Conditional Screening

These results showed that PFTB was the optimal solvent.

	MeO 1a	TF	TI →	MeO 2a	SCF ₃
Entry	TFTI (equiv.)	Solvent (2 mL)	Temp. (°C)	Time (h)	Yield (%)
1	1.5	DCE	80°C	24	10%
2	1.5	CH ₃ CN	rt	24	not detected ^b
3	1.5	TFE	rt	24	5 ^b
4	1.5	HFIP	rt	1	71
5	1.2	PFTB	rt	1	99

^{*a*}Reactions were conducted on 0.2 mmol scale. NMR yields are reported using PhCF₃ as an internal standard. ^{*b*}Reacovery of starting martial is 60%.

3. General procedure for direct trifluoromethylthiolation of terminal

alkynes

3.1 General Procedure A (GP A)

Under an air atmosphere, PFTB (2 mL), terminal alkynes (0.2 mmol, 1.0 equiv.), and TFTI (0.24 mmol, 1.2 equiv.) were added sequentially to a 10 mL round bottom flask with a magnetic stirrer, after which the reaction was stirred at room temperature and monitored by TLC. When the reaction was complete, the solvent was concentrated under reduced pressure. The obtained residue was further purified by flash column chromatography to give the desired product.

3.2 General Procedure B (GP B)

Under an air atmosphere, HFIP (2 mL), terminal alkynes (0.2 mmol, 1.0 equiv.), and

TFTI (0.3 mmol, 1.5 equiv.) were added sequentially to a 10 mL round bottom flask with a magnetic stirrer, after which the reaction was stirred at room temperature and monitored by TLC. When the reaction was complete, the solvent was concentrated under reduced pressure. The obtained residue was further purified by flash column chromatography to give the desired product.

3.2 General Procedure B (GP C)

Under an air atmosphere, PFTB (2 mL), terminal alkynes (0.2 mmol, 1.0 equiv.), and TFTI (0.6 mmol, 3 equiv.) were added sequentially to a 10 mL sealed tube with a magnetic stirrer, after which the reaction was stirred at 70°C. TFTI (0.2 mmol, 1 equiv.) was added at 24 h intervals (6 equiv. in total) and monitored by TLC. When the reaction was complete, the solvent was concentrated under reduced pressure. The obtained residue was further purified by flash column chromatography to give the desired product.

4. Characterization of the obtained products

((4-methoxyphenyl)ethynyl)(trifluoromethyl)sulfane 2a

GP A. Colorless oil (99%, Eluent: petroleum ether); GP B. Colorless oil (71%, Eluent: petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, J = 9.2 Hz, 2H), 6.86 (d, J = 8.8 Hz, 2H), 3.82 (s, 3H); ¹⁹F NMR (376 MHz, CDCl₃) δ -44.10 (s, 3F); ¹³C NMR (100 MHz, CDCl₃) δ 160.9, 134.4, 128.2 (q, J = 310.4 Hz), 114.1, 113.5, 101.5, 65.1 (q, J = 4.3 Hz), 55.3 ppm. The characterization data were in accordance with reported ones. ^[2]

((3-methoxyphenyl)ethynyl)(trifluoromethyl)sulfane 2b

GP A (TFTI 2.0 equiv.) Pale yellow oil (99%, Eluent: petroleum ether) ¹H NMR (400 MHz, CDCl₃) δ 7.24 (t, *J* =7.9 Hz, 1 H), 7.08 (dt, *J* = 7.6, 1.1 Hz, 1 H), 6.99 (dd, *J* = 2.3, 1.5 Hz, 1 H), 6.94 (ddd, *J* = 8.4, 2.6, 0.9 Hz, 1 H), 3.79 (s, 3 H); ¹⁹F NMR (376 MHz, CDCl₃): δ -43.56 (s, 3 F); ¹³C NMR (100 MHz, CDCl₃) δ 159.4, 129.6, 128.1 (q, *J* =312.5 Hz), 124.7, 122.4, 116.8, 116, 101.2, 66.5 (q, *J* =4.4 Hz), 55.3 ppm. The characterization data were in accordance with reported ones.^[3]

((2-methoxyphenyl)ethynyl)(trifluoromethyl)sulfane 2c

GP A (TFTI 1.5 equiv.) Pale yellow oil (99%, Eluent: petroleum ether) ¹H NMR (400 MHz, CDCl₃) δ 7.45 (dd, J = 7.6, 1.7 Hz, 1 H), 7.36 (ddd, J = 8.4, 7.6, 1.7 Hz, 1 H), 6.93 (td, J = 7.5, 0.9 Hz, 1 H), 6.89 (d, J = 8.4 Hz, 1 H), 3.89 (s, 3 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -43.81 (s, 3 F); ¹³C NMR (100 MHz, CDCl₃): 160.8, 134.2, 131.4, 128.1 (q, J = 310.5 Hz), 120.5, 110.8, 97.9, 70.2 (q, J = 4.2 Hz), 55.8 ppm. The characterization data were in accordance with reported ones.^[3]

(p-tolylethynyl)(trifluoromethyl)sulfane 2d

GP A. Colorless oil (99%, Eluent: petroleum ether); GP B. Colorless oil (62%, Eluent: petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, J = 8.4 Hz, 2H), 7.15 (d, J = 8.0 Hz, 2H), 2.37 (s, 3H); ¹⁹F NMR (376 MHz, CDCl₃) δ -43.76 (s, 3F); ¹³C NMR (100 MHz, CDCl₃) δ 140.2, 132.3, 129.2, 128.1 (q, J = 310.8 Hz), 118.5, 101.5, 65.8 (q, J = 4.2 Hz), 21.6 ppm. The characterization data were in accordance with reported ones.^[4]

((4-(tert-butyl)phenyl)ethynyl)(trifluoromethyl)sulfane 2e

GP A. Colorless oil (99%, Eluent: petroleum ether); GP B. Colorless oil (58%, Eluent: petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 7.46-7.43 (m, 2H), 7.38-7.36 (m, 2H), 1.31 (s, 9H); ¹⁹F NMR (376 MHz, CDCl₃) δ -43.51 (s, 3F); ¹³C NMR (100 MHz, CDCl₃) δ 153.4, 132.2, 128.2 (q, *J* = 310.5 Hz), 125.5, 118.5, 101.5, 65.8 (q, *J* = 4.2 Hz), 34.9, 31.1 ppm. The characterization data were in accordance with reported ones.^[4]

N, N-dimethyl-4-((trifluoromethylthio)ethynyl)aniline 2f

GP A. (TFTI 1.0 equiv., PFTB/DCE=2/3) white solid (80%, Eluent: petroleum ether/EtOAc = 100/3); GP B. (HFIP/DCE=1/2) white solid (68%, Eluent: petroleum ether/EtOAc = 100/3). A mixture of DCE and HFIP is used as the solvent, the solvent is DCE/HFIP = 2/1. ¹H NMR (400 MHz, CDCl₃) δ 7.40 (d, *J* = 8.0 Hz, 2H), 6.61 (d, *J* = 8.0 Hz, 2H), 3.00 (s, 6H); ¹⁹F NMR (376 MHz, CDCl₃) δ -44.66 (s, 3F); ¹³C NMR (100 MHz, CDCl₃) δ 151.1, 134.4, 128.2 (q, *J* = 310.6 Hz),111.4, 107.71, 103.2, 63.9 (q, *J* = 4.4 Hz), 40.0 ppm. The characterization data were in accordance with reported

ones.^[4]

(Biphenyl-4-ylethynyl)(trifluoromethyl)sulfane 2g

GP A (TFTI 2.0 equiv.) Yellow crystal (99%, Eluent: petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 7.59-7.55 (m, 6H), 7.45 (t, J = 8.0 Hz, 2H), 7.39-7.35 (m, 1H); ¹⁹F NMR (376 MHz, CDCl₃) δ -43.60 (s, 3F); ¹³C NMR (100 MHz, CDCl₃) δ 142.5, 139.9, 132.7, 128.9, 128.1 (q, J = 311.0 Hz), 128.0, 127.1, 127.1, 120.3, 101.2, 67.3 (q, J = 4.0 Hz) ppm. The characterization data were in accordance with reported ones.^[3]

(Phenylethynyl)(trifluoromethyl)sulfane 2h

GP A. light yellow oil. (95%, Eluent: petroleum ether) ¹H NMR (400 MHz, CDCl₃) δ 7.51-7.49 (m, 2H), 7.40-7.35 (m, 3H); ¹⁹F NMR (376.1 MHz, CDCl₃): δ -43.64 (s, 3F); ¹³C NMR (100 MHz, CDCl₃) δ 132.2, 129.8, 128.5, 128.1 (q, *J* = 310.4 Hz), 121.6, 101.3 (d, *J* =1.5 Hz), 66.7 (q, *J* = 4.3 Hz) ppm. The characterization data were in accordance with reported ones.^[4]

((3-Chlorophenyl)ethynyl)(trifluoromethyl)sulfane 2i

GP A (TFTI 2.0 equiv.) pale yellow oil (92%, Eluent: petroleum ether) ¹H NMR (400 MHz, CDCl₃) δ 7.48 (s, 1H), 7.38-7.36 (m, 2H), 7.30-7.26 (m, 1H); ¹⁹F NMR (376 MHz, CDCl₃) δ -43.30 (s, 3F); ¹³C NMR (100 MHz, CDCl₃) δ 134.4, 131.9, 130.2, 130.0, 129.7, 128.0 (q, *J* = 310.8 Hz), 123.2, 99.8, 68.3 (q, *J* = 4.3 Hz) ppm. The characterization data were in accordance with reported ones. ^[5]

((3- Bromophenyl)ethynyl)(trifluoromethyl)sulfane 2j

SCF₂

GP A (TFTI 2.3 equiv.) pale yellow oil (99%, Eluent: petroleum ether) ¹H NMR (400 MHz, CDCl₃) δ 7.64 (s, 1H), 7.38-7.36 (m, 2H), 7.24-7.20 (m, 1H); ¹⁹F NMR (376 MHz, CDCl₃) δ -43.28 (s, 3F); ¹³C NMR (100 MHz, CDCl₃) δ 134.7, 131.8, 130.6, 129.9, 128.0 (q, J = 310.7 Hz), 123.4, 122.3, 99.6, 68.5 (q, J = 4.4 Hz) ppm.

4-(((Trifluoromethyl)thio)ethynyl)benzonitrile 2k

GP C.(80°C) Light yellow oil. (50%, Eluent: ethyl acetate/petroleum ether = 1/10) ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, J = 6.0 Hz, 2 H), 7.56 (d, J = 6.0 Hz, 2 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -42.88 (s, 3 F); ¹³C NMR (100 MHz, CDCl₃) δ 132.2, 132.1, 127.8 (q, J = 311.0 Hz), 126.2, 118.1, 112.8, 99.5, 72.0 (q, J = 4.2 Hz) ppm. The characterization data were in accordance with reported ones. ^[6]

methyl 4-(2-((trifluoromethyl)sulfanyl)ethynyl)benzoate 21

GP C. (60°C) Colorless oil. (85%, Eluent: petroleum ether) ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, J = 8.0 Hz, 2 H), 7.54 (d, J = 8.0 Hz, 2 H), 3.92 (s, 3 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -43.21 (s, 3F); ¹³C NMR (100 MHz, CDCl₃) δ 166.2, 131.7, 130.7, 129.6, 127.9 (q, J = 310.7 Hz), 126.0, 100.5, 70.2 (q, J = 4.2 Hz), 52.3 ppm. The characterization data were in accordance with reported ones. ^[7]

1-methoxy-4-(2-((trifluoromethyl)sulfanyl)ethynyl)benzene 2m

GP C. Colorless oil. (65%, Eluent: petroleum ether) ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, J = 8.0 Hz, 2 H), 7.55 (d, J = 8.0 Hz, 2 H), 2.60 (s, 3 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -43.16 (s, 3F); ¹³C NMR (100 MHz, CDCl₃) δ 197.1, 137.1, 131.8, 128.3, 127.9 (q, J = 311.0 Hz), 126.1, 100.4, 70.4 (q, J = 4.5 Hz), 26.6 ppm. The characterization data were in accordance with reported ones. ^[7]

((4-Nitrophenyl)ethynyl)(trifluoromethyl)sulfane 2n

GP C. Light yellow liquid (55%, Eluent: ethyl acetate/petroleum ether = 1/10) ¹H NMR (400 MHz, CDCl₃) δ 8.23 (d, J = 8.0 Hz, 2 H), 7.63 (d, J = 8.0 Hz, 2 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -42.75 (s, 3 F); ¹³C NMR (100 MHz, CDCl₃) δ 147.7, 132.3, 128.1, 127.7 (q, J = 311.0 Hz), 123.7, 99.3, 73.0 (q, J = 4.2 Hz) ppm. The characterization data were in accordance with reported ones. ^[6]

(Naphthalen-1-ylethynyl)(trifluoromethyl)sulfane 2o

GP A (TFTI 2.0 equiv.) Colorless oil. (99%, Eluent: petroleum ether)¹H NMR (400 MHz, CDCl₃) δ 8.24 (d, J = 8.4 Hz, 1H), 7.86 (t, J = 8.0 Hz, 2H), 7.73 (d, J = 7.6 Hz, 1H), 7.60-7.53 (m, 2H), 7.45-7.41 (m, 1H); ¹⁹F NMR (376 MHz, CDCl₃) δ -43.54 (s, 3F); ¹³C NMR (100 MHz, CDCl₃) δ 133.4, 133.1, 131.6, 130.3, 128.4, 128.2 (q, J = 310.2 Hz), 127.4,126.7, 125.7, 125.1, 119.1, 99.6, 71.2 (q, J = 4.4 Hz) ppm. The characterization data were in accordance with reported ones. ^[4]

3-((Trifluoromethylthio)ethynyl)thiophene 2p

GP A (TFTI 1.5 equiv.) Yellow oil. (99%, Eluent: petroleum ether) ¹H NMR (400 MHz, CDCl₃) δ 7.65-7.63 (m, 1H), 7.32-7.29 (m, 1H),7.20-7.16 (m, 1H); ¹⁹F NMR (376.1 MHz, CDCl₃) δ -43.73 (s, 3F); ¹³C NMR (100MHz, CDCl₃) δ 132.1, 130.1, 128.0 (q, *J* = 311.0 Hz), 125.7, 120.7, 96.4, 66.5 (q, *J* = 4.1 Hz) ppm. The characterization data were in accordance with reported ones. ^[6]

(Trifluoromethylthio)ethynylferrocene 2q

GP A (TFTI 1.5 equiv.) Red solid. (99%, Eluent: petroleum ether) ¹H NMR (400 MHz, CDCl₃) δ 4.54 (s, 2H), 4.31 (s, 2H), 4.24 (s, 5H); ¹⁹F NMR (376 MHz, CDCl₃) δ -44.68 (s, 3F); ¹³C NMR (100 MHz, CDCl₃) δ 127.7 (q, *J* = 310.6 Hz), 102.4, 72.7, 70.1, 69.9, 62.3 (q, *J* = 4.1 Hz), 62.1 ppm. The characterization data were in accordance with reported ones.^[8]

1,4-Bis-((trifluoromethylthio)ethynyl)benzene 2r

GP A (TFTI 2.5 equiv.) pale yellow solid. (99%, Eluent: petroleum ether) ¹H NMR (400 MHz, CDCl₃) δ 7.46 (s, 4H); ¹⁹F NMR (376 MHz, CDCl₃) δ -43.30 (s, 3F); ¹³C NMR (100 MHz, CDCl₃) δ 132.6, 127.9 (q, *J* = 310.7 Hz), 122.6, 100.4, 69.6 (q, *J* = 4.5 Hz) ppm. The characterization data were in accordance with reported ones. ^[8]

(cyclohex-1-en-1-ylethynyl)(trifluoromethyl)sulfane 2s

GP A (TFTI 1.0 equiv.) Colorless oil. (90%, Eluent: petroleum ether)¹H NMR (400 MHz, CDCl₃) δ 6.28 (m, 1H), 2.14 (m, 4H), 1.65-1.58 (m, 4H); ¹⁹F NMR (376 MHz, CDCl₃) δ -44.31 (s, 3F); ¹³C NMR (100 MHz, CDCl₃) δ 139.7, 128.2 (q, *J* = 310.2 Hz),120.0, 103.2, 63.44 (q, *J* = 4.3 Hz), 28.5, 25.8, 22.0, 21.2 ppm. The characterization data were in accordance with reported ones.^[8]

(4-phenylbut-1-yn-1-yl)(trifluoromethyl)sulfane 2t

SCF₃

✓SCF₃

GP B. Colorless oil (81%, Eluent: petroleum ether.) ¹H NMR (400 MHz, CDCl₃) δ 7.32-7.28 (m, 2H), 7.23-7.20 (m, 3H), 2.87 (t, *J* = 7.2 Hz, 2H), 2.67 (t, *J* = 7.2 Hz, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -43.75 (s, 3F); ¹³C NMR (100 MHz, CDCl₃) δ 139.8, 128.5, 128.4 (q, *J* = 309.7 Hz), 128.4, 126.5, 102.9, 57.9 (q, *J* = 4.3 Hz), 34.4, 22.4 ppm. The characterization data were in accordance with reported ones. ^[2]

tert-butyldimethyl((6-((trifluoromethyl)thio)hex-5-yn-1-yl)oxy)silane 2u

твяо

GP A. Colorless oil (99%, Eluent: petroleum ether/EtOAc = 4/1); GPB. (TFTI 2.5 equiv.) Colorless oil (75%, Eluent: petroleum ether/EtOAc = 4/1). ¹H NMR (400 MHz, CDCl₃) δ 3.64 (t, *J* = 6.0 Hz, 2H), 2.42 (t, *J* = 6.4 Hz, 2H), 1.62 (t, *J* = 3.6 Hz, 4H), 0.89 (s, 9H), 0.05 (s, 6H); ¹⁹F NMR (376 MHz, CDCl₃) δ -44.32 (s, 3F); ¹³C NMR (100 MHz, CDCl₃) δ 128.5 (q, *J* = 309.5 Hz), 103.8, 62.4, 57.0 (q, *J* = 4.3 Hz), 31.7, 25.9, 24.6, 19.9, 18.3, -5.4 ppm.

(6-(benzyloxy)hex-1-yn-1-yl)(trifluoromethyl)sulfane 2v

BnO

GP B. Colorless oil (82%, Eluent: petroleum ether/EtOAc = 100/1). ¹H NMR (400 MHz, CDCl₃) δ 7.37-7.31 (m, 4H), 7.30-7.27 (m, 1H), 4.50 (s, 2H), 3.49 (t, *J* = 6.0 Hz, 2H), 2.41 (t, *J* = 6.4 Hz, 2H), 1.76-1.62 (m, 4H); ¹⁹F NMR (376 MHz, CDCl₃) δ -44.44 (s, 3F); ¹³C NMR (100 MHz, CDCl₃) δ 138.4, 128.5 (q, *J* = 309.4 Hz), 128.4, 127.6, 127.5, 103.6, 72.9, 69.5, 57.2 (q, *J* = 4.3 Hz), 28.7, 24.8, 19.4 ppm. HRMS (EI): *m/z* Calcd. for C₁₄H₁₅F₃OS [M]⁺: 288.0790, Found: 288.0793. IR(KBr): 2940, 2865, 1721, 1274, 1155, 1108, 739 cm⁻¹.

6-((trifluoromethyl)thio)hex-5-yn-1-yl benzoate 2w

SCF₃

GP B. Colorless oil (80%, Eluent: DCM/petroleum ether = 1/4). ¹H NMR (400 MHz, CDCl₃) δ 8.06-8.03 (m, 2H), 7.59-7.54 (m, 1H), 7.47-7.43 (m, 2H), 4.35 (t, *J* = 6.4 Hz, 2H), 2.49 (t, *J* = 6.4 Hz, 2H), 1.91-1.86 (m, 2H), 1.78-1.70 (m, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -44.41 (s, 3F); ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 132.9, 130.2, 129.5, 128.4 (q, *J* = 309.4 Hz), 128.3, 103.1, 64.2, 57.6 (q, *J* = 4.3 Hz), 27.7, 24.7, 19.8 ppm. HRMS (ESI): *m*/*z* Calcd. for C₁₄H₁₃F₃O₂S [M+Na]⁺: 325.0481, Found: 325.0485. IR(KBr): 2957, 1720, 1640, 1274, 1154, 1108, 711 cm⁻¹.

6-((trifluoromethyl)thio)hex-5-yn-1-ol 2x

HO SCF3

GP A Colorless oil (99%, Eluent: petroleum ether/EtOAc = 9/1). GP B Colorless oil (55%, Eluent: petroleum ether/EtOAc = 9/1). ¹H NMR (400 MHz, CDCl₃) δ 3.67 (t, *J* = 5.6 Hz, 2H), 2.44 (t, *J* = 6.0 Hz, 2H), 1.72-1.63 (m, 4H); ¹⁹F NMR (376 MHz, CDCl₃) δ -44.20 (s, 3F); ¹³C NMR (100 MHz, CDCl₃) δ 128.4 (q, *J* = 309.4 Hz), 103.4, 62.2, 57.3 (q, *J* = 4.3 Hz), 31.6, 24.4, 19.9 ppm. HRMS (EI): *m/z* Calcd. for C₇H₉F₃OS [M]⁺: 198.0321, Found: 198.0320. IR(KBr): 2949, 1721, 1276, 1156, 1108, 757, 713 cm⁻¹.

(6-iodohex-1-yn-1-yl)(trifluoromethyl)sulfane 2y

GP A (TFTI 1.5 equiv.) Colorless oil (99%, Eluent: petroleum ether). GP B (TFTI 2.5 equiv.) Colorless oil (63%, Eluent: petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 3.21 (t, J = 6.8 Hz, 2H), 2.44 (t, J = 6.8 Hz, 2H), 1.97-1.90 (m 2H), 1.73-1.65 (m, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -44.32 (s, 3F); ¹³C NMR (100 MHz, CDCl₃) δ 128.4 (q, J = 309.7 Hz), 102.8, 57.8 (q, J = 4.3 Hz), 32.1, 28.7, 19.1, 5.6 ppm. The characterization data were in accordance with reported ones. ^[2]

2-(6-((trifluoromethyl)thio)hex-5-yn-1-yl)isoindoline-1,3-dione 2z

GP A. Colorless oil (99%, Eluent: petroleum ether/EtOAc = 20/1); GP B. (TFTI 2.5 equiv.) Colorless oil (72%, Eluent: petroleum ether/EtOAc = 20/1). ¹H NMR (400 MHz, CDCl₃) δ 7.86-7.84 (m, 2H), 7.74-7.71 (m, 2H), 3.72 (t, *J* = 7.2 Hz, 2H), 2.46 (t, *J* = 7.2 Hz, 2H), 1.84-1.77 (m, 2H), 1.65-1.58 (m, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -43.92 (s, 3F); ¹³C NMR (100 MHz, CDCl₃) δ 168.4, 133.9, 132.6, 128.4 (q, *J* = 309.4 Hz), 123.2, 102.9, 57.6 (q, *J* = 4.3 Hz), 37.2, 27.6, 25.2, 19.7 ppm. HRMS (ESI): *m/z* Calcd. for C₁₅H₁₂F₃NO₂S [M+H]⁺: 328.0614, Found: 328.0617. IR(KBr): 2949, 1773, 1714, 1397, 1154, 1108, 717 cm⁻¹.

oct-1-yn-1-yl(trifluoromethyl)sulfane 2aa

GP B. Colorless oil (94%, Eluent: petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 2.38 (t, *J* = 7.2 Hz, 2H), 1.56-1.54 (m, 2H), 1.42-1.34 (m, 2H), 1.33-1.26 (m, 4H), 0.89 (t, *J* = 6.8 Hz, 3H); ¹⁹F NMR (376 MHz, CDCl₃) δ -44.51 (s, 3F); ¹³C NMR (100 MHz, CDCl₃) δ 128.5 (q, *J* = 309.4 Hz), 104.0, 56.8 (q, *J* = 4.1 Hz), 31.2, 28.4, 27.9, 22.5, 20.2, 13.9 ppm.

(3-cyclohexylprop-1-yn-1-yl)(trifluoromethyl)sulfane 2ab

GP B. Colorless oil (85%, Eluent: petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 2.27 (d, J = 6.8 Hz, 2H), 1.79-1.71 (m, 4H), 1.66 (d, J = 12.4 Hz, 1H), 1.58-1.48 (m, 1H), 1.28-1.12 (m, 4H), 1.05-0.99 (m, 1H); ¹⁹F NMR (376 MHz, CDCl₃) δ -44.53 (s, 3F); ¹³C NMR (100 MHz, CDCl₃) δ 128.5 (q, J = 309.5 Hz), 103.0, 57.5 (q, J = 4.2 Hz), 37.0, 32.6, 27.9, 26.1, 26.0 ppm. The characterization data were in accordance with reported ones.^[2]

(2R,3R,4S,5R)-3,4,5-tris(benzyloxy)-2-((benzyloxy)methyl)-6-((6-((trifluoromethyl)thio)hex-5-yn-1-yl)oxy)tetrahydro-2H-pyran 2ac

GP B. Colorless oil (83%, Eluent: petroleum ether/EtOAc = 9/1). ¹H NMR (400 MHz, CDCl₃) δ 7.33-7.26 (m, 18H), 7.16-7.12 (m, 2H), 5.00-4.37 (m, 9H), 3.97 (t, *J* = 9.2 Hz, 1H), 3.73-3.41 (m, 7H), 2.40 (t, *J* = 6.8 Hz, 2H), 1.76-1.58 (m, 4H); ¹⁹F NMR (376 MHz, CDCl₃) δ -44.49 (s, 3F); ¹³C NMR (100 MHz, CDCl₃) δ 138.8, 138.6, 138.4, 138.3, 138.2, 138.1, 138.0, 137.9, 128.4 (q, *J* = 309.4 Hz), 128.4, 128.4, 128.3, 128.3, 127.9, 127.9, 127.9, 127.9, 127.9, 127.9, 127.9, 127.9, 127.7, 127.6, 127.6, 127.6, 127.6, 127.5, 103.5, 96.9, 84.7, 82.2, 82.0, 80.1, 77.8, 77.7, 75.6, 75.6, 75.1, 74.9, 74.8, 73.4, 73.4, 73.2, 70.2, 69.0, 68.9, 68.5, 67.4, 57.3 (q, *J* = 4.3 Hz), 28.7, 28.4, 24.8, 24.8, 19.9, 19.8 ppm. HRMS (ESI): *m/z* Calcd. for C₄₁H₄₃F₃O₆S [M+Na]⁺: 743.2625, Found: 743.2628. IR(KBr): 3649, 3522, 3296, 3191, 2940, 1730, 1459, 1160, 1109 cm⁻¹.

(3*S*,8*R*,9*S*,10*S*,13*R*,14*S*,17*R*)-17-((*R*)-heptan-2-yl)-10,13-dimethylhexadecahydro-1*H*-cyclopenta[a]phenanthren-3-yl 7-((trifluoromethyl)thio)hept-6-ynoate 2ad

GP B. Colorless oil (87%, Eluent: petroleum ether/EtOAc = 50/1). ¹H NMR (400 MHz, CDCl₃) δ 4.74-4.66 (m 1H), 2.41 (t, *J* = 6.8 Hz, 2H), 2.29 (t, *J* = 7.2 Hz, 2H), 1.98-1.94 (m, 1H), 1.83-1.43 (m, 14H), 1.40-0.94 (m, 20H), 0.91-0.85 (m, 10H), 0.82 (s, 3H), 0.65 (s, 3H); ¹⁹F NMR (376 MHz, CDCl₃) δ -44.40 (s, 3F); ¹³C NMR (100 MHz, CDCl₃) δ 171.7, 127.4 (q, *J* = 309.6 Hz), 102.2, 72.7, 56.4 (q, *J* = 3.8 Hz), 55.4, 55.3,

53.2, 43.6, 41.6, 38.9, 38.5, 35.7, 35.2, 34.8, 34.5, 34.4, 33.0, 30.9, 27.6, 27.2, 26.9, 26.5, 26.4, 29.2, 23.1, 22.8, 21.8, 21.5, 20.2, 18.9, 17.6, 11.2, 11.0 ppm. HRMS (ESI): m/z Calcd. for C₃₄H₅₃F₃O₂S [M+K]⁺: 621.3350, Found: 621.3900. IR(KBr): 3612, 3562, 3464, 3410, 3296, 2948, 1732, 1160, 1110 cm⁻¹.

5. Comparative results of reactivity of other trifluoromethylthio

transfer reagents

 Table S2. Comparative results of reactivity of other trifluoromethylthio transfer reagents^a

^{*a*}Reaction condition A: alkyne (0.2 mmol), CF₃S-transfer reagent, HFIP (2.0 mL), rt, 12 h. Isolated yields are reported. ^{*b*}The reaction time is 5 hours.

6. Recovery of PFTB and N-acetyl-2-iodobenzamide

To a stirred solution of 4-ethynyl-1,1'-biphenyl 1g (1.068 g, 6 mmol) and TFTI(4.668g, 12mmol) in PFTB (50.0 mL) at room temperature. After completion of the reaction (monitored by TLC) the solvent was recovered by distillation at atmospheric pressure (45.0 mL, 90%). The residue was purified by column chromatography on silica gel to give 2g (1.658 g, 99%) as yellow crystal and 6 (3.449 g, 99%) as colorless solid. The recovered solvent was identified to NMR.

¹H NMR (400 MHz, CDCl₃) δ 3.52 (d, 1H); ¹⁹F NMR (376 MHz, CDCl₃) δ -74.42 (s, 9F); ¹³C NMR (100 MHz, CDCl₃) δ 120.1 (q, J = 288.0 Hz), 76.8 ppm. The characterization data were in accordance with reported ones.^[9]

7. A KIE experiment

We carried out a competitive trifluoromethylthiolation reaction between **1a** and **[D]-1a** in the same pot. The general procedure for reaction monitoring by ¹H NMR was used, with the using 1,3,5-Trimethoxybenzene as an internal standard and using 0.09 equiv. of both **1a** and **[D]-1a**. The KIE value was obtained using the relative amount of unreacted starting materials recovered at the end of the reaction.

8. Transformations of Products

ABZ I (0.4 mmol, 2.0 equiv.) and PPh₃ (0.4 mmol, 2.0 equiv.) were placed into an oven-dried Schlenk flask equipped with a stirring bar under an argon atmosphere, and then 1.5 mL of freshly distilled THF and alcohol (0.2 mmol, 1.0 equiv.) were added in that order. The reaction mixture was stirred at room 50°C and monitored by thin-layer chromatography. When the reaction was complete, the solvent was evaporated under reduced pressure, and the residue was purified by flash column chromatography to give the azide product **S2**.

Red oil (64 mg, 89% yield, Eluent: EtOAc/petroleum ether = 1/9). ¹H NMR (400 MHz, CDCl₃) δ 3.99 (s, 3H), 3.98 (s, 3H), 3.26 (t, *J* = 6.8 Hz, 2H), 2.45 (t, *J* = 6.8 Hz, 2H),

2.01 (s, 3H), 1.63-1.56 (m, 2H), 1.38-1.26 (m, 14H); ¹³C NMR (100 MHz, CDCl₃) δ 184.6, 184.0, 144.2, 144.2, 142.9, 138.6, 61.0, 51.4, 29.7, 29.3, 29.2, 29.2, 29.0, 28.7, 28.6, 26.6, 26.3, 11.8 ppm. The characterization data were in accordance with reported ones.^[10]

To an oven-dried 5-mL vial was added **2aa** (0.20 mmol), **S2** (0.30 mmol), [Ir(COD)Cl]₂ (2.7 mg, 4.0 µmol), and DCM (2.0 mL). The reaction mixture was stirred at room temperature for 1.2h. Subsequently, concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography to give the desired product.^[11] Red oil (96% yield, Eluent: EtOAc/petroleum ether = 4:1). ¹H NMR (400 MHz, CDCl₃) δ 4.43 (d, *J* = 8.0 Hz, 2H), 4.00 (s, 6H), 2.78 (d, *J* = 8.0 Hz, 2H), 2.46 (m, 2H), 2.02 (s, 3H), 1.95 (m, 2H), 1.77-1.73 (m, 2H), 1.33-1.29 (m, 20H), 0.89 (s, 3H); ¹⁹F NMR (376 MHz, CDCl₃) δ ppm -42.51 (s, 3F); ¹³C NMR (100 MHz, CDCl₃) δ 184.4, 183.9, 155.3, 144.1, 142.8, 138.4, 127.4 (q, *J* = 311.0 Hz), 115.1, 60.9, 48.6, 31.3, 29.7, 29.5, 29.1, 28.8, 28.7, 28.6, 28.8, 26.7, 26.2, 26.1, 24.9, 22.3, 13.8, 11.6 ppm. HRMS (ESI): *m/z* Calcd. for C₂₈H₄₂F₃N₃O₄S [M+Na]⁺: 596.2749, Found: 596.2740.

Nuclear overhauser effect spectroscopy of 4

S-15

To the solution of **1f** (0.5 mmol, 1.0 equiv.) in CF₃COOH (2 mL) in a 10 mL tube equipped with a stir bar, 15 % aqueous solution of H₂O₂ (0.5 mmol) was added dropwise very slowly. The reaction mixture was stirred at room temperature for 25 h. Subsequently, the mixture was poured into water (2 mL), and then neutralized with saturated aqueous solution of NaHCO₃ to pH = 7. After extraction with ether (8 mL × 3), the organic phase was washed with water (8 mL) and then brine (8 mL), and dried over anhydrous Na₂SO₄. The solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel using petroleum ether/ethyl acetate = 4:1 as the eluent to provide **5** as a colorless oil (80% yield). ¹H NMR (400 MHz, CDCl₃) δ 2.52 (t, *J* = 8.0 Hz, 2H), 1.66-1.60 (m, 2H), 1.43-1.40 (m, 2H), 1.33-1.28 (m, 4H), 0.90 (t, *J* = 8.0 Hz, 3H); ¹⁹F NMR (376 MHz, CDCl₃) δ -73.63 (s, 3F); ¹³C NMR (100 MHz, CDCl₃) δ 124.2 (q, *J* = 334.0 Hz), 110.8, 71.8, 31.0, 28.3, 27.1, 22.4, 19.8, 13.9 ppm. HRMS (ESI) calcd. for C₉H₁₃F₃OS (M+H)⁺ : 227.0712, Found: 227.0715.

9. Details of DFT calculations for the mechanism

Quantum chemical calculations were performed using the Gaussian 16 suite of programs. ^[12] The B3LYP-D3(BJ) functional, i.e., the B3LYP functional^[13] including the D3 dispersion correction with the Becke-Johnson damping function^[14], was used for geometry optimizaions and frequencies calculations, and a mixed basis set of SDD^[15] for I and 6-31G(d,p)^[16] for other atoms in conjunction with the SMD^[17] implicit solvation model to account for the solvation effects of the hexafluoroisopropanol (HFIP) on the computed Gibbs energy profile. Since HFIP solvent is not available in the list of default/prefined solvents in Gaussian 16 software, it is herein parametrised using a set of seven parameters raised by R. S. Paton.^[18] These parameters include the static dielectric constant of the solvent at 25°C (Eps = 16.7);^[19] dynamic (optical) dielectric constant – using the square of the refractive index value of 1.275 at 20 °C ^[20] (EpsInf = 1.625625); hydrogen bond acidity (HbondAcidity = 1.96) and basicity (HbondBasicity = 0.00),^[19(a)] which are Abraham's A and B values respectively; the surface tension of the solvent at interface (SurfaceTensionAtInterface = 23.23);^[21] carbon aromaticity - the fraction of aromatic carbons (CarbonAromaticity = 0.00) and

electronegative halogenicity – the fraction of halogens (Electronnegative Halogencity = 0.60). These parameters were specified using the keyword "SCRF=(SMD,Solvent=Generic,Read)" in Gaussian 16. The recently corrected radius for iodine was used for SMD calculations.^[22] Optimized geometries were verified by frequency computations as minima (zero imaginary frequencies) or transition structures (a single imaginary frequency) at the same level of theory. Intrinsic reaction coordinate (IRC) calculations were used to confirm the connectivity between transition structure and intermediate.^[23]

More accurate electronic energies were obtained by single point energy calculations at the SMD-M062X/6-311++G(2df,2p)+def2-TZVP(I)^[24] level of theory. A factor of RTln(24.46) was added to free energy for each species to account for the 1 atm to 1 M standard state change. All Gibbs energies in solution reported throughout the text are in kilocalories per mole, and the bond lengths are in angstroms. The structures were generated by CYLview^[25]. Multiwfn was utilized to perform the Hirshfeld charges calculation and analyze noncovalent interactions with an independent gradient model based on Hirshfeld partition(**IGMH**).^[26]

Figure S1. $Sign(\lambda_2)\rho$ colored isosurfaces of $\delta g^{inter}=0.005$ a.u. corresponding to independent gradient model based on Hirshfeld partition (IGMH) analysis for the rate-limiting step **TS2** and **TS2'**.

SMD-B3LYP-D3(BJ)/6-31G(d,p)+SDD(I) Calculated Cartesian Coordinates and Single Point Energies Calculated Using the SMD-M062X/6-311++G(2df,2p)+def2-TZVP(I)// SMD-B3LYP-D3(BJ)/6-31G(d,p)+SDD(I).

TFTI

С	0 33/20000	3 60523800	0 20776400
C	-0.33429900	2.00323800	-0.29//0400
C	0.96680800	3.9/3/0600	0.05028100
C	1.94233600	3.00011400	0.24254500
С	1.62078100	1.64728400	0.08888100
С	0.31082400	1.32688000	-0.25535300
С	-0.68420700	2.25819400	-0.45741300
Н	-1.09589500	4.36384200	-0.44965800
Н	1.21806500	5.02262500	0.17008900
Н	2.96352100	3.25374000	0.51173400
Н	-1.69251500	1.97172700	-0.72932600
Ι	-0.03624300	-0.82569500	-0.45090500
С	2.65129700	0.59735000	0.28799400
0	3.81582200	0.85215200	0.59274400
Ν	2.13785200	-0.65880700	0.08738100
С	2.75155300	-1.88938500	0.18122900
С	4.20571600	-1.96934100	0.54564800
Н	4.80918100	-1.42824100	-0.18953600
Н	4.38029200	-1.49347800	1.51522900
Н	4.49142400	-3.02205000	0.57604500
0	2.06329500	-2.88890700	-0.04379900
S	-2.65016200	-0.49051200	-1.08705400
С	-3.28215400	-0.37663900	0.60486000
F	-2.72788600	0.64138700	1.30489300
F	-4.61213700	-0.16772300	0.58079700
F	-3.06446700	-1.49509500	1.32959500
Zero-point correction=			0.158364 (Hartree/Particle)
Thermal correction to Energy=			0.176161
Thermal correction to Enthalpy=			0.177105
Thermal correction to Gibbs Free Energy=			0.109634

(HFIP)₂

С	2.90937100	1.19209300	0.11511200		
С	2.46306700	-0.13785400	0.72953100		
0	1.38959900	0.05397700	1.61240500		
Н	0.62347500	0.44012700	1.13403600		
F	3.99169900	1.04445700	-0.67265500		
F	1.93474200	1.75852300	-0.63199000		
F	3.22002900	2.06109100	1.09341300		
С	2.14683000	-1.20867500	-0.32172300		
F	1.16650000	-0.82923500	-1.17417800		
F	3.23156900	-1.50380600	-1.06500100		
F	1.73982500	-2.33607300	0.28530600		
Н	3.30994700	-0.51706900	1.30907200		
С	-1.93032900	-1.17837200	0.30778800		
С	-1.99871100	0.33617900	0.53629500		
0	-0.78434400	0.95256800	0.17601400		
Н	-0.64153000	0.87718300	-0.78207700		
F	-3.07295200	-1.78395300	0.67766900		
F	-1.69883400	-1.47884300	-0.98604700		
F	-0.92686900	-1.70148400	1.03512300		
С	-3.15755700	1.01531400	-0.19805400		
F	-3.03946000	0.86995500	-1.53534900		
F	-4.34863100	0.51576900	0.17156100		
F	-3.15156500	2.33215400	0.07003500		
Н	-2.14443300	0.49828600	1.60692700		
Zero-point correction	on=		0.128517 (Hartree/Particle)		
Thermal correction	n to Energy=		0.147883		
Thermal correction to Enthalpy= 0.148827					
Thermal correction	n to Gibbs Free Ene	ergy=	0.078335		
SCF Done: $E(RM062X) = -1579.71329273$					

TFTI-2HFIP

С	6.07154500	-1.98904000	-0.35937700

S-19

С	5.83585200	-3.32947600	-0.04814400
С	4.53448800	-3.78283800	0.14131100
С	3.45980300	-2.89545800	0.01969200
С	3.73645300	-1.56694200	-0.29365200
С	5.01302500	-1.08107400	-0.48688100
Н	7.08617800	-1.63186000	-0.50626000
Н	6.66886000	-4.01848400	0.04681500
Н	4.31682500	-4.81840000	0.38551800
Н	5.20118400	-0.04238100	-0.72705800
Ι	1.96137900	-0.30480700	-0.43321600
С	2.07155000	-3.36715400	0.23411700
0	1.79307700	-4.52851000	0.52243000
Ν	1.15521400	-2.35229800	0.06618400
С	-0.19467000	-2.36476400	0.29797800
С	-0.85454200	-3.59651700	0.84569100
Н	-0.82008700	-4.39448500	0.09729700
Н	-0.30874400	-3.95813100	1.72094500
Н	-1.88694200	-3.36384800	1.10443300
0	-0.81298800	-1.31655600	0.05450100
S	3.45113100	1.90876500	-0.97247200
С	3.70915400	2.37933900	0.75712700
F	4.35414400	1.42709900	1.46598100
F	4.44795500	3.50087300	0.81982200
С	-4.36922800	-2.39927700	-0.67633000
С	-4.11067500	-0.99976000	-0.11333600
С	-5.37767000	-0.30659600	0.37769300
Н	-3.70803200	-0.39709700	-0.93437400
0	-3.25564200	-1.07995900	0.99383400
Н	-2.32155400	-1.13418500	0.66729700
F	-5.96337100	-0.99028200	1.38107300
F	-5.07288300	0.91940700	0.84348900
F	-6.28614300	-0.16007200	-0.60639200
F	-4.80432300	-3.25311900	0.26912100
F	-3.21628100	-2.90035400	-1.17532600
F	-5.27323200	-2.39088400	-1.67589900

F	2.55076900	2.62387400	1.41426000	
С	-1.19523800	4.13832000	-0.58027200	
С	-0.59205500	2.96599500	0.19879100	
С	-1.64237500	1.94074600	0.62660900	
Н	-0.12308700	3.37322500	1.10155100	
0	0.30604100	2.26588500	-0.62561200	
Н	1.08504300	2.81714600	-0.80956000	
F	-2.09399900	1.25618300	-0.44295700	
F	-1.10351600	1.06231800	1.49104200	
F	-2.69425800	2.52113500	1.22750200	
F	-1.90040500	3.72668400	-1.64950100	
F	-0.19565400	4.92711800	-1.02920000	
F	-2.00033100	4.89104500	0.18951600	
Zero-point correction= 0.286952 (Hartree/Particle)				
Thermal correction to Energy=			0.326321	
Thermal correction to Enthalpy=			0.327266	
Thermal correction to Gibbs Free Energy= 0.206734				
SCF Done: $E(RM062X) = -3165.48891619$				

1t

C1.124402001.204225000.20997600C0.431204000.000008000.38704300C1.12440500-1.204216000.21003700C2.47712400-1.20648400-0.13186400C3.15795000-0.00000600-0.30450500H3.000122002.15030200-0.26070700H0.599567002.146954000.34549100H0.59957200-2.146939000.34560000H3.00012700-2.15031200-0.26059700H4.21194600-0.00001200-0.56794700C-1.043236000.000015000.70646800H-1.30313200-0.881957001.30094300H-1.303132000.882013001.30090500C-1.89757400-0.00001300-0.58424700	С	2.47712100	1.20647900	-0.13192600
C0.431204000.000008000.38704300C1.12440500-1.204216000.21003700C2.47712400-1.20648400-0.13186400C3.15795000-0.00000600-0.30450500H3.000122002.15030200-0.26070700H0.599567002.146954000.34549100H0.59957200-2.146939000.34560000H3.00012700-2.15031200-0.26059700H4.21194600-0.00001200-0.56794700C-1.043236000.000015000.70646800H-1.30313200-0.881957001.30094300H-1.303132000.882013001.30090500C-1.89757400-0.00001300-0.58424700	С	1.12440200	1.20422500	0.20997600
C1.12440500-1.204216000.21003700C2.47712400-1.20648400-0.13186400C3.15795000-0.00000600-0.30450500H3.000122002.15030200-0.26070700H0.599567002.146954000.34549100H0.59957200-2.146939000.34560000H3.00012700-2.15031200-0.26059700H4.21194600-0.00001200-0.56794700C-1.043236000.000015000.70646800H-1.30313200-0.881957001.30094300H-1.303132000.882013001.30090500C-1.89757400-0.00001300-0.58424700	С	0.43120400	0.00000800	0.38704300
C2.47712400-1.20648400-0.13186400C3.15795000-0.00000600-0.30450500H3.000122002.15030200-0.26070700H0.599567002.146954000.34549100H0.59957200-2.146939000.34560000H3.00012700-2.15031200-0.26059700H4.21194600-0.00001200-0.56794700C-1.043236000.000015000.70646800H-1.30313200-0.881957001.30094300H-1.303132000.882013001.30090500C-1.89757400-0.00001300-0.58424700	С	1.12440500	-1.20421600	0.21003700
C3.15795000-0.00000600-0.30450500H3.000122002.15030200-0.26070700H0.599567002.146954000.34549100H0.59957200-2.146939000.34560000H3.00012700-2.15031200-0.26059700H4.21194600-0.00001200-0.56794700C-1.043236000.000015000.70646800H-1.30313200-0.881957001.30094300H-1.303132000.882013001.30090500C-1.89757400-0.00001300-0.58424700	С	2.47712400	-1.20648400	-0.13186400
H3.000122002.15030200-0.26070700H0.599567002.146954000.34549100H0.59957200-2.146939000.34560000H3.00012700-2.15031200-0.26059700H4.21194600-0.00001200-0.56794700C-1.043236000.000015000.70646800H-1.30313200-0.881957001.30094300H-1.303132000.882013001.30090500C-1.89757400-0.00001300-0.58424700	С	3.15795000	-0.00000600	-0.30450500
H0.599567002.146954000.34549100H0.59957200-2.146939000.34560000H3.00012700-2.15031200-0.26059700H4.21194600-0.00001200-0.56794700C-1.043236000.000015000.70646800H-1.30313200-0.881957001.30094300H-1.303132000.882013001.30090500C-1.89757400-0.00001300-0.58424700	Н	3.00012200	2.15030200	-0.26070700
H0.59957200-2.146939000.34560000H3.00012700-2.15031200-0.26059700H4.21194600-0.00001200-0.56794700C-1.043236000.000015000.70646800H-1.30313200-0.881957001.30094300H-1.303132000.882013001.30090500C-1.89757400-0.00001300-0.58424700	Н	0.59956700	2.14695400	0.34549100
H3.00012700-2.15031200-0.26059700H4.21194600-0.00001200-0.56794700C-1.043236000.000015000.70646800H-1.30313200-0.881957001.30094300H-1.303132000.882013001.30090500C-1.89757400-0.00001300-0.58424700	Н	0.59957200	-2.14693900	0.34560000
H4.21194600-0.00001200-0.56794700C-1.043236000.000015000.70646800H-1.30313200-0.881957001.30094300H-1.303132000.882013001.30090500C-1.89757400-0.00001300-0.58424700	Н	3.00012700	-2.15031200	-0.26059700
C-1.043236000.000015000.70646800H-1.30313200-0.881957001.30094300H-1.303132000.882013001.30090500C-1.89757400-0.00001300-0.58424700	Н	4.21194600	-0.00001200	-0.56794700
H-1.30313200-0.881957001.30094300H-1.303132000.882013001.30090500C-1.89757400-0.00001300-0.58424700	С	-1.04323600	0.00001500	0.70646800
H-1.303132000.882013001.30090500C-1.89757400-0.00001300-0.58424700	Н	-1.30313200	-0.88195700	1.30094300
C -1.89757400 -0.00001300 -0.58424700	Н	-1.30313200	0.88201300	1.30090500
	С	-1.89757400	-0.00001300	-0.58424700

Н	-1.64054400	0.87871000	-1.18903600	
Н	-1.64054400	-0.87876300	-1.18899800	
С	-3.33157900	-0.00000700	-0.30711700	
С	-4.51380900	-0.00000100	-0.05250300	
Н	-5.56004100	0.00000300	0.16617300	
Zero-point correcti	ion=		0.166626 (Hartree/Particle)	
Thermal correction to Energy= 0.175799				
Thermal correction to Enthalpy= 0.176743				
Thermal correction to Gibbs Free Energy= 0.131395				
SCF Done: $E(RM062X) = -386.972517635$				

TS1

С	-5.67884200	-1.99122900	0.73303700
С	-5.98200800	-1.30959900	1.91422000
С	-5.02066000	-0.51282000	2.52856000
С	-3.75697000	-0.38502300	1.94464000
С	-3.50596800	-1.04163200	0.74042200
С	-4.42244800	-1.86776600	0.12351200
Н	-6.42271600	-2.63037000	0.26733500
Н	-6.96442500	-1.41548800	2.36245100
Н	-5.21209500	0.00637300	3.46358400
Н	-4.20552100	-2.38879800	-0.79959000
Ι	-1.49225800	-0.62969900	-0.03053200
С	-2.68239900	0.37316900	2.61066600
0	-2.80575200	1.05042100	3.62089000
Ν	-1.45915800	0.20314700	1.96321500
С	-0.22168800	0.78122500	2.18925500
С	0.03763500	1.45729900	3.50070600
Н	-0.54796000	2.38044500	3.55432500
Н	-0.28047500	0.81982800	4.32938300
Н	1.10321700	1.67780400	3.56052700
0	0.61269800	0.67820400	1.29520200
С	-2.50757400	2.99996100	0.73488200
С	-3.55254500	2.61556200	-0.10584800
С	-3.34127800	2.44720700	-1.48217700

С	-2.05135300	2.63899300	-1.98929500
С	-1.00113800	3.02131300	-1.15167200
С	-1.22820100	3.21092800	0.21267800
Н	-2.69709900	3.14526500	1.79527200
Н	-4.54794000	2.46889700	0.30653900
Н	-1.87054600	2.50234200	-3.05235900
Н	-0.01387300	3.18474600	-1.57026700
Н	-0.42085600	3.52705500	0.86354300
С	-4.48442600	2.06811300	-2.39193700
Н	-5.35752200	2.69203500	-2.17094400
Н	-4.20915500	2.25295300	-3.43465000
С	-4.92653200	0.59603900	-2.24177200
Н	-5.24240500	0.40501700	-1.20891200
Н	-5.80722100	0.41559100	-2.87134300
С	-3.89508900	-0.36759900	-2.60575200
С	-3.05175700	-1.19134200	-2.89058400
Н	-2.34993400	-1.92984400	-3.20829200
S	0.40056200	-1.43767600	-2.44585300
С	0.19107300	-3.17814300	-2.13344100
F	0.36934200	-3.52914300	-0.82006800
F	-1.06249600	-3.63303400	-2.44563800
F	1.04857700	-3.95917100	-2.83367400
С	2.58562300	3.56104200	0.41803100
С	2.61343900	2.22343800	-0.31070100
С	3.15632900	2.32504000	-1.73635200
Н	1.58186600	1.86579500	-0.38322800
0	3.43343300	1.37216900	0.44405300
Н	3.13113200	0.45530900	0.26305100
F	4.41111800	2.80960000	-1.77533800
F	3.17749400	1.09347500	-2.28901400
F	2.38737700	3.11132600	-2.52230000
F	3.82222700	4.05218200	0.61793400
F	2.00823900	3.41686600	1.63002800
F	1.87808800	4.48800200	-0.26172700
С	4.47962800	-2.20795300	0.39721300

С	2.95045100	-2.20473500	0.45337500	
С	2.40214400	-2.18883000	1.88376100	
Н	2.59778700	-3.11943900	-0.02992000	
0	2.50737500	-1.04812000	-0.19659200	
Н	1.91938800	-1.24412900	-0.97273500	
F	2.73335700	-1.05765700	2.53606800	
F	1.05429000	-2.26028800	1.85746900	
F	2.85232300	-3.23210400	2.60499500	
F	5.00038700	-1.10266100	0.97130400	
F	4.87869500	-2.22399900	-0.88708400	
F	5.00725300	-3.28160500	1.01310600	
Zero-point correction	on=		0.453683 (Hartree/Particle)	
Thermal correction to Energy=			0.502941	
Thermal correction to Enthalpy=			0.503885	
Thermal correction to Gibbs Free Energy=			0.364225	
SCF Done: $E(RM062X) = -3552.46048197$				

IM1

С	-6.09296400	-1.40951400	1.18640900
С	-6.11506300	-0.75419100	2.42026900
С	-4.96076000	-0.15356000	2.91343400
С	-3.78630800	-0.19823000	2.15643000
С	-3.80544900	-0.82495400	0.91222900
С	-4.92704800	-1.45663100	0.41045800
Н	-6.98916900	-1.89544000	0.81290100
Н	-7.03075200	-0.72710400	3.00175100
Н	-4.93612700	0.34056800	3.88040200
Н	-4.92098000	-1.97266900	-0.54150000
Ι	-1.88373800	-0.69198100	-0.11993100
С	-2.52652100	0.36841500	2.67015300
0	-2.41501900	1.02307200	3.69740600
Ν	-1.43914600	0.05389200	1.85211600
С	-0.14175800	0.55351600	1.88127300
С	0.38121700	1.15092600	3.15126800
Н	-0.16572000	2.07119600	3.37588600

Н	0.21401600	0.46358500	3.98494600	
Н	1.44254700	1.35443900	3.01685000	
0	0.51339800	0.43723600	0.85284100	
С	-2.65770400	2.86368900	0.46294000	
С	-3.60310100	2.44492100	-0.47461200	
С	-3.23685500	2.22499400	-1.81099200	
С	-1.90342500	2.42923000	-2.18249200	
С	-0.95630400	2.85932400	-1.25098800	
С	-1.33143500	3.07799000	0.07544800	
Н	-2.95341900	3.02764600	1.49654600	
Н	-4.63387100	2.29031500	-0.16485700	
Н	-1.60458200	2.25550700	-3.21297000	
Н	0.06678000	3.03239600	-1.56884800	
Н	-0.60062500	3.41806700	0.80078000	
С	-4.25275800	1.75846400	-2.82679300	
Н	-5.10860000	2.44272100	-2.84406200	
Н	-3.81077900	1.76758000	-3.82707300	
С	-4.81912100	0.35107000	-2.53691300	
Н	-5.32514300	0.33681800	-1.56389500	
Н	-5.58774800	0.10595600	-3.28181300	
С	-3.83754900	-0.72399500	-2.56571400	
С	-3.04409800	-1.65057400	-2.56015900	
Н	-2.40313700	-2.48990600	-2.74106600	
S	0.49037900	-1.18723000	-2.34196500	
С	0.43182400	-2.95569500	-2.23085000	
F	0.06068500	-3.43205100	-1.00188800	
F	-0.45755300	-3.53192500	-3.10579100	
F	1.62589300	-3.56584100	-2.49312900	
С	2.49336600	3.62807100	0.51086800	
С	2.66912400	2.27339500	-0.16584200	
С	3.43953600	2.36953700	-1.48440200	
Н	1.67166100	1.89235300	-0.40185000	
0	3.35749100	1.44852800	0.73665300	
Н	3.13624000	0.52047900	0.49580800	
F	4.66541800	2.90415600	-1.32635000	

F	3.59917000	1.13634100	-2.00477200		
F	2.77836500	3.11529000	-2.39701400		
F	3.66850700	4.16312900	0.88838600		
F	1.73541300	3.50072200	1.62219500		
F	1.87473800	4.51272600	-0.29822500		
С	4.59677500	-2.20261900	0.57834600		
С	3.08035400	-2.19444300	0.38101300		
С	2.30875100	-2.30611900	1.70192300		
Н	2.81945200	-3.06574700	-0.22769800		
0	2.78223600	-0.98560200	-0.25326100		
Н	2.03432400	-1.07623700	-0.90987100		
F	2.53300200	-1.24866000	2.50846300		
F	0.98231300	-2.35454300	1.45901900		
F	2.63680000	-3.42114100	2.38164600		
F	5.00592000	-1.13023800	1.28905200		
F	5.20691200	-2.15321600	-0.61866600		
F	5.02113600	-3.30842600	1.21676900		
Zero-point correction=			0.454721 (Hartree/Particle)		
Thermal correction to	Energy=		0.504183		
Thermal correction to	Enthalpy=		0.505127		
Thermal correction to Gibbs Free Energy= 0.365478					
SCF Done: E(RM062	SCF Done: $E(RM062X) = -3552.46670962$				

IM2

С	3.23451400	2.04907500	1.68544500
С	3.49114800	3.19299200	0.92575600
С	2.64304800	3.54859800	-0.11856500
С	1.53194100	2.75006100	-0.40371300
С	1.31087700	1.61903400	0.37847400
С	2.12508600	1.23525400	1.42134300
Н	3.90181000	1.76651000	2.49085200
Н	4.35794300	3.80580900	1.15039000
Н	2.81485700	4.43239700	-0.72601200
Н	1.93858900	0.34828300	2.01135700
Ι	-0.48162400	0.57585300	-0.19113700

С	0.58777700	3.10934900	-1.47673200	
0	0.64039900	4.13265300	-2.14318300	
Ν	-0.41675400	2.14950500	-1.64277200	
С	-1.60806400	2.23850900	-2.34135800	
С	-1.80141400	3.34463600	-3.32926900	
Н	-1.81572100	4.30525900	-2.80457400	
Н	-0.97138100	3.37562300	-4.03973300	
Н	-2.75005600	3.17487700	-3.84021800	
0	-2.46273300	1.37932600	-2.11492700	
С	-2.94206300	3.35399400	0.51199200	
С	-3.22790900	2.28090500	1.35617200	
С	-2.34978200	1.92150300	2.38835200	
С	-1.19978900	2.69756700	2.58530600	
С	-0.90923600	3.77135400	1.74109400	
С	-1.77040000	4.09541000	0.69104000	
Н	-3.62227200	3.59491300	-0.30056300	
Н	-4.12022300	1.68603800	1.18615800	
Н	-0.50117800	2.45251600	3.37954500	
Н	0.00167700	4.34279700	1.89433100	
Н	-1.52544100	4.91289200	0.01790500	
С	-2.64233800	0.69081700	3.22139800	
Н	-3.12868300	0.98122000	4.16080800	
Н	-3.34738500	0.04913400	2.68595200	
С	-1.40415200	-0.14533400	3.61910600	
Н	-0.68718300	0.45592100	4.18785100	
Н	-1.73443900	-0.94755800	4.29269100	
С	-0.70033700	-0.80599000	2.52846700	
С	-0.09528000	-1.40142000	1.64936400	
Н	0.45052200	-2.06165300	1.00397900	
S	3.90646600	-2.90612800	1.80247600	
С	4.67968500	-1.37853600	2.22893100	
F	4.88055400	-0.53492700	1.16524400	
F	3.96572300	-0.61748500	3.13493100	
F	5.91136500	-1.51432000	2.80603300	
С	-3.06162800	-2.78488500	-0.15303900	

С	-3.96570600	-1.61600600	-0.54428500	
С	-5.31902900	-1.64145500	0.17054000	
Н	-4.15590500	-1.70029900	-1.61909900	
0	-3.30816400	-0.42867100	-0.19643500	
Н	-3.39423500	0.21431600	-0.92228800	
F	-6.04977600	-0.58064000	-0.22468600	
F	-5.18344400	-1.56109400	1.50976300	
F	-6.01546100	-2.75837900	-0.10788400	
F	-3.59758100	-3.96214600	-0.51929700	
F	-1.86817600	-2.65901400	-0.77265400	
F	-2.82822700	-2.82925500	1.17144000	
С	1.86576300	-2.49855200	-2.32201900	
С	2.82063100	-1.65453900	-1.47492100	
С	3.18586800	-0.32565100	-2.14239400	
Н	3.75346400	-2.22340400	-1.37999600	
0	2.22034500	-1.41192100	-0.24268000	
Н	2.73823600	-1.91484600	0.45924100	
F	3.95816100	0.40988900	-1.32606200	
F	2.09331500	0.41935700	-2.44140700	
F	3.86025500	-0.52156700	-3.29209800	
F	2.36722700	-2.77064000	-3.54225700	
F	1.62964000	-3.66784000	-1.69627800	
F	0.67007500	-1.89312800	-2.49807900	
Zero-point cor	rection=		0.453301 (Hartree/Particle)	
Thermal corre	ection to Energy=		0.503078	
Thermal corre	ection to Enthalpy=		0.504022	
Thermal corre	ection to Gibbs Free Ene	ergy=	0.361726	
SCF Done: H	SCF Done: $E(RM062X) = -3552.46227044$			

TS2

С	2.83820500	2.68438800	0.58905300
С	2.58739100	4.01327200	0.24151900
С	1.40938000	4.35570800	-0.41726600
С	0.47291000	3.36490000	-0.72699300
С	0.75839200	2.05261200	-0.35604000

С	1.91638800	1.67365200	0.28846400
Н	3.75020700	2.41352800	1.10879300
Н	3.31163800	4.78294000	0.48787700
Н	1.18305400	5.38104500	-0.69474500
Н	2.12424100	0.64978900	0.55544700
Ι	-0.86233200	0.68350000	-0.76540200
С	-0.81791500	3.71476200	-1.36007700
0	-1.17500900	4.86930500	-1.57264500
Ν	-1.57975300	2.59444500	-1.65620800
С	-2.92582700	2.54856900	-1.95426800
С	-3.62991200	3.78938600	-2.41558400
Н	-3.65936000	4.52016900	-1.60121900
Н	-3.09205000	4.25611400	-3.24473000
Н	-4.64222900	3.51120300	-2.71277800
0	-3.51398000	1.46750400	-1.84265900
С	-3.41654000	2.60341300	1.36050000
С	-3.30863200	1.29638500	1.83322600
С	-2.13706000	0.85265300	2.46390100
С	-1.08800900	1.76329700	2.64333400
С	-1.19401100	3.07343500	2.17045100
С	-2.35280000	3.49685700	1.51788000
Н	-4.32360600	2.91676900	0.85059800
Н	-4.12381500	0.59701700	1.67360700
Н	-0.16361800	1.45378600	3.11968700
Н	-0.35874000	3.75650000	2.29527500
Н	-2.41945400	4.50836200	1.12593400
С	-2.03513000	-0.59841900	2.88235500
Н	-2.38743800	-0.72053800	3.91397700
Н	-2.69046100	-1.20386700	2.25284300
С	-0.60813900	-1.20583000	2.85691200
Н	0.05683100	-0.70361800	3.56223600
Н	-0.68252800	-2.25262600	3.17654600
С	0.01426100	-1.21169500	1.54944400
С	0.36991200	-1.14911200	0.36197900
Н	1.09757100	-1.48841100	-0.35902600

S	2.79698300	-2.19113200	2.70288900	
С	3.22273200	-0.52186000	3.11738400	
F	4.12640800	0.05309800	2.25818800	
F	2.15859400	0.35369100	3.11740900	
F	3.77681800	-0.38381700	4.35554200	
С	-2.69151500	-3.09616000	-0.78950300	
С	-3.86117900	-2.11587500	-0.87997100	
С	-5.06151100	-2.53888300	-0.02907000	
Н	-4.18729800	-2.09516700	-1.92491500	
0	-3.40172000	-0.87667100	-0.42099900	
Н	-3.75550100	-0.15354600	-0.97349000	
F	-6.03242400	-1.61168600	-0.13787200	
F	-4.74407400	-2.63907700	1.27774400	
F	-5.56578700	-3.72249200	-0.42383200	
F	-3.03766600	-4.32056900	-1.22251500	
F	-1.67253100	-2.65555100	-1.55919300	
F	-2.22462400	-3.21709000	0.46791800	
С	3.97204700	-2.42294500	-2.09735200	
С	4.30600100	-1.48301500	-0.93753700	
С	4.80367500	-0.11444500	-1.40491400	
Н	5.11101200	-1.94508100	-0.35579600	
0	3.13920100	-1.27787300	-0.20291500	
Н	3.17316300	-1.72788200	0.68699100	
F	5.16816100	0.62782000	-0.34189600	
F	3.84388800	0.56664900	-2.06465500	
F	5.87076100	-0.21684000	-2.22109700	
F	5.03874500	-2.68110600	-2.87688900	
F	3.52137000	-3.59391600	-1.60750800	
F	2.99924000	-1.91393600	-2.88387500	
Zero-point cor	rection=		0.453072 (Hartree/Particle)	
Thermal corre	ection to Energy=		0.501981	
Thermal corre	ection to Enthalpy=		0.502926	
Thermal correction to Gibbs Free Energy= 0.362854				
SCF Done: $E(RM062X) = -3552.44866309$				

IM3

С	-2.94338200	2.20562300	1.98918900
С	-2.26343400	3.12876100	2.78502000
С	-0.87225400	3.14016400	2.80185000
С	-0.13551900	2.21901300	2.04448800
С	-0.85741200	1.31602500	1.27055000
С	-2.23683100	1.28760900	1.20787900
Н	-4.02866700	2.18594100	1.95949800
Н	-2.81777400	3.84388200	3.38491900
Н	-0.31627100	3.86507100	3.38844900
Н	-2.77627000	0.59480300	0.58078400
Ι	0.28649100	-0.09638200	0.05970500
С	1.35851200	2.31899000	2.01506800
0	1.91974300	3.31862200	2.48643600
Ν	1.92397100	1.25380700	1.39238000
С	3.18356300	1.23428600	0.89124700
С	4.24194900	2.21629200	1.31895700
Н	3.99106300	3.21548300	0.94715300
Н	4.28441700	2.29167000	2.40830700
Н	5.20921800	1.90814800	0.91654000
0	3.44546800	0.35336100	0.03774900
С	0.98466700	4.07659400	-0.63186100
С	1.02510800	2.99622600	-1.51022900
С	-0.15458000	2.46189300	-2.05459200
С	-1.37706100	3.03000000	-1.68113500
С	-1.42001100	4.11141200	-0.79545500
С	-0.24290100	4.63898100	-0.26937600
Н	1.90543800	4.46933000	-0.21033500
Н	1.98087700	2.53948500	-1.76099600
Н	-2.30992800	2.62760900	-2.06137400
Н	-2.38067200	4.52893800	-0.50710000
Н	-0.27736100	5.46966500	0.42939500
С	-0.05061100	1.30975700	-3.03408400
Н	0.21524100	1.72201600	-4.01678300
Н	0.79434000	0.66865100	-2.76258000

С	-1.30625600	0.46680000	-3.27701500
Н	-2.10348800	1.11132500	-3.66159100
Н	-1.09178100	-0.22185600	-4.10463300
С	-1.90374500	-0.38725500	-2.18576300
С	-1.51970600	-0.74820900	-0.96009600
Н	-2.10944900	-1.42185500	-0.35356700
S	-3.45775900	-1.20460500	-2.68473300
С	-4.56959700	0.23543000	-2.59456300
F	-4.29603000	1.04896300	-1.55628800
F	-4.53784600	1.00545800	-3.70193700
F	-5.82731600	-0.21716600	-2.45507800
С	5.61083500	-2.36883200	-0.81573200
С	6.08866500	-1.13707500	-0.04321100
С	7.58301700	-1.15932200	0.25674700
Н	5.55859500	-1.13455500	0.91778000
0	5.84501800	0.01435700	-0.80563100
Н	4.90138300	0.27834900	-0.59907500
F	7.91129600	-0.08775300	1.00511200
F	8.32074700	-1.10862200	-0.86931300
F	7.94587900	-2.26493800	0.93770800
F	5.80808500	-3.51279700	-0.12939700
F	4.28595000	-2.26036900	-1.05698200
F	6.22831500	-2.48999500	-2.00661600
С	-4.78853900	-3.04265600	0.70771800
С	-4.88330200	-1.74193900	1.51339900
С	-3.84311600	-1.66121100	2.63165300
Н	-5.86757400	-1.73241300	1.99190300
0	-4.67744900	-0.64691000	0.66307200
Н	-5.53248100	-0.27432000	0.40725100
F	-4.02389000	-0.53538100	3.34332900
F	-2.57922100	-1.63977800	2.15264800
F	-3.94299100	-2.70865600	3.46948400
F	-5.08860400	-4.11566800	1.46297900
F	-5.65587200	-2.99781500	-0.31928900
F	-3.55595900	-3.24100500	0.19184100

Zero-point correction=	0.457886 (Hartree/Particle)
Thermal correction to Energy=	0.506389
Thermal correction to Enthalpy=	0.507333
Thermal correction to Gibbs Free Energy=	0.367393
SCF Done: $E(RM062X) = -3552.50383871$	

TS3			
С	-3.18157700	2.88133500	0.92197000
С	-2.49821500	4.08469400	1.09858100
С	-1.25972300	4.28681500	0.49454100
С	-0.66591900	3.28713700	-0.28899300
С	-1.40798700	2.12359100	-0.47000400
С	-2.64691000	1.88362100	0.10471900
Н	-4.14205100	2.71239600	1.39865400
Н	-2.92787100	4.86778300	1.71530800
Н	-0.71094900	5.21218600	0.64149800
Н	-3.18086800	0.95662600	-0.05424000
Ι	-0.70923500	0.61217700	-1.86036600
С	0.72986600	3.55029100	-0.80006300
0	0.95304700	4.58374800	-1.43814400
Ν	1.63549500	2.61684500	-0.40184200
С	2.96432300	2.60069500	-0.73705900
С	3.52187400	3.48357200	-1.81557800
Н	2.89700900	3.46312600	-2.71284800
Н	3.53633800	4.52172500	-1.46679800
Н	4.53799100	3.15526600	-2.04256500
0	3.69674800	1.81418200	-0.10962400
С	-5.16501600	0.77825500	-2.16049300
С	-4.19058500	-0.08362100	-2.66217700
С	-3.75965600	-1.19744400	-1.92579600
С	-4.33260400	-1.42307800	-0.66793000
С	-5.31018300	-0.56109300	-0.16225700
С	-5.72976000	0.54295500	-0.90435800
Н	-5.47890800	1.63662900	-2.74804700
Н	-3.75479600	0.10969200	-3.63961400

Н	-4.03214100	-2.27695300	-0.07393200
Н	-5.73725700	-0.75454200	0.81795500
Н	-6.48394100	1.21653700	-0.50758200
С	-2.72092700	-2.12509800	-2.52414200
Н	-3.23052600	-2.86906400	-3.15034600
Н	-2.08726100	-1.56880100	-3.22323800
С	-1.86685000	-2.93214700	-1.53820800
Н	-2.49867500	-3.65996800	-1.02163200
Н	-1.14190400	-3.53235800	-2.10384600
С	-1.09350100	-2.19867000	-0.47690600
С	-0.60866400	-0.97538600	-0.33408800
Н	-0.03977000	-0.49809400	0.47128700
S	-0.54800800	-3.18286900	0.95254200
С	-2.01835300	-2.98947900	2.01317100
F	-2.39757200	-1.71071600	2.14586700
F	-3.08979000	-3.67806200	1.56402600
F	-1.70301400	-3.47373100	3.22341300
С	0.58546300	2.00042800	3.09455600
С	1.48420300	0.95222100	2.41916100
С	1.42995200	-0.38356100	3.16621300
Н	2.52029300	1.32063700	2.50847500
0	1.08477300	0.75364700	1.11917800
Н	1.34042000	1.70469800	0.40256100
F	2.14801300	-1.31397300	2.50822100
F	0.16382600	-0.85175600	3.27282600
F	1.93115000	-0.29557000	4.41645800
F	0.82316300	2.12672900	4.41865400
F	0.79811000	3.21346300	2.53513400
F	-0.72404800	1.71577700	2.94102500
С	2.83150500	-0.97984300	-2.35570800
С	3.28653400	-1.11816400	-0.89992800
С	3.36540000	-2.57542000	-0.45435400
Н	2.55867500	-0.60973200	-0.25619400
0	4.58164000	-0.58391800	-0.78797600
Н	4.48446400	0.36087000	-0.52865300

F	4.24736600	-3.27979400	-1.19010000
F	3.75721500	-2.64866000	0.82739500
F	2.16572700	-3.19355800	-0.56012700
F	3.68655900	-1.56092500	-3.21195600
F	2.75274300	0.32745900	-2.68919200
F	1.60666700	-1.52367900	-2.57178900
Zero-point correct	ion=		0.451879 (Hartree/Particle)
Thermal correction to Energy=			0.500045
Thermal correction to Enthalpy=			0.500989
Thermal correction to Gibbs Free Energy=		0.362859	
SCF Done: $E(RM062X) = -3552.48982744$			

IM4

С	-3.18146000	2.88105300	0.92285500
С	-2.49840100	4.08426200	1.10006300
С	-1.25977300	4.28690300	0.49636700
С	-0.66718400	3.28719600	-0.28714800
С	-1.40778900	2.12250900	-0.46943800
С	-2.64665300	1.88351100	0.10529400
Н	-4.14193500	2.71191100	1.39943700
Н	-2.92791500	4.86713300	1.71701200
Н	-0.71085800	5.21192800	0.64445700
Н	-3.18066400	0.95659100	-0.05387700
Ι	-0.70915100	0.61278900	-1.86018600
С	0.72397000	3.55268400	-0.79772800
0	0.95470500	4.58107600	-1.43519900
Ν	1.63669000	2.61730600	-0.40106900
С	2.97009700	2.59942400	-0.73583100
С	3.52105200	3.48430300	-1.81351000
Н	2.89589600	3.46280400	-2.71040200
Н	3.53578500	4.52208400	-1.46387300
Н	4.53691200	3.15529900	-2.03938400
0	3.69594200	1.81429900	-0.10840500
С	-5.16486600	0.77901300	-2.16051100
С	-4.19040400	-0.08269700	-2.66244500

С	-3.75954100	-1.19680900	-1.92646100	
С	-4.33260000	-1.42290900	-0.66871500	
С	-5.31020700	-0.56110400	-0.16279800	
С	-5.72971400	0.54324100	-0.90451000	
Н	-5.47873600	1.63759500	-2.74778300	
Н	-3.75455200	0.11094400	-3.63978900	
Н	-4.03211800	-2.27694800	-0.07497600	
Н	-5.73733300	-0.75490800	0.81731800	
Н	-6.48393500	1.21666600	-0.50753600	
С	-2.72078700	-2.12426000	-2.52505400	
Н	-3.23037400	-2.86793300	-3.15164000	
Н	-2.08706800	-1.56765600	-3.22391100	
С	-1.86677100	-2.93162300	-1.53936000	
Н	-2.49869700	-3.65949600	-1.02299100	
Н	-1.14190900	-3.53166500	-2.10525200	
С	-1.09333700	-2.19815900	-0.47774200	
С	-0.60744000	-0.97551500	-0.33192300	
Н	-0.03315700	-0.48892400	0.47236700	
S	-0.54815800	-3.18328400	0.95137800	
С	-2.01844100	-2.99022000	2.01195500	
F	-2.39784500	-1.71167600	2.14513800	
F	-3.09002800	-3.67877300	1.56248500	
F	-1.70337900	-3.47510100	3.22208200	
С	0.58601600	1.99727100	3.09469800	
С	1.48212700	0.94862200	2.41500500	
С	1.42978700	-0.38370200	3.16672200	
Н	2.51967600	1.31966000	2.51374000	
0	1.08292500	0.74924300	1.12223200	
Н	1.36225900	1.82521300	0.30465100	
F	2.14790400	-1.31556200	2.50858300	
F	0.16338700	-0.85360900	3.27299300	
F	1.93110800	-0.29826900	4.41796000	
F	0.82258200	2.12533600	4.42007900	
F	0.79791200	3.21260600	2.53638700	
F	-0.72469700	1.71489700	2.94203600	
С	2.83163700	-0.97934900	-2.35556300	
---	------------	-------------	-----------------------------	--
С	3.28620600	-1.11791000	-0.89974000	
С	3.36525200	-2.57538000	-0.45482400	
Н	2.55867400	-0.60878700	-0.25495300	
0	4.58188100	-0.58433900	-0.78802500	
Н	4.48778500	0.35815500	-0.52530600	
F	4.24738800	-3.27954100	-1.19091700	
F	3.75711900	-2.64919700	0.82675500	
F	2.16570000	-3.19353900	-0.56107700	
F	3.68674200	-1.55986300	-3.21214300	
F	2.75290600	0.32840800	-2.68874900	
F	1.60683800	-1.52283500	-2.57214200	
Zero-point correction=			0.455299 (Hartree/Particle)	
Thermal correction to	Energy=		0.503697	
Thermal correction to Enthalpy= 0.504641				
Thermal correction to Gibbs Free Energy= 0.364438				
SCF Done: $E(RM062X) = -3552.48899379$				

TS4

С	-3.53075000	2.30250500	1.38468000
С	-3.02790600	3.45303300	1.99155700
С	-1.77779900	3.94655300	1.62544300
С	-1.01060000	3.29583900	0.65049100
С	-1.57264900	2.18601100	0.01682800
С	-2.81078800	1.66798100	0.37007600
Н	-4.49440300	1.89801000	1.67845900
Н	-3.60198000	3.95959600	2.76099100
Н	-1.35730000	4.82129300	2.11269900
Н	-3.20974100	0.79105400	-0.11985200
Ι	-0.60893200	1.31735500	-1.70154100
С	0.38541700	3.80118900	0.43813400
0	0.61030300	4.98014400	0.18244400
Ν	1.35509500	2.84898500	0.65814800
С	2.72546100	2.98113400	0.53074900
С	3.32000300	4.23435300	-0.02927700

Н	2.85558000	4.49794300	-0.98392800
Н	3.13578200	5.07038600	0.65334700
Н	4.39302100	4.07778100	-0.15065100
0	3.41419200	2.02558800	0.90328900
С	-5.16000800	0.94636000	-2.11283000
С	-4.07553100	0.38934900	-2.78867100
С	-3.51770300	-0.83266500	-2.38264800
С	-4.07355300	-1.47806900	-1.27102900
С	-5.15894100	-0.92003500	-0.58858300
С	-5.70795300	0.29205400	-1.00629800
Н	-5.57266200	1.89478800	-2.44565600
Н	-3.65343400	0.90764700	-3.64614000
Н	-3.67848700	-2.42752900	-0.93191600
Н	-5.57042400	-1.43753900	0.27370200
Н	-6.54900200	0.72657100	-0.47359000
С	-2.37352100	-1.41863800	-3.18419000
Н	-2.78792800	-1.95033300	-4.05104500
Н	-1.77465100	-0.60924600	-3.61208900
С	-1.47206200	-2.43220800	-2.47236200
Н	-2.04416800	-3.33288600	-2.23247600
Н	-0.68520200	-2.75779600	-3.16434900
С	-0.78975000	-2.00598200	-1.20478800
С	-0.38154200	-0.95732200	-0.53607500
Н	0.18472600	-0.43227900	0.45390700
S	-0.13262300	-3.27445300	-0.08127700
С	-1.63753300	-3.60920200	0.91010300
F	-2.18121100	-2.49592800	1.41187000
F	-2.59147400	-4.24018900	0.19526000
F	-1.27908100	-4.41466100	1.91893000
С	-0.32349700	0.44063200	3.31768200
С	0.99447600	0.04979300	2.63276600
С	1.35906600	-1.40475900	2.97567400
Н	1.78179500	0.66446000	3.09856200
0	0.92422500	0.28221700	1.28136900
Н	1.07352000	1.87743800	0.95099600

2.31295300	-1.86104600	2.14579800		
0.30090700	-2.24697200	2.88088400		
1.82943100	-1.51299400	4.23745400		
-0.37236700	0.05865600	4.61433500		
-0.47777500	1.78211900	3.29162700		
-1.39294700	-0.09682200	2.69464800		
3.12276400	0.15944700	-2.25216900		
3.47602200	-0.45835500	-0.89639300		
3.69738700	-1.96556900	-0.98882300		
2.64167600	-0.28185400	-0.20645700		
4.68537700	0.10517700	-0.45181800		
4.45983400	0.87435200	0.11391400		
4.69342800	-2.27957100	-1.84017800		
4.02324300	-2.46345000	0.21426900		
2.58291800	-2.60475200	-1.41679800		
4.10956000	0.00715700	-3.15198700		
2.91252400	1.48671800	-2.11070500		
1.99870500	-0.37703500	-2.78606000		
=		0.452342 (Hartree/Particle)		
to Energy=		0.500488		
Thermal correction to Enthalpy= 0.501432				
to Gibbs Free Ene	ergy=	0.365161		
SCF Done: $E(RM062X) = -3552.47644512$				
	2.31295300 0.30090700 1.82943100 -0.37236700 -0.47777500 -1.39294700 3.12276400 3.47602200 3.69738700 2.64167600 4.68537700 4.45983400 4.69342800 4.02324300 2.58291800 4.10956000 2.91252400 1.99870500 = to Energy= to Energy= to Enthalpy= to Gibbs Free Energy= to Gibbs Free	2.31295300 -1.86104600 0.30090700 -2.24697200 1.82943100 -1.51299400 -0.37236700 0.05865600 -0.47777500 1.78211900 -1.39294700 -0.09682200 3.12276400 0.15944700 3.47602200 -0.45835500 3.69738700 -1.96556900 2.64167600 -0.28185400 4.68537700 0.10517700 4.45983400 0.87435200 4.69342800 -2.27957100 4.02324300 -2.46345000 2.58291800 -2.60475200 4.10956000 0.00715700 2.91252400 1.48671800 1.99870500 -0.37703500 = to Energy= to Enthalpy= to Gibbs Free Energy= 62X = -3552.47644512		

IM5

С	-2.12920800	-1.06367000	1.34119400
С	-1.68941700	0.25735200	1.24560300
С	-1.80655300	0.96490300	0.04319800
С	-2.38645500	0.32390800	-1.05926300
С	-2.83156100	-0.99413100	-0.96618700
С	-2.69987600	-1.69405600	0.23507200
Н	-2.02563500	-1.59952600	2.28074600
Н	-1.24081800	0.74104000	2.10875500
Н	-2.48611200	0.86249200	-1.99884600
Н	-3.28087300	-1.47552000	-1.83065100

Н	-3.04323700	-2.72221200	0.30872700	
С	-1.24580000	2.35872400	-0.09479400	
Н	-1.86843800	2.95566100	-0.76936500	
Н	-1.23524600	2.86676500	0.87478900	
С	0.18688300	2.35212400	-0.67791100	
Н	0.19415300	1.84437300	-1.64565200	
Н	0.53101900	3.37950100	-0.84448400	
С	1.13486300	1.67332900	0.24400800	
С	1.55331400	1.39733100	1.44937700	
S	2.48100400	0.49306700	-0.09147200	
С	1.57175400	-1.12232100	-0.19756500	
F	1.11174400	-1.51883800	0.99148100	
F	0.53835700	-1.05143900	-1.04606400	
F	2.44006100	-2.03668000	-0.65617700	
Zero-point corre	ection=		0.172560 (Hartree/P	article)
Thermal correc	ction to Energy=		0.186492	
Thermal correc	ction to Enthalpy=		0.187436	
Thermal correc	ction to Gibbs Free Ene	rgy=	0.130647	

SCF Done: E(RM062X) = -1122.16947679

6-2HFIP

С	4.78265000	-0.76127700	-1.41946100
С	5.16281300	-0.67837000	-0.08020000
С	4.23771900	-0.96554700	0.91814000
С	2.91954600	-1.31830100	0.59391900
С	2.56508500	-1.42205800	-0.75577100
С	3.48697100	-1.15078900	-1.76369900
Н	5.49548300	-0.53847500	-2.20769300
Н	6.17533200	-0.39188400	0.18588300
Н	4.51138300	-0.90342900	1.96735800
Н	3.20884300	-1.24723300	-2.80713000
Ι	0.62595300	-2.15575800	-1.35421000
С	1.99363900	-1.50095100	1.75652700
0	2.25328800	-2.25377700	2.68642400
Ν	0.89894300	-0.65874100	1.72946500

С	-0.10962300	-0.50225700	2.66607300
С	-0.20728200	-1.44313600	3.82243100
Н	-0.19460900	-2.48270100	3.48375700
Н	0.65829600	-1.31294500	4.48048900
Н	-1.12802100	-1.22078400	4.36366600
0	-0.89079200	0.43715400	2.49383700
С	1.84695300	2.96127600	-0.12871900
С	0.47284900	2.48594300	0.34920900
С	-0.65245700	3.49728800	0.11957700
Н	0.53334800	2.31818100	1.42794600
Н	0.81459000	-0.02037600	0.93574600
F	-1.77406300	3.07042700	0.72374700
F	-0.92073800	3.64592200	-1.19302500
F	-0.34252200	4.70689400	0.62161000
F	2.25771400	4.05238600	0.53718600
F	2.75408100	1.98429800	0.06531500
F	1.84054000	3.25322500	-1.44685000
С	-3.07528600	-1.73645000	0.41462300
С	-2.72927700	-0.27014600	0.14764400
С	-3.31833000	0.25792800	-1.15593000
Н	-1.64341800	-0.18971300	0.05982200
0	-3.24995100	0.51614500	1.18874800
Н	-2.55238500	0.59562600	1.87001800
F	-2.92526900	1.52920600	-1.35799200
F	-4.66455000	0.24202500	-1.14388200
F	-2.90515400	-0.47057300	-2.21495100
F	-2.66303400	-2.55509500	-0.57845400
F	-2.46654300	-2.14154900	1.55171700
F	-4.39708200	-1.92089600	0.57455500
0	0.15056400	1.25605500	-0.24816700
Н	0.15193100	1.33014000	-1.21669800
Zero-point correction=	0.283352 (Hartree/Particle)		
Thermal correction to	• Energy=		0.317393
Thermal correction to	o Enthalpy=		0.318337
Thermal correction to Gibbs Free Energy=			0.210622

С	-2.007	779500	-1.21634500	1.33900100	
С	-1.739	955600	0.14966500	1.24596600	
С	-1.948	300400	0.83840800	0.04449700	
С	-2.440	020700	0.13194200	-1.05989300	
С	-2.714	478100	-1.23211900	-0.96857600	
С	-2.495	533000	-1.91120600	0.23147900	
Н	-1.83	709000	-1.73670100	2.27741400	
Н	-1.35	729400	0.68506800	2.11042000)
Н	-2.60	735500	0.65560500	-1.99831200	
Н	-3.099	964300	-1.76514200	-1.83377400	
Н	-2.700	540900	-2.97454500	0.30346100	
С	-1.58	138800	2.29487900	-0.08329600	
Н	-2.244	425000	2.80052700	-0.79214000	
Н	-1.679	917400	2.80490500	0.87948300)
С	-0.13	136100	2.50089800	-0.61208400	
Н	-0.022	202200	2.00132500	-1.58165200	
Н	0.07	826100	3.56545200	-0.76531500)
С	0.84	405500	1.92340300	0.29668600)
С	1.50	870500	1.42823900	1.25949200)
S	2.562	244600	0.59850900	-0.07541400	
С	1.70	255900	-1.01350000	-0.19079200	
F	1.379	900900	-1.51491800	1.00892600	
F	0.570	652300	-0.94925100	-0.91875800	
F	2.543	385300	-1.86674500	-0.80214800	
Zero-point c	orrection=			0.171481 (Ha	rtree/Particle)
Thermal co	prrection to Energy	y=		0.185202	
Thermal correction to Enthalpy=				0.186146	
Thermal co	prrection to Gibbs	Free Ene	ergy=	0.128968	
SCF Done:	E(RM062X) =	-1122.1	5874954		

TS5-1

C 2.47609500 -0.63955000 -1.4154620

S-42

C	1.96826900	0.61159500	-1.06655000
С	1.69802300	0.92634900	0.27125400
С	1.94971900	-0.03969200	1.25222200
С	2.45607600	-1.29282300	0.90726600
С	2.72018100	-1.59661300	-0.42898100
Н	2.68146200	-0.86690700	-2.45801200
Н	1.77792400	1.35261300	-1.83786400
Н	1.74731200	0.19245000	2.29503000
Н	2.64631900	-2.03045300	1.68216300
Н	3.11637600	-2.57143500	-0.69963400
С	1.12889200	2.27254600	0.64745700
Н	1.48167500	2.55567400	1.64706000
Н	1.48225800	3.03817300	-0.04745400
С	-0.40267200	2.32260900	0.71544200
Н	-0.75872900	1.63983000	1.49408000
Н	-0.77664000	3.31327900	0.96927000
С	-1.36085600	1.49711100	-0.47853300
С	-0.90490600	2.46601000	-1.16911400
S	-2.54710800	0.28837000	-0.17447500
С	-1.49915700	-1.20116300	0.07469000
F	-0.59713000	-1.36532800	-0.89584700
F	-0.85120400	-1.17948400	1.24879600
F	-2.33191200	-2.25467800	0.07914100
Zero-point correction	on=		0.170741 (Hartree/Particle)
Thermal correction	n to Energy=		0.184608
Thermal correction	n to Enthalpy=		0.185552

7	4
4	ι

С	5.36012800	-0.89590800	-0.02597600
С	4.01109100	-1.09588100	-0.32049300
С	3.12032100	-0.01606900	-0.37034000
С	3.61137400	1.27051600	-0.11404300
С	4.95967500	1.47471500	0.18085700

С	5.838689	0.39	106700 0.2	2604200
Н	6.03811	700 -1.744	65200 0.0	0334700
Н	3.64414	500 -2.100	024500 -0.51	835400
Н	2.93144	2.11	843500 -0.1	5020300
Н	5.324414	400 2.48	033900 0.3	7204600
Н	6.88945	000 0.54	876500 0.4	5267900
С	1.65274	-0.240	-0.63	8832600
Н	1.22175.	300 0.62	660200 -1.14	4897100
Н	1.51303	900 -1.107	45400 -1.29	9204000
С	0.87334	700 -0.479	043300 0.6	7755400
Н	1.29477	100 -1.345	588800 1.2	0330700
Н	1.00730	300 0.37	951900 1.3	4747200
С	-0.550411	00 -0.701	12400 0.46	6699600
С	-1.735067	-0.864	95600 0.25	5909500
S	-3.360177	00 -1.238	-0.01	819100
С	-4.048679	000 0.465	-0.05	5112600
F	-5.367306	00 0.351	87700 -0.26	747100
F	-3.857376	00 1.115	65700 1.10)442000
F	-3.515413	00 1.211	12600 -1.02	802300
Zero-p	point correction=		0.173	248 (Hartree/Particle)
Ther	Thermal correction to Energy=		0.187	7710
Ther	Thermal correction to Enthalpy=		0.188	655
Thermal correction to Gibbs Free Energy=			0.1265	39
SCF Done: $E(RM062X) = -1122.22067822$				

TS2'

С	3.05794800	-1.19619400	2.25103200
С	2.49839800	-1.74559200	3.40575400
С	1.11588800	-1.84857200	3.53609000
С	0.28525500	-1.40490200	2.50249100
С	0.88942200	-0.87474800	1.36581300
С	2.24878300	-0.74135700	1.20053100
Н	4.13351800	-1.12024500	2.14156500
Н	3.14336400	-2.09621300	4.20487900
Н	0.65091500	-2.27656100	4.41929300

Н	2.69184500	-0.30872200	0.31794500
Ι	-0.54611600	-0.37527600	-0.19121700
С	-1.18080200	-1.57210100	2.58350800
0	-1.74952400	-2.17003100	3.48918600
Ν	-1.83457000	-1.00222700	1.49873500
С	-3.12093900	-1.23448500	1.07392900
С	-4.13973600	-1.77981300	2.02659400
Н	-3.91427900	-2.83405000	2.22032300
Н	-4.09516600	-1.26016100	2.98538100
Н	-5.12798500	-1.68330400	1.57561800
0	-3.37236300	-0.96829200	-0.11049200
С	-1.88565600	-3.96088300	-0.36031400
С	-1.36201000	-3.56810500	-1.59153600
С	0.02070600	-3.42459800	-1.77564100
С	0.87086700	-3.69950200	-0.69674200
С	0.34842300	-4.08618400	0.53941900
С	-1.03055400	-4.21406300	0.71595700
Н	-2.96174100	-4.04840700	-0.23805600
Н	-2.03603000	-3.34101000	-2.41367000
Н	1.94523900	-3.58516800	-0.79818300
Н	1.02282600	-4.27033900	1.37062100
Н	-1.43293200	-4.49217100	1.68635100
С	0.54021500	-2.95138700	-3.11616200
Н	0.79496500	-3.81303600	-3.74521600
Н	-0.24933200	-2.40435600	-3.63988300
С	1.81890000	-2.07646700	-3.07234800
Н	2.66399400	-2.61755000	-2.64310100
Н	2.09341200	-1.82585000	-4.10444100
С	1.66195200	-0.82089600	-2.36685800
С	1.34615200	0.20368600	-1.74348000
Н	1.62601400	1.21050400	-1.47515800
S	4.78098600	-0.19870800	-2.61259400
С	5.13027000	-1.24332200	-1.22552600
F	5.39278600	-0.55879900	-0.06446000
F	4.10362700	-2.09845000	-0.88278100

F	6.20668800	-2.06026600	-1.40467200	
С	-6.49510700	1.75821200	-1.66087000	
С	-5.53460500	1.13871400	-0.64810800	
С	-5.62983600	1.78142200	0.73789200	
Н	-4.51507500	1.30366600	-1.01505700	
0	-5.86793400	-0.22256900	-0.54811700	
Н	-5.01985800	-0.72143600	-0.53184400	
F	-4.69058000	1.24897100	1.55440600	
F	-6.82779500	1.56315000	1.30841000	
F	-5.42140600	3.11169100	0.69986800	
F	-6.26991100	3.07522700	-1.83378500	
F	-6.34263300	1.15363900	-2.85429400	
F	-7.78029300	1.60378200	-1.28683900	
С	3.49770900	4.02980900	-0.42853200	
С	4.16519500	2.72720800	0.01643500	
С	4.13423000	2.53118300	1.53301000	
Н	5.21602400	2.77033000	-0.28985100	
0	3.46427100	1.66748600	-0.55891700	
Н	3.99384000	1.22300600	-1.27834600	
F	4.84353800	1.43653100	1.86864800	
F	2.87604900	2.35236600	1.98549800	
F	4.66336200	3.58134800	2.19045900	
F	4.11197600	5.12070400	0.06628800	
F	3.52838400	4.11029200	-1.77302700	
F	2.20229500	4.07764000	-0.05056500	
Zero-point co	orrection=		0.453753 (Hartree/Particle)	
Thermal con	rrection to Energy=		0.502617	
Thermal con	rrection to Enthalpy=		0.503561	
Thermal correction to Gibbs Free Energy= 0.361621				
SCF Done: $E(RM062X) = -3552.44147326$				

References

- J. Zhu, C. Xu, C. Xu and Q. Shen, Preparation of N-Trifluoromethylthiosaccharin: A Shelf-Stable Electrophilic Reagent for Trifluoromethylthiolation, *Org. Synth.*, 2017, 94, 217–223.
- [2] S. Alazet, L. Zimmer and T. Billard, Base-Catalyzed Electrophilic

Trifluoromethylthiolation of Terminal Alkynes, *Angew. Chem. Int. Ed.*, **2013**, *52*, 10814-10817.

- [3] G. He, Y. H. Jiang, X. Xiao, J. H. Lin, X. Zheng, R. B. Du, Y. C. Cao and J. C. Xiao, Difluorocarbene-Based Trifluoromethylthiolation of Terminal Alkynes, J. Fluor. Chem., 2020, 230, 109437-106442.
- [4] S. Q. Zhu, X. H. Xu and F. L. Qing, Oxidative Trifluoromethylthiolation of Terminal Alkynes with AgSCF₃: A Convenient Approach to Alkynyl Trifluoromethyl Sulfides, *Eur. J. Org. Chem.*, 2014, 4453-4456.
- [5] C. Chen, L. L. Chu and F. L. Qing, Metal-Free Oxidative Trifluoromethylthiolation of Terminal Alkynes with CF₃SiMe₃ and Elemental Sulfur, *J. Am. Chem. Soc.*, 2012, 134, 12454–12457.
- [6] X. Shao, C. Xu, L. Lu and Q. Shen, Structure-Reactivity Relationship of Trifluoromethanesulfenates: Discovery of an Electrophilic Trifluoromethylthiolating Reagent, J. Org. Chem., 2015, 80, 3012-3021.
- [7] A. Tlili, S. Alazet, Q. Glenadel, T. Billard, Copper-Catalyzed Perfluoroalkylthiolation of Alkynes with Perfluoroalkanesulfenamides, *Chem. Eur. J.*, 2016, 22, 10230-10234.
- [8] R. Pluta, P. Nikolaienko, and M. Rueping, Direct Catalytic Trifluoromethylthiolation of Boronic Acids and Alkynes Employing Electrophilic Shelf-Stable N-(trifluoromethylthio)phthalimide, *Angew. Chem. Int. Ed.*, 2014, 53, 1650-1653.
- [9] N. Walker, W. B. Fox, R. A. De Marco, and W. B. Moniz, Carbon-13 NMR Spectra: Halocarbons vs Hydrocarbons, *Journal of Magnetic Resonance (1969)*, **1979**, *34*, 295-299.
- [10] X. G. Yang, F. H. Du, J. J. Li and C. Zhang, Late-Stage Dehydroxyazidation of Alcohols Promoted by Trifunctional Hypervalent Azido-Iodine(III) Reagents, *Chem. Eur. J.*, **2022**, *28*, e202200272 (1 of 7).
- [11] S. Ding, G. Jia and J. Sun, Iridium-Catalyzed Intermolecular Azide–Alkyne Cycloaddition of Internal Thioalkynes under Mild Conditions, *Angew. Chem. Int. Ed.*, 2014, 53, 1877-1880.
- [12] Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N.

Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

- [13] P. J. Stephens, F. J. Devlin, C. F. Chabalowski and M. J. Frisch, Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields, *J. Phys. Chem.*, **1994**, *98*, 11623-11627.
- [14] (a) S. Grimme, J. Antony, S. Ehrlich and H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, *J. Chem. Phys.*, **2010**, *132*, 154104; (b) S. Grimme, S. Ehrlich and L. Goerigk, Effect of the damping function in dispersion corrected density functional theory, *J. Comput. Chem.*, **2011**, *32*, 1456-1465.
- [15] (a) G. Igel-Mann, H. Stoll and H. Preuss, Pseudopotentials for main group elements (IIIa through VIIa), *Mol. Phys.*, **1988**, *65*, 1321–1328; (b) D. Andrae, U. Häußermann, M. Dolg, H. Stoll and H. Preuß, Energy-adjusted ab initio pseudopotentials for the second and third row transition elements, *Theor. Chim. Acta.*, **1990**, *77*, 123-141.
- [16] P. C. Hariharan and J. A. Pople, The influence of polarization functions on molecular orbital hydrogenation energies, *Theor. Chim. Acta.*, **1973**, *28*, 213-222.
- [17] A. V. Marenich, C. J. Cramer and D. G. Truhlar, Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions, *J. Phys. Chem. B*, 2009, 113, 6378-6396.
- [18] X. Zhang and R. S. Paton, Stereoretention in styrene heterodimerisation promoted by one-electron oxidants, *Chem. Sci.*, **2020**, *11*, 9309-9324.
- [19] (a) L. Eberson, M. Hartshorn, O. Persson and F. Radner, Making radical cations S-48

live longer, *Chem. Commun.*, **1996**, *18*, 2105-2112;(b) X. Gu, X. Song, C. Shao, P. Zeng, X. Lu, X. Shen and Q. Yang, Electrospinning of poly(butylene-carbonate): Effect of Solvents on the Properties of the Nanofibers Film, *Int. J. Electrochem. Sci.*, **2014**, *9*, 8045-8056;(c) M. Carraro, M. Gardan, A. Sartorel, C. Maccato and M. Bonchio, Hydrogen peroxide activation by fluorophilic polyoxotungstates for fast and selective oxygen transfer catalysis, *Dalton Trans.*, **2016**, *45*, 14544-14548.

- [20] Sigma-Aldrich, 1,1,1,3,3,3-Hexafluoro-2-propanol.
- [21] (a) R. C. Weast, *CRC Handbook of Chemistry and Physics*, 76th, ed.; CRC Press: Boca Raton, FL, 1995;(b) E. Richmond, J. Yi, V. D. Vuković, F. Sajadi, C. N. Rowley and J. Moran, Ring-opening hydroarylation of monosubstituted cyclopropanes enabled by hexafluoroisopropanol, *Chem. Sci.*, **2018**, *9*, 6411-6416.
- [22] E. Engelage, N. Schulz, F. Heinen, S. M. Huber, D. G. Truhlar and C. J. Cramer, Refined SMD Parameters for Bromine and Iodine Accurately Model Halogen-Bonding Interactions in Solution, *Chem. Eur. J.*, **2018**, *24*, 15983-15987.
- [23] (a) K. Fukui, The path of chemical reactions the IRC approach, Acc. Chem. Res., 1981, 14, 363–368;(b) K. Fukui, Formulation of the reaction coordinate, J. Phys. Chem., 1970, 74, 4161–4163.
- [24] (a) Y. Zhao and D. G. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals, *Theor. Chim. Acta.*, 2008, *120*, 215-241;(b) A. D. McLean and G. S. Chandler, Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11-18, *J. Chem. Phys.*, 1980, *72*, 5639-5648;(c) R. Krishnan, J. S. Binkley, R. Seeger and J. A. Pople, Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions, *J. Chem. Phys.*, 1980, *72*, 650-654;(d) G. A. Petersson, A. Bennett, T. G. Tensfeldt, M. A. Al-Laham and W. A. Shirley, A complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row

elements, *J. Chem. Phys.*, **1988**, *89*, 2193-2218;(e) M. J. Frisch, J. A. Pople and J. S. Binkley, Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets, *J. Chem. Phys.*, **1984**, *80*, 3265-3269;(f) F. Weigend and R. Ahlrichs, Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy, *Phys. Chem. Chem. Phys.*, **2005**, *7*, 3297-3305;(g) T.-Y. Sun, K. Chen, H. Zhou, T. You, P. Yin and X. Wang, Revisiting the effect of f-functions in predicting the right reaction mechanism for hypervalent iodine reagents, *J. Comput. Chem.*, **2021**, *42*, 470-474.

- [25] CYLview, 1.0b; C. Y. Legault, Université de Sherbrooke: Quebec, Canada, 2009 (<u>http://www.cylview.org</u>).
- [26] (a) B. Wang, C. Rong, P. K. Chattaraj and S. Liu, A comparative study to predict regioselectivity, electrophilicity and nucleophilicity with Fukui function and Hirshfeld charge, *Theor. Chem. Acc.*, 2019, *138*: 124;(b) T. Lu, Q. Chen, in *Conceptual Density Functional Theory: Towards a New Chemical Reactivity Theory*, Vol. 2 (Ed: S. Liu,), WILEY-VCH, Weinheim, Germany 2022, Ch. 31;(c) T. Lu and Q. Chen, Independent gradient model based on Hirshfeld partition: A new method for visual study of interactions in chemical systems, *J. Comput. Chem.*, 2022, *43*, 539-555.

NMR Spectra of Corresponding Compounds

S-52

S-85

S-94

S-99

