Supporting Information

Green synthesis of water-compatible molecularly imprinted resin on graphene

oxide for highly selective extraction of chlorogenic acid in aqueous systems

Yanan Yuan^{1,2}, Yanfei Zhang¹, Zhiqiang Wang², Hongyuan Yan^{1,2,*}

^{1.} State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key

Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of

Education, College of Chemistry and Materials Science, College of Pharmaceutical

Science, Hebei University, Baoding, 071002, China

² Hebei Key Laboratory of Public Health Safety, College of Public Health, Hebei University, Baoding, 071002, China

^{*} Corresponding author. Tel.: +86-0312-5079788

E-mail address: yanhy@hbu.edu.cn

Contents

Materials and reagents

HPLC analysis

Method validation

Figures and Tables

Fig. S1 Sample preparation and CPTE procedure.

Fig. S2 The low-resolution (5000×) SEM images (a–c) and optical photograph (d) of SMIR/PGO; The SEM images of (e) SMIR/PGO (10000×) and (f) SNIR/PGO (10000×); N_2 adsorption–desorption isotherms and BJH size distribution isotherms of SMIR/PGO (g) and SNIR/PGO (h).

Fig. S3 The fitting curves of a: pseudo-first-order model; b: pseudo-second-order model, and c: Elovich model for SMIR/PGO and SNIR/PGO.

Fig. S4 Adsorption isotherm models of SMIR/PGO and SNIR/PGO. (a: Freundlich linear fits for CGA; b: Langmuir linear fits for CGA; c: Temkin linear fits for CGA).

Fig. S5 Optimization of the extraction conditions. a: Adsorbent dosage; b: types of washing solvent (1: water; 2: methanol-water (1:9, v/v); 3: acetonitrile-water (1:9, v/v); 4: acetonitrile; 5: methanol-water (5:5, v/v); 6: methanol); c: the volume of washing solvent; d: types of elution solvent (1: acetonitrile-formic acid (9:1, v/v); 2: methanol-formic acid (9:1, v/v); 3: methanol-formic acid-water (8:1:1, v/v/v), 4: acetonitrile-water (9:1, v/v); 5: acetone-water (9:1, v/v)); e: volume of elution solvent; f: centrifugal speed.

Fig. S6 Effect of adsorbent dosage, elution volume, centrifugal speed and their

reciprocal 3D response interaction on the recovery of CGA. (a: effect of adsorbent dosage and elution volume, b: effect of adsorbent dosage and centrifugal speed, c: effect of elution volume and centrifugal speed).

 Table S1 Parameters of the three kinetic models

Table S2 Parameters of Langmuir, Freundlich, and Temkin adsorption isotherms

Table S3 Experimental factors and levels in the central composite design

Table S4 The central composite design with experimental results

Table S5 ANOVA for the response surface model

 Table S6 Parameters of the SMIR/PGO-CPTE-HPLC method

Table	S7	Recovery	of	CGA
-------	-----------	----------	----	-----

Materials and reagents

Graphene oxide (GO) was acquired from Jining Leader Nano Technology Co., Ltd. (Shandong, China). Dopamine hydrochloride (DA), chlorogenic acid (CGA), caffeic acid (CFA), rutin (RU), kaempferol-3-rutinoside (K-3-RU) were procured from Beijing Innochem Science & Technology Co., Ltd. (Beijing, China). Hexamethylenetetramine (HMTA) was obtained from Huadong Chemical Co., Ltd. (Tianjin, China). Methanol and acetonitrile were obtained from Shanghai Xingke Co., Ltd. (Shanghai, China). Ultrapure water was filtered using a 0.22 µm membrane before use. A standard stock solution of CGA (1.00 mg mL⁻¹) was prepared in methanol.

HPLC analysis

A Thermo UltiMate 3000 DGLC HPLC system (Thermo Fisher Scientific, USA) equipped with a Chromeleon 7.2 workstation, UV detector, and a chromatographic column (Accucore C_{18} , 100 × 4.6 mm, 2.6 µm) was employed for the determination of CGA. The mobile phase was water-acetonitrile (9:1, v/v, containing 0.1% TFA). The wavelength of the UV was set at 290 nm. The injection volume was 20 µL.

Method validation

The methodology parameters included detection limit (LOD), quantitation limit (LOQ), working range, trueness, and precision. The LOD and LOQ were calculated using the equation LOD = 3Sa/b and LOQ = 10Sa/b, where Sa is the standard deviation of the blank sample response and b is the slope of the calibration curve.¹ The working range was constructed by concentrations (0.02–25.00 µg mL⁻¹) of CGA. And response values of each concentration are plotted on the y-axis against the concentrations of each

point. The trueness of the proposed method was assessed through recovery experiments using spiked samples at three spiking levels (0.5, 5.0, and 25 μ g mL⁻¹). The method precision was represented as repeatability and reproducibility, which were calculated by extracting and quantifying each analyte from real matrix using the whole methods in one day (intra-day, n = 6) and three consecutive days (inter-day, n = 3), respectively.

Fig. S1 Sample preparation and CPTE procedure.

Fig. S2 The low-resolution (5000×) SEM images (a–c) and optical photograph (d) of SMIR/PGO; The SEM images of (e) SMIR/PGO (10000×) and (f) SNIR/PGO (10000×); N₂ adsorption– desorption isotherms and BJH size distribution isotherms of SMIR/PGO (g) and SNIR/PGO (h).

Fig. S3 The fitting curves of a: pseudo-first-order model; b: pseudo-second-order model, and c:

Elovich model for SMIR/PGO and SNIR/PGO.

Fig. S4 Adsorption isotherm models of SMIR/PGO and SNIR/PGO. (a: Freundlich linear fits for

CGA; b: Langmuir linear fits for CGA; c: Temkin linear fits for CGA).

Fig. S5 Optimization of the extraction conditions. a: Adsorbent dosage; b: types of washing

solvent (1: water; 2: methanol-water (1:9, v/v); 3: acetonitrile-water (1:9, v/v); 4: acetonitrile; 5: methanol-water (5:5, v/v); 6: methanol); c: the volume of washing solvent; d: types of elution solvent (1: acetonitrile-formic acid (9:1, v/v); 2: methanol-formic acid (9:1, v/v); 3: methanol-formic acid (9:1, v/v); 5: acetone-water (9:1, v/v)); e:

volume of elution solvent; f: centrifugal speed.

Fig. S6 Effect of adsorbent dosage, elution volume, centrifugal speed and their reciprocal 3D

response interaction on the recovery of CGA. (a: effect of adsorbent dosage and elution volume, b:

effect of adsorbent dosage and centrifugal speed, c: effect of elution volume and centrifugal

speed).

Kinetic models	Parameters	SMIR/PGO	SNIR/PGO
	$k_1 ({ m min}^{-1})$	0.0273	0.0189
Pseudo-first-order model	$Q_e (\mathrm{mg}~\mathrm{g}^{-1})$	8.9835	9.4164
	R^2	0.9869	0.9894
Pseudo-second-order	$Q_e (\mathrm{mg}\;\mathrm{g}^{-1})$	39.6196	15.2835
model	$k_{\rm s} ({ m g} \cdot { m mg}^{-1} { m min}^{-1})$	0.0149	0.0067
	R^2	0.9999	0.9960
	а	27.0512	3.5292
Elovich model	b	2.5058	2.0140
	R^2	0.9617	0.9409

Table S1 Parameters of the three kinetic models

Isotherm		Parameters				
		п	2.5445			
	SMIR/PGO	K_f (mL μ g ⁻¹)	11.9676			
E 11. 1		R^2	0.9144			
Freundlich		п	2.7174			
	SNIR/PGO	K_f (mL μ g ⁻¹)	4.2046			
		R^2	0.8082			
		$Q_m (\mathrm{mg}\;\mathrm{g}^{-1})$	101.3171			
	SMIR/PGO	K_l (mL μ g ⁻¹)	0.0566			
T on onessia		R^2	0.9943			
Langmuir		$Q_m (\mathrm{mg}\;\mathrm{g}^{-1})$	30.1296			
	SNIR/PGO	K_l (mL µg ⁻¹)	0.0985			
		R^2	0.9948			
		B_T	13.9420			
	SMIR/PGO	A_T (L mg ⁻¹)	2.5908			
T 1-i		R^2	0.9852			
Temkin		B_T	5.06288			
	SNIR/PGO	A_T (L mg ⁻¹)	1.4214			
		R^2	0.9182			

 Table S2 Parameters of Langmuir, Freundlich, and Temkin adsorption isotherms

	Levels					
Factors	Low (-1)	Central (0)	High (+1)	-α	$+\alpha$	
A: Adsorbent dosage (mg)	5.0	7.5	10	3.3	11.7	
B: Elution volume (mL)	0.5	1.0	1.5	0.16	1.84	
C: Centrifugal speed (rpm)	500	750	1000	330	1170	

Table S3 Experimental factors and levels in the central composite design

		-		
Run	Adsorbent dosage	Elution volume	Centrifugal speed	Recovery
	(mg)	(mL)	(rpm)	(%)
1	7.5	1.0	750	86.5
2	5.0	0.5	500	67.9
3	5.0	1.5	1000	55.9
4	10	1.5	500	85.5
5	11.7	1.0	750	82.4
6	5.0	1.5	500	75.9
7	7.5	1.0	750	86.5
8	7.5	1.0	1170	70.0
9	7.5	1.84	750	67.5
10	7.5	1.0	750	79.4
11	10.0	0.5	1000	73.6
12	7.5	1.0	330	87.7
13	5.0	0.5	1000	53.9
14	7.5	0.16	750	46.2
15	7.5	1.0	750	86.5
16	10	0.5	500	74.1
17	10	1.5	1000	79.5
18	7.5	1.0	750	78.6
19	3.3	1.0	750	58.4
20	7.5	1.0	750	78.7

Table S4 The central composite design with experimental results

Source	Sum of Squares	df	Mean Square	F-value	p-value	
Model	2663.80	9	295.98	20.59	< 0.0001	significant
A- Adsorbent dosage	724.40	1	724.40	50.39	< 0.0001	
B- Elution volume	291.66	1	291.66	20.29	0.0011	
C- Centrifugal speed	361.54	1	361.54	25.15	0.0005	
AB	6.66	1	6.66	0.4633	0.5115	
AC	94.53	1	94.53	6.58	0.0282	
BC	16.53	1	16.53	1.15	0.3088	
A^2	199.83	1	199.83	13.90	0.0039	
B^2	1045.34	1	1045.34	72.71	< 0.0001	
C^2	7.80	1	7.80	0.5426	0.4783	
Residual	143.77	10	14.38			
Lack of Fit	56.75	5	11.35	0.6521	0.6748	not significant
Pure Error	87.02	5	17.40			
Cor Total	2807.57	19				

Table S5 ANOVA for the response surface model

Analyte	14	Pagrossion equation	Linearity	LOD	LOQ
	/	Regression equation	$(\mu g m L^{-1})$	$(ng mL^{-1})$	$(ng mL^{-1})$
CGA	0.9993	y = 0.524x + 0.1346	0.02-25.00	5.2	17.2

Table S6 Parameters of the SMIR/PGO-CPTE-HPLC method

			5			
Analyte	$0.5 \ \mu g \ mL^{-1}$		$5.0 \ \mu g \ mL^{-1}$		$25 \ \mu g \ mL^{-1}$	
	Recovery (%)	RSD (%)	Recovery (%)	RSD (%)	Recovery (%)	RSD (%)
CGA	91.5	5.5	95.4	4.6	84.4	2.5

 Table S7 Recovery of CGA

Reference

1. A. Shrivastava and V. Gupta, Chron. Young Sci., 2011, 2, 21–25.