Selective hydrogenolysis of furfural to 1,2-pentanediol

over Pt-Fe/MT catalyst under mild conditions

Chen Cao, + ^{a,b} Weixiang Guan, + ^a Qiaoyun Liu,^c Lin Li,^a Yang Su, ^a Fei Liu, *^a Aiqin Wang*^a

and Tao Zhang* ^a

^a: CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. E-mail: <u>fei.liu@dicp.ac.cn</u>; <u>aqwang@dicp.ac.cn</u>; <u>taozhang@dicp.ac.cn</u>

† These authors contributed equally.

b: University of Chinese Academy of Sciences, Beijing 100049, China.

^c: College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.

Figure S1 XRD patterns of the series of x Pt-y Fe/MT catalysts.

Figure S2 CO₂-TPD profiles for the MT, 0.8Pt/MT and 0.8Pt-0.4M/MT catalysts.

Figure S3 NH₃-TPD profiles for the MT, 0.8Pt/MT and 0.8Pt-0.4M/MT catalysts.

Figure S4 TOF values under different reaction pressure over 0.8Pt/MT and 0.8Pt0.4Fe/MT catalysts.

Figure S5 TOF values under different FFA concentration over 0.8Pt/MT and 0.8Pt0.4Fe/MT catalysts.

Figure S6 TOF values under different temperature over 0.8Pt/MT and 0.8Pt0.4Fe/MT catalysts.

Figure S7 Catalytic performance under different temperature over 0.8Pt0.4Fe/MT catalyst. Reaction conditions:0.1 g FA in 5 g water, 100 mg catalyst, 1 MPa H₂, 10 h.

Figure S8 HAADF-STEM image of the 0.8Pt0.4Fe/MT-used catalyst.

Table S1 The amount of Mg^{2+} in the impregnation solution.

Catalyst	Concentration of Mg ²⁺		
0.8Pt/MT	247.5 mg/L		

Add 0.343 g of an aqueous solution of $H_2PtCl_6 \cdot 6H_2O$ (Pt: 1.166 wt %) into a beaker, followed by the addition of water to achieve a total mass of 7 g, then introduce 0.5 g of MT. After stirring the mixture of metal precursor and support for 24 hours, it was filtered, and the filtrate was subjected to ICP testing. The leaching content of Mg is 0.3 wt %.

Catalysts	CO ₂ uptake ^a (µmol _{CO2} /g _{cat})	NH ₃ uptake ^b (μmol _{NH3} /g _{cat})				
0.8Pt0.4Co/MT	22.3	13.2				
0.8Pt0.4Ni/MT	25.8	19.9				
0.8Pt0.4Cu/MT	18.7	7.7				

Table S2 The alkalinity and acidity of 0.8Pt0.4M/MT catalysts.

^a Determined by CO₂-TPD using a MS signal m / e = 44.

^b Determined by NH₃-TPD using a MS signal m / e = 16

Entry	Conversion	Selectivity (%)		
	(%)	1,2-PeD	1,5-PeD	
1	0	0	0	

Table S3 Catalytic performance of the 0.8Pt0.4Fe/MT catalyst for theTHFA hydrogenolysis.

Reaction conditions: 0.1 g THFA in 5 mL H_2O , 100 mg catalyst, 1 MPa H_2 and 140 °C for 10 h.

Sub.	Cat	T (°C)	P (MPa)	Time (h)	Sel. /%			Production rate	Dof
	Cat.				THFA	1,2-PeD	1,5-PeD	$(\text{InOI}_{1,2-\text{PeD}})$ $(\text{h*mol}_{\text{noble metal}}))$	Kei
FF A	4Ru/MnOx	150	1.5	6	30	42.1	-	3.6	1
FF A	10Ru/Al ₂ O ₃	200	10	1	57	32	-	20.4	2
FA	1Ru-5Sn/ZnO	140	3.5	6	0	84.5	12.4	168	3
FF A	5Ru/MgO	190	3	1	51	42	2.9	144	4
FA	20Ru/PVP	125	2	48	64	36	-	1.5	5
FA	3Pd/MMT-K	220	3.5	5	13	66	-	47	6
FA	1Rh/OMS-2	160	3	8	0	87	-	33	7
FA	1.9Pt/HT	150	3	4	14	73	8	19	8
FA	5Pt/CeO ₂	165	1.5	4	22.8	59.9	3.1	6	9
FF A	4.5%Pt/CeO ₂	165	2	24	11.7	77.1	7.3	3	10
FF A	1.67Pt/Mg(Al)O@ Al ₂ O ₃ -IR	200	3	0.12 h ⁻¹	6	86	5	12.5	11
FA	0.8Pt0.4Fe/MT	140	0.1	10	2	81	15	53ª	
FA	0.2Pt0.1Fe/MT	140	0.1	10	6	67	20	128ª	This work
FA	0.1Pt0.05Fe/MT	140	0.1	10	2	43	17	178ª	

Table S4 Comparison with the literature on the production rate of 1,2-PeD by hydrogenolysis of FA or FFA over noble metal catalyst.

^a: These data were obtained after a reaction time of 2 h.

	Solvent	Conversion. (%)	Selectivity (%)				
Entry			1,2- PeD	1,5- PeD	FFA	THFA	1-PO
1	Methanol	100	0	0	100	0	0
2	Ethanol	100	0	0	100	0	0
3	N, N- Dimethylformamide	100	0	0	100	0	0
4	Water	100	76	18	1	2	3

Table S5 The effect of solvents.^a

 a Reaction conditions: 0.1 g of FA in 5 mL H_2O, 100 mg of 0.8Pt0.4Fe/MT, 1 MPa H_2, and 140 $^\circ C$ for

10 h.

			Selectivity (%)		
Entry	Substrate	Catalyst	Tetrahydrofura n	1-Butanol	
1	Furan	0.8Pt/MT	47	53	
2	Furan	0.8Pt0.4Fe/MT	15	85	
3	2,5-Dihydrofuran	0.8Pt0.4Fe/MT	93	7	
4	2,3-Dihydrofuran	0.8Pt0.4Fe/MT	90	10	

Table S6 Catalytic performance of the 0.8Pt/MT and the 0.8Pt0.4Fe/MT catalyst for the furan and its derivatives hydrogenolysis.

Reaction conditions: 0.1 g of substrate in 5 g solvent (3 g H_2O and 2 g ethanol), 100 mg of catalyst, 1 MPa H_2 , and 140 °C for 10 h.

References

- 1. B. Zhang, Y. Zhu, G. Ding, H. Zheng and Y. Li, Green Chem., 2012, 14, 3402-3409.
- 2. D. Götz, M. Lucas and P. Claus, React. Chem. Eng., 2016, 1, 161-164.
- 3. P. P. Upare, Y. Kim, K.-R. Oh, S. J. Han, S. K. Kim, D.-Y. Hong, M. Lee, P. Manjunathan, D. W. Hwang and Y. K. Hwang, *ACS Sustainable Chem. Eng.*, 2021, 9, 17242-17253.
- 4. A. Yamaguchi, Y. Murakami, T. Imura and K. Wakita, Chemistryopen, 2021, 10, 731-736.
- 5. L. Bruna, M. Cardona-Farreny, V. Colliere, K. Philippot and M. R. Axet, *nanomaterials*, 2022, **12**, 328-338.
- 6. N. S. Date, R. C. Chikate, H.-S. Roh and C. V. Rode, Catal. Today, 2018, 309, 195-201.
- 7. D. S. Pisal and G. D. Yadav, ACS Omega, 2019, 4, 1201-1214.
- T. Mizugaki, T. Yamakawa, Y. Nagatsu, Z. Maeno, T. Mitsudome, K. Jitsukawa and K. Kaneda, ACS Sustainable Chem. Eng., 2014, 2, 2243-2247.
- 9. T. Tong, Q. Xia, X. Liu and Y. Wang, Catal. Commun., 2017, 101, 129-133.
- 10. T. Tong, X. Liu, Y. Guo, M. Norouzi Banis, Y. Hu and Y. Wang, J. Catal., 2018, 365, 420-428.
- 11. Y. Zhu, W. Zhao, J. Zhang, Z. An, X. Ma, Z. Zhang, Y. Jiang, L. Zheng, X. Shu, H. Song, X. Xiang and J. He, *ACS Catal.*, 2020, **10**, 8032-8041.