Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2024

Supporting Information

N-Heterocyclic Carbene and photocatalyst-catalyzed radical sp³ C-H acylation for access to indole ketones

Guihua Nie¹, Ting Tu¹, Tianhui Liao¹, Donghan Liu¹, Wenjun Ye¹, Shi-Chao Ren*

¹State key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China.

E-Mail: scren@gzu.edu.cn.

Table of Contents

I. General information	1
II. Preparation of substrates	2
III. Condition optimization	6
V. Synthetic Transformations.	10
VI. X-ray crystallography of compound	11
VII. Inhibitive Activities of the Target Compounds Antifungal	15
VIII. Attempt for enantioselective synthesis of ketones	16
IX. Characterization of products	18
X. NMR spectra	39

I. General information

Commercially available materials purchased from Energy Chemical were used as received. Unless otherwise specified, all reactions were carried out under an atmosphere in 10 mL dry Schlenk tube. NMR spectra were recorded on a Brüker ASCEND 400 (400 MHz) spectrometer (1 H: 400 MHz, 13 C: 101 MHz, 19 F: 377 MHz). Chemical shifts (δ) for 1 H and 13 C NMR spectra are given in ppm relative to TMS. The residual solvent signals were used as references for 1 H and 13 C NMR spectra and the chemical shifts converted to the TMS scale (CDCl₃: δ H = 7.26 ppm, δ C = 77.0 ppm). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, b = broad, and etc. All first-order splitting patterns were assigned on the base of the appearance of the multiplet. Splitting patterns that could not be easily interpreted are designated as multiplet (m) or broad (br). High resolution mass spectrometer analysis (HRMS) was performed on Thermo Fisher Q Exactive mass spectrometer. Melting point (m.p.): melting points were measured on a Beijing Tech Instrument X-4 digital display micro melting point apparatus and are uncorrected. Analytical thin-layer chromatography (TLC) was carried out on precoated silica gel plate (0.2 mm thickness).

II. Preparation of substrates

1. Preparation of substrates

Method 1: General Procedure for the Preparation of Indole derivatives¹

To a stirred solution of NaH (1.2 equiv, 60% suspension in mineral oil) in dry DMF (10 mL), substrate S_1 or S_2 (1.0 equiv.) in DMF (5 mL) was added dropwise at 0°C. The mixture was allowed to warm up to room temperature and stirred for 30 min. After cooling down to 0 °C, iodomethane (1.2 equiv.) was added dropwise. The reaction mixture was stirred at room temperature for another 6 h and then it was quenched by the addition of water and was extracted with ethyl acetate (10 mL, 3 times). The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to give the corresponding compounds 1 or 2.

Method 2: General Procedure for the Preparation of 1-methyl-2-phenethyl-1*H*-indole²

Step 1: Substrate S₄ was synthesized according to Method 1.

Step 2: To a stirred solution of NaH (1.2 equiv, 60% suspension in mineral oil) in dry DMF (20

mL), diphenyl phosphoryl methylbenzene (1.2 equiv.) in DMF (10 mL) was added dropwise at 0°C. The mixture was allowed to warm up to room temperature and stirred for 30 min. After cooling down to 0 °C, substrate S₄ (1.0 equiv.) was added dropwise. The reaction mixture was stirred at room temperature for another 6 h and then it was quenched by the addition of water and was extracted with ethyl acetate (10 mL, 3 times). The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to give the corresponding compounds S₅.

Step 3: To a 100 mL flame-dry Schlenk reaction tube equipped with a magnetic stir bar was added compound S_5 (1.0 equiv.) and Pd/C (0.1 equiv.), the Schlenk tube was sealed with a septum, evacuated and refilled with H_2 (3 cycles, balloon). EtOH (30 mL) was then added via syringe. The reaction mixture was allowed to stir for 12 h at room temperature. The mixture was concentrated under reduced pressure, the resulting crude residue was purified via column chromatography on silica gel to afford the desired product 1-methyl-2-phenethyl-1*H*-indole.

Method 3: General Procedure for the Preparation of 1-methyl-2-propyl-1*H*-indole (11)²

Step 1: To suspension of the corresponding triphenyl phosphonium bromide S_6 (1.2 equiv.) in THF (30 mL), at -30 °C, a solution of the corresponding base (1.2 equiv.) was slowly added. The resulting mixture was stirred and allowed to warm to 0 °C during 45 minutes. The reaction was cooled to -30 °C, substrate S_4 (1.0 equiv.) in THF (20 mL) was added. The resulting suspension was then stirred at room temperature for 3 h, then poured onto H_2O and extracted with EtOAc. The combined organic phases were dried over Na_2SO_4 and concentrated under vacuum. The residue was purified by flash chromatography on silica gel to give the corresponding compounds S_7 .

Step 2: 1-methyl-2-propyl-1*H*-indole was synthesized according to Step 3 of **Method 2**. **Method 4**: General Procedure for the Preparation of 2-isopentyl-1-methyl-1*H*-indole (1m)³

Step 1: In a nitrogen-filled round bottom flask, 2-methylindole 1a was dissolved in THF at room temperature. Butyllithium in hexane solution (2.5 M, 1.2 equiv.) was added dropwise to the stirring mixture. Then potassium tert-butoxide (1.2 equiv.) was added in one portion. The color of the mixture became bright yellow. After stirring for 30 min, the mixture was cooled to - 78 °C, bromide (3.0 equiv.) was added dropwise. After stirring for another 2 hours at -78 °C, several drops of water were added to quench the reaction. Ammonium chloride solution was added to adjust the pH to neutral. After separation, the aqueous layer was washed with ether and the organic layer was combine. The ether solution was dried over anhydrous sodium sulfate and then the volatile was evaporated under reduced pressure. The crude product was purified by flash chromatography to afford the desired product S_8 .

Step 2: **2-isopentyl-1-methyl-1***H***-indole** (**1m**) was synthesized according to Step 3 of **Method 2**.

Method 5: General Procedure for the Preparation of 1,2-dimethyl-1H-indole (6)1

Step 1: A round bottom flask was charged with phenyl hydrazine S₉ (1.0 equiv), Substrate S₁₀ (1.5 equiv) and polyphosphate (15 g). The mixture was heated at 120 °C for 2 hours and cooled back to room temperature. Then it was quenched by the addition of water and was extracted with ethyl acetate (10 mL, 3 times). The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to give the corresponding compounds S₁₁.

Step 2: 1,2-dimethyl-1*H*-indole (6) was synthesized according to Method 1.

Method 6: General Procedure for the Preparation of 3-methyl-1*H*-indole¹

Step1: Phosphorus oxychloride (1.2 equiv.) was added dropwise to DMF (20 mL) with icebath. The mixture was stirred for 5 min then added to a solution of 1*H*-indole (1.0 equiv) in DMF (10 mL) at 0 °C. The mixture was then warm to room temperature and stirred for 30 min. The reaction became a heavy suspension that required vigorousstirring 5.0 M aqueous potassium hydroxide was added until pH>9 and the mixture was heated at 100 °C for 2 h. The resulting suspension was cooled down to 0 °C, the precipitate was filtered off, washed with water then dried under vacuum overnight and used in the next step without further purification.

Step 2: To a suspension of LiAlH₄ (2.0 equiv.) in THF (55 mL) at 0 °C under argon atmosphere was added previously synthesized 3-formyl-1H-indole (1.0 equiv.) over spatula. The suspension was then warm to room temperature and stirred for 4 h. The reaction was cooled down at 0 °C, distillated water (0.5 mL) was added dropwise then aqueous solution of NaOH 10% (0.5 mL) then again H₂O (1.0 mL). The resulting slurry was strirred vigorously for 30 min, diluted with Et₂O and anhydrous MgSO₄ was added. The white precipitate was filtered on Celite then washed with Et₂O. The solvent was removed under vacuum and the product was used in the next step without further purification.

2. Preparation of substrates 3⁴

Charge a round bottomed flask equipped with a stir bar with acid (10 mmol) and DCM (0.4 M based on carboxylic acid). Add *N*, *N'*-carbonyldiimidazole (20 mmol) slowly to the mixture at room temperature. Stir the resulting mixture for at room temperature overnight. Add water to the mixture. Wash the separated organic layer with water twice and brine once. Dry the organic phase over Na₂SO₄. Filter the organic phase. Concentrate the organic phase under reduced pressure.

References:

- 1. Kim, W.; Koo, J.; Lee, H. G. Benzylic C(sp³)–C(sp²) cross-coupling of indoles enabled by oxidative radical generation and nickel catalysis. *Chem. Sci.* **2021**, *12*, 4119-4125.
- 2. Rojas-Martín, J.; Veguillas, M.; Ribagorda, M.; Carreño, M. C. Synthesis of indole substituted twistenediones from a 2-quinonyl boronic acid. *Org. Lett.* **2013**, *15*, 5686-5689.
- 3. Wen, J.; Fan, X.; Tan, R.; Chien, H.-C.; Zhou, Q.; Chung, L. W.; Zhang, X. Brønsted-acid-promoted Rh-Catalyzed asymmetric hydrogenation of *N*-unprotected indoles: A cocatalysis of transition metal and anion binding. *Org. Lett.* **2018**, *20*, 2143-2147.
- 4. Zhuo, J.; Zhang, Y.; Li, Z.; Li, C. Nickel-catalyzed direct acylation of aryl and alkyl bromides with acylimidazoles. *ACS Catal.* **2020**, *10*, 3895-3903.

III. Condition optimization

Table 1. Optimization of 2-methylindole condition

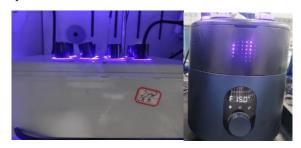
Entry	Variation from standaed conditions	$\mathbf{4a}$ /yield b
1	none	75
2	PC-1instead of PC-2	50
3	PC-3 instead of PC-2	0
4	PC-4 instead of PC-2	55
5	PC-5 instead of PC-2	21
6	PC-4 (5 mol%)	68
7	B instead of A	Trace
8	C instead of A	23
9	D instead of A	0
10	K ₃ PO ₄ instead of Cs ₂ CO ₃	39
11	K ₂ CO ₃ instead of Cs ₂ CO ₃	18
12	Na ₂ CO ₃ , NaHCO ₃ instead of Cs ₂ CO ₃	0-trace
13	DMF instead of MeCN	57
14	DMSO instead of MeCN	46
15	Toluene instead of MeCN	36
16	Cs_2CO_3 (0.2 eq)	69
17	Cs_2CO_3 (0.3 eq)	73
18	Cs_2CO_3 (1.0 eq)	48
19	3a (1.2 equiv.)	17
20	3a (1.5 equiv.)	64
21	NHC (5 mol%.)	36
22	NHC (10 mol%.)	38
23	Without NHC or PC catalyst	0
24	Without light irradiation	0

^a substrate **1a** (0.1 mmol), substrate **3a** (0.20 mmol), **NHC A** (20 mol%), **PC** (0.001 mmol), and Cs₂CO₃ (0.05 mmol, 0.5 equiv.) in MeCN (2.0 mL) under irradiation with a 9 W blue LED (450-465 nm) for 12 h. ^bIsolated yield of **4a** based on substrate **1a**.

Table 2. Optimization of 3-methylindole condition

PC-3: $R^1 = R^2 = R^3 = H$

PC-4


Entry	PC	Blue LED	Base	Solvent	5a/yield ^b
1	PC-1	450-465 nm (9 W)	Cs_2CO_3	MeCN	36
2	PC-2	450-465 nm (9 W)	Cs_2CO_3	MeCN	59
3	PC-3	450-465 nm (9 W)	Cs_2CO_3	MeCN	0
4	PC-4	450-465 nm (9 W)	Cs_2CO_3	MeCN	33
5	PC-5	450-465 nm (9 W)	Cs_2CO_3	MeCN	17
6	PC-2	450-465 nm (9 W)	KO ^t Bu	MeCN	Trace
7	PC-2	450-465 nm (9 W)	K_3PO_4	MeCN	trace
8	PC-2	450-465 nm (9 W)	K_2CO_3	MeCN	18
9	PC-2	450-465 nm (9 W)	Na ₂ CO ₃	MeCN	<10
10	PC-2	450-465 nm (9 W)	KH ₂ PO ₄	MeCN	0
11	PC-2	450-465 nm (9 W)	Cs_2CO_3	DMSO	36
12	PC-2	450-465 nm (9 W)	Cs_2CO_3	DMF	50
13	PC-2	450-465 nm (9 W)	Cs_2CO_3	Toluene	trace
14	PC-2	450-465 nm (9 W)	Cs ₂ CO ₃	DCM	<10
15	PC-2	450-465 nm (9 W)	Cs ₂ CO ₃ (0.2 eq)	MeCN	47
16	PC-2	450-465 nm (9 W)	Cs_2CO_3 (0.4 eq)	MeCN	54
17	PC-2	450-465 nm (9 W)	Cs ₂ CO ₃ (0.8 eq)	MeCN	40
18	PC-2	450-465 nm (9 W)	Cs_2CO_3 (0.5 eq)	MeCN	57
19	PC-2	445-450 nm (10 W)	Cs_2CO_3 (0.5 eq)	MeCN	58
20	PC-2	445-450 nm (15 W)	Cs_2CO_3 (0.5 eq)	MeCN	72

^aReaction conditions: substrate 2a (0.1 mmol), substrate 3a (0.20 mmol), NHC A (20 mol%), PC (0.001 mmol), and Cs₂CO₃ (0.05 mmol, 0.5 equiv.) in MeCN (2.0 mL) under irradiation with a 15 W blue LED (440-445 nm) for 12 h; ^bIsolated yield of **5a** based on substrate **2a**.

IV. General procedure for the synthesis of 4,5,7,9.

General procedure for the catalytic reactions of substrates 1 and substrates 3 to synthesize compound 4:

To a 10 mL vial equipped with a magnetic stir bar was added chiral pre-catalyst triazolium salt **A** (0.02 mmol, 6.3 mg, 0.20 equiv.), substrates **1** (0.10 mmol, 1.0 equiv.), substrates **3** (0.2 mmol, 2.0 equiv.), photocatalyst **PC-2** (0.001 mmol, 1.12 mg, 0.01 equiv.) and Cs₂CO₃(0.05mmol, 16.3 mg, 0.50 equiv.). The Schlenk tube was sealed and placed under argon before 2 mL of dry MeCN was added. The reaction was stirred and irradiated with blue LED (450-465 nm, 9 W) for 12 hours, and then completion of the reaction monitored by TLC, the mixture was concentrated under reduced pressure, and the residue was purified *via* column chromatography on silica gel with PE/EtOAc (30:1) to afford the desired product **4**.

General procedure for the catalytic reactions of substrates 2 and substrates 3 to synthesize compound 5:

To a 10 mL vial equipped with a magnetic stir bar was added chiral pre-catalyst triazolium salt **A** (0.02 mmol, 6.3 mg, 0.20 equiv.), substrates **2** (0.10 mmol, 1.0 equiv.), substrates **3** (0.2 mmol, 2.0 equiv.), photocatalyst **PC-2** (0.001 mmol, 1.12 mg, 0.01 equiv.) and Cs₂CO₃ (0.05mmol, 16.3 mg, 0.50 equiv.). The Schlenk tube was sealed and placed under argon before 2 mL of dry MeCN was added. The reaction was stirred and irradiated with blue LED (445-450 nm, 15 W) for 12 hours, and then completion of the reaction monitored by TLC, the mixture was concentrated under reduced pressure, and the residue was purified *via* column chromatography on silica gel with PE/EtOAc (20:1) to afford the desired product **5**.

General procedure for the catalytic reactions of substrates 6 and substrates 3a to synthesize compound 7:

To a 10 mL vial equipped with a magnetic stir bar was added chiral pre-catalyst triazolium salt **A** (0.02 mmol, 6.3 mg, 0.20 equiv.), substrates **6** (0.10 mmol, 1.0 equiv.), substrates **3a** (0.2 mmol, 2.0 equiv.), photocatalyst **PC-2** (0.001 mmol, 1.12 mg, 0.01 equiv.) and Cs₂CO₃(0.05mmol, 16.3 mg, 0.50 equiv.). The Schlenk tube was sealed and placed under argon before 2 mL of dry MeCN was added. The reaction was stirred and irradiated with blue LED (450-465 nm, 9 W) for 12 hours, and then completion of the reaction monitored by TLC, the mixture was concentrated under reduced pressure, and the residue was purified *via* column chromatography on silica gel with PE/EtOAc (20:1) to afford the desired product **7** and **7**°.

General procedure for the catalytic reactions of substrates 1a, 2a and substrates 3 to synthesize compound 9:

For **9a** and **9b**: To a 10 mL vial equipped with a magnetic stir bar was added chiral pre-catalyst triazolium salt **A** (0.02 mmol, 6.3 mg, 0.20 equiv.), substrates **1a** or **2a** (0.10 mmol, 1.0 equiv.), substrates **3** (0.2 mmol, 2.0 equiv.), photocatalyst **PC-2** (0.001 mmol, 1.12 mg, 0.01 equiv.) and Cs₂CO₃ (0.05mmol, 16.3 mg, 0.50 equiv.). The Schlenk tube was sealed and placed under argon before 4 mL of dry MeCN was added. The reaction was stirred and irradiated with blue LED (445-450 nm, 15 W) for 12 hours, and then completion of the reaction monitored by TLC, the mixture was concentrated under reduced pressure, and the residue was purified *via* column chromatography on silica gel with PE/EtOAc (10:1) to afford the desired product **9a** and **9b**.

For **9c** and **9d**: To a 10 mL vial equipped with a magnetic stir bar was added chiral pre-catalyst triazolium salt **A** (0.02 mmol, 6.3 mg, 0.20 equiv.), substrates **1a** or **2a** (0.10 mmol, 1.0 equiv.), substrates **3** (0.2 mmol, 2.0 equiv.), photocatalyst **PC-2** (0.001 mmol, 1.12 mg, 0.01 equiv.) and Cs₂CO₃ (0.05mmol, 16.3 mg, 0.50 equiv.). The Schlenk tube was sealed and placed under argon before 4 mL of dry DMF was added. The reaction was stirred and irradiated with blue LED (445-450 nm, 15 W) for 12 hours, and then completion of the reaction monitored by TLC, the mixture was concentrated under reduced pressure, and the residue was purified *via* column chromatography on silica gel with PE/EtOAc (20:1) to afford the desired product **9c** and **9d**.

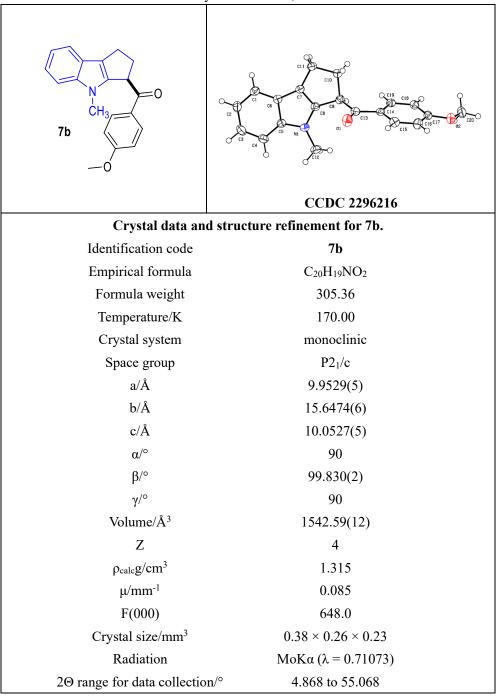
For 9e - 9h: To a 10 mL vial equipped with a magnetic stir bar was added chiral pre-catalyst triazolium salt **A** (0.02 mmol, 6.3 mg, 0.20 equiv.), substrates **1a** or **2a** (0.10 mmol, 1.0 equiv.), substrates **3** (0.2 mmol, 2.0 equiv.), photocatalyst **PC-2** (0.002 mmol, 2.24 mg, 0.02 equiv.) and Cs₂CO₃ (0.03mmol, 9.9 mg, 0.30 equiv.). The Schlenk tube was sealed and placed under argon before 4 mL of dry MeCN was added. The reaction was stirred and irradiated with blue LED (445-450 nm, 15 W) for 12 hours, and then completion of the reaction monitored by TLC, the mixture was concentrated under reduced pressure, and the residue was purified *via* column chromatography on silica gel with PE/EtOAc (30:1) to afford the desired product 9e - 9h.

V. Synthetic Transformations.

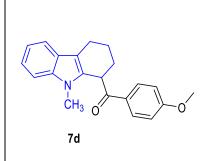
$$\begin{array}{c} H_3C \\ H_3C \\ H_3C \\ \hline \\ H_3C \\ \hline \\ H_3C \\ \hline \\ Na_2SO_4(2.0 \text{ equiv.}) \\ \hline \\ Na_2SO_4(2.0 \text{ equiv.}) \\ \hline \\ RBu_2O (1.0 \text{ mL}) \\ \hline \\ RU_3C \\$$

To a solution of **5h** (0.2 mmol) in Anisole (1.0 mL, 0.2 M) was added TfOH (3.0 equiv.), and the resulting mixture was stirred at 30 °C. Upon completion, the reaction mixture was cooled to room temperature, and then saturated NaHCO₃ solution was added. The resulting mixture was extracted with dichloromethane three times. The combined organic layers were dried over anhydrous Na₂SO₄ and the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether) to provide the desired product **10**.

To a solution of **5h** (0.2 mmol) in toluene (1.0 mL, 0.2 M) was added MsOH (3.0 equiv.), and the resulting mixture was stirred at 30 °C. Upon completion, the reaction mixture was cooled to room temperature, and then saturated NaHCO₃ solution was added. The resulting mixture was extracted with dichloromethane three times. The combined organic layers were dried over anhydrous Na₂SO₄ and the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether) to provide the desired product **11**.


To solution of **4u** (0.2 mmol) in toluene (1 mL, 0.2 M) was added D-CSA (0.15 equiv.) and the resulting mixture was stirred at 60 °C for the desired time. Upon completion, the reaction mixture was cooled to room temperature, and then saturated NaHCO₃ solution was added. The resulting mixture was extracted with dichloromethane three times. The combined organic layers were dried over anhydrous Na₂SO₄ and the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether) to provide the desired product **12**.

To solution of **4a** (0.2 mmol) in toluene (1.0 mL, 0.2 M) was added D-CSA (0.3 equiv.) and the resulting mixture was stirred at 60 °C for the desired time. Upon completion, the reaction mixture was cooled to room temperature, and then saturated NaHCO₃ solution was added. The resulting mixture was extracted with dichloromethane three times. The combined organic layers were dried over anhydrous Na₂SO₄ and the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether to provide the desired product **13**.


VI. X-ray crystallography of compound

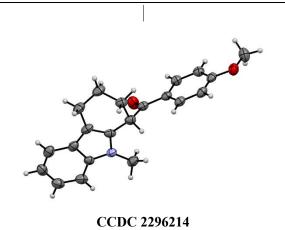
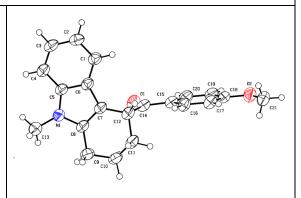

A colorless needle crystal of **7b** was obtained by vaporization of its DCM /PE solution. A colorless needle crystal of **7d**' was obtained by vaporization of its DCM /PE solution. A colorless needle crystal of **7d**' was obtained by vaporization of its EA/PE solution. **CCDC 2296216**, **2296214** and **2296215** contain the supplementary X-ray crystallographic data of **7b**, **7d** and **7d**', respectively. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif

Table 3. Crystal data of **7b**, **7c** and **7c**'

Index ranges	$-12 \le h \le 12, -20 \le k \le 17, -13 \le 113$	
Reflections collected	30179	
Independent reflections	$3535 \; [R_{int} = 0.0880, R_{sigma} = 0.0428]$	
Data/restraints/parameters	3535/0/210	
Goodness-of-fit on F ²	1.128	
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0627$, $wR_2 = 0.1200$	
Final R indexes [all data]	$R_1 = 0.0895$, $wR_2 = 0.1335$	
Largest diff. peak/hole / e Å-3	0.27/-0.30	

Crystal data and structure refinement for 7d.

GaKα (λ = 1.34139)


4.27 to 121.802

Identification code	7d
Empirical formula	$C_{21}H_{21}NO_2$
Formula weight	319.39
Temperature/K	170.00
Crystal system	triclinic
Space group	P-1
a/Å	9.6651(6)
b/Å	10.0573(7)
c/Å	18.1252(12)
α/°	83.474(2)
β/°	89.157(2)
γ/°	70.718(2)
Volume/Å ³	1651.76(19)
Z	4
$\rho_{cale}g/cm^3$	1.284
μ /mm ⁻¹	0.414
F(000)	680.0
Crystal size/mm ³	$0.15\times0.08\times0.07$

 $Radiation $$2\Theta$ range for data collection/°$

 $-11 \le h \le 12, -13 \le k \le 13, -23 \le l \le 23$ Index ranges Reflections collected 32984 Independent reflections 7473 [$R_{int} = 0.0639$, $R_{sigma} = 0.0556$] 7473/32/447 Data/restraints/parameters Goodness-of-fit on F² 1.081 Final R indexes [I>= 2σ (I)] $R_1 = 0.0723, wR_2 = 0.1966$ $R_1 = 0.0910, wR_2 = 0.2090$ Final R indexes [all data] Largest diff. peak/hole / e Å-3 0.72/-0.54

O N CH₃ 7d'

CCDC 2296215

Crystal data and structure refinement for 7d'.

Identification code	7d'
Empirical formula	$C_{21}H_{21}NO_2$
Formula weight	319.39
Temperature/K	170.15
Crystal system	monoclinic
Space group	P2 ₁ /c
a/Å	8.746(5)
b/Å	14.913(9)
c/Å	12.807(8)
$lpha/^{\circ}$	90
β/°	96.41(2)
$\gamma/^\circ$	90
Volume/Å ³	1660.0(17)
Z	4
$\rho_{calc} g/cm^3$	1.278
μ/mm^{-1}	0.412
F(000)	680.0
Crystal size/mm ³	$0.13\times0.09\times0.05$
Radiation	$GaK\alpha (\lambda = 1.34139)$
2Θ range for data collection/	7.946 to 107.804
Index ranges	$\text{-}10 \leq h \leq 10, \text{-}17 \leq k \leq 17, \text{-}14 \leq l \leq 15$

Reflections collected	11402

 $Independent \ reflections \qquad 3003 \ [R_{int}=0.0877, \, R_{sigma}=0.1316]$

Final R indexes [I>=2 σ (I)] R₁ = 0.0632, wR₂ = 0.1548 Final R indexes [all data] R₁ = 0.1063, wR₂ = 0.1759

Largest diff. peak/hole / e $Å^{-3}$ 0.26/-0.25

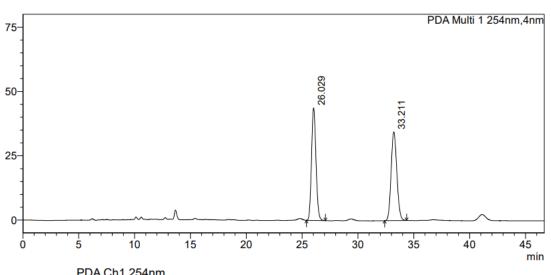
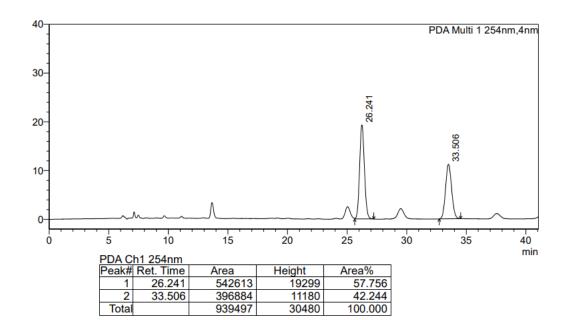

VII. Inhibitive Activities of the Target Compounds Antifungal.

 Table 4. Inhibitive Activities of the Target Compounds Antifungal


	Inhibition rate $/\%$ (50 μ g/mL)			
Compound	pound —			C -aga (Salau) Datah
4	P. capsici		A. flavus	G. zeae (Schw.) Petch
4c	36.25 ± 0.61	13.08 ± 1.60	26.11 ± 0.82	29.65 ± 1.11
4d	43.57 ± 1.06	9.82 ± 0.29	31.14 ± 1.12	14.87 ± 2.95
4e	37.84 ± 0.99	14.81 ± 0.93	47.18 ± 0.76	37.35 ± 0.59
4f	30.78 ± 0.92	23.72 ± 0.91	16.26 ± 0.39	26.61 ± 0.12
4h	30.14 ± 1.39	22.41 ± 0.48	36.17 ± 1.46	53.56 ± 0.90
4i	26.87 ± 1.27	27.98 ± 1.44	32.85 ± 2.12	64.15 ± 1.64
4k	28.09 ± 0.89	27.25 ± 1.11	29.59 ± 0.04	62.91 ± 0.33
41	34.48 ± 0.53	18.13 ± 0.38	38.32 ± 1.52	15.83 ± 0.93
4m	34.86 ± 1.19	15.10 ± 2.60	42.11 ± 0.98	20.69 ± 1.65
40	38.16 ± 0.48	25.16 ± 1.20	40.33 ± 1.70	52.01 ± 1.93
4 p	43.38 ± 1.08	22.48 ± 0.59	49.54 ± 1.42	17.09 ± 0.62
4r	47.88 ± 1.33	19.99 ± 0.56	47.11 ± 0.51	6.25 ± 0.32
4 s	27.65 ± 0.57	13.00 ± 0.49	29.30 ± 0.89	22.61 ± 0.32
4t	15.30 ± 1.14	18.40 ± 0.85	27.70 ± 1.70	21.58 ± 0.88
4u	44.57 ± 1.02	45.58 ± 1.46	43.65 ± 0.31	16.97 ± 1.35
4ad	30.37 ± 1.91	19.65 ± 1.76	38.00 ± 1.66	4.59 ± 0.20
4ak	44.01 ± 0.39	61.83 ± 0.97	38.09 ± 0.87	17.57 ± 1.91
5b	50.44 ± 0.56	38.77 ± 0.77	31.14 ± 0.82	10.08 ± 1.63
5c	36.38 ± 0.53	13.64 ± 1.93	48.80 ± 0.98	4.15 ± 1.49
5 d	20.84 ± 664	23.32 ± 0.59	34.14 ± 1.43	5.57 ± 0.06
5e	32.96 ± 1.02	30.73 ± 1.56	49.43 ± 1.28	1.72 ± 0.98
5f	38.60 ± 1.30	21.37 ± 0.32	35.69 ± 0.68	9.57 ± 0.49
5n	24.98 ± 0.57	43.63 ± 2.58	50.73 ± 1.18	1.48 ± 0.78
7e	24.71 ± 1.23	55.46 ± 0.88	26.11 ± 1.84	12.72 ± 0.08
9e	35.19 ± 0.92	33.79 ± 0.51	34.67 ± 0.75	12.10 ± 1.62
9f	23.89 ± 1.46	25.24 ± 0.31	32.40 ± 0.40	7.37 ± 1.72
9h	22.43 ± 0.97	34.99 ± 1.68	52.67 ± 0.98	32.27 ± 0.32
10	29.01 ± 1.64	29.41 ± 1.93	40.07 ± 0.68	1.56 ± 0.64
Azoxystrobin	63.71 ± 1.30	37.23 ± 1.60	34.90 ± 0.21	41.41 ± 0.50

VIII. Attempt for enantioselective synthesis of indole ketones

When **NHC-H** was used as catalyst, 57.8:42.2 er was determined by HPLC (ID, 90:10 hexane/iPrOH, 0.5 mL/min, tmaj = 26.2 min, tmin = 33.5 min.

PDAC	<u>n i 254nm</u>			
Peak#	Ret. Time	Area	Height	Area%
1	26.029	1219444	43725	49.856
2	33.211	1226479	34481	50.144
Total		2445923	78206	100.000

IX. Characterization of products

1-(4-methoxyphenyl)-2-(1-methyl-1*H*-indol-2-yl)ethan-1-one(4a)

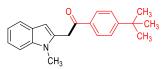
Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1 to 20/1). White solid, 21 mg, 75% yield; m.p. 175 - 177 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.06 – 8.03 (m, 2H), 7.55 – 7.52 (m, 1H), 7.30 – 7.28 (m, 1H), 7.21 – 7.16 (m, 1H), 7.09– 7.05 (m, 1H), 6.95 – 6.92 (m, 2H), 6.36 (d, J = 0.8 Hz, 1H), 4.41(s, 2H), 3.87 (s, 3H), 3.69 (s, 3H).

13C NMR (101 MHz, Chloroform-d) δ 194.4, 163.8, 137.7, 133.8, 131.0, 129.3, 127.7, 121.2, 120.1, 119.4, 113.9, 109.1, 102.0, 55.5, 37.6, 30.0.

<u>HRMS</u> (ESI-TOF, m/z): Mass calcd. for $C_{18}H_{17}NO_2^+[M+Na]^+$, 302.1152; found: 302.1149.

2-(1-methyl-1*H*-indol-2-yl)-1-(*p*-tolyl)ethan-1-one(4b)


Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1 to 20/1). White solid, 21.6 mg, 82% yield; m.p. 146 -148 °C.

 $\frac{^{1}\text{H NMR (400 MHz, Chloroform-}d)}{1} \delta 7.98 - 7.95 \text{ (m, 2H)}, 7.55 \text{ (dt, } J)$ = 7.8, 1.0 Hz, 1H), 7.31 - 7.28 (m, 3H), 7.22 - 7.18 (m, 1H), 7.11 - 7.07 (m, 1H), 6.38 (d, J = 0.8 Hz, 1H), 4.44 (d, J = 0.8 Hz, 2H), 3.69 (s, 3H), 2.43 (s, 3H).

¹³C NMR (101 MHz, Chloroform-d) δ 195.5, 144.4, 137.7, 133.7, 133.5, 129.4, 128.7, 127.7, 121.2, 120.1, 119.4, 109.1, 102.0, 37.6, 30.0, 21.7.

HRMS (ESI-TOF, m/z): Mass calcd. for C₁₈H₁₇NONa⁺[M+Na]⁺, 286.1202; found: 286.1206.

1-(4-(tert-butyl)phenyl)-2-(1-methyl-1*H*-indol-2-yl)ethan-1-one(4c)

Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1 to 20/1). White solid, 27 mg, 88% yield; m.p. 158 -160 °C.

 $\frac{1\text{H NMR (400 MHz, Chloroform-}d)}{7.49 \text{ (m, 3H), } 7.30 \text{ (dd, } J = 8.2, 1.0 \text{ Hz, 1H), } 7.22 - 7.18 \text{ (m, 1H), } 7.11 - 7.07 \text{ (m, 1H), } 6.40 \text{ (s, 1H), } 4.45 \text{ (s, 2H), } 3.70 \text{ (s, 3H), } 1.36 \text{ (s, 9H).}}$

13C NMR (101 MHz, Chloroform-d) δ 195.4, 157.3, 137.7, 133.6, 133.6, 128.6, 127.7, 125.7, 121.2, 120.1, 119.4, 109.1, 102.0, 37.7, 35.2, 31.0, 30.0.

HRMS (ESI-TOF, m/z): Mass calcd. for C₂₁H₂₃NONa⁺[M+Na]⁺, 328.1672; found: 328.1673.

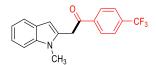
1-(4-chlorophenyl)-2-(1-methyl-1*H*-indol-2-yl)ethan-1-one(4d)

Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1 to 20/1). White solid, 21 mg, 74% yield; m.p. 160 -162 °C

¹H NMR (400 MHz, Chloroform-d) δ 8.01 – 7.97 (m, 2H), 7.54 (dt, J = 7.8, 1.1 Hz, 1H), 7.11 – 7.07 (m, 1H), 6.37 –7.36 (m, 1H), 4.43 (d, J = 0.8 Hz, 2H), 3.69 (s, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 194.7, 140.0, 137.7, 134.4, 132.8, 130.0, 129.1, 127.6, 121.4, 120.2, 119.6, 109.1, 102.2, 37.9, 30.0. <u>HRMS</u> (ESI-TOF, m/z): Mass calcd. for $C_{17}H_{14}CINONa^{+}[M+Na]^{+}$, 306.0656; found: 306.0655.

1-(4-fluorophenyl)-2-(1-methyl-1*H*-indol-2-yl)ethan-1-one(4e)

Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1 to 20/1). White solid, 23 mg, 86% yield; m.p. 165-167 °C.

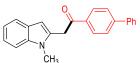

 $\frac{^{1}\text{H NMR (400 MHz, Chloroform-}d)}{\text{(m, 1H), 7.30 (dd, }J=8.2, 1.0 \text{ Hz, 1H), 7.22} - 7.12 \text{ (m, 3H), 7.11} - 7.07 \text{ (m, 1H), 6.38 (s, 1H), 4.43}}$ (s, 2H), 3.69 (s, 3H).

 13 C NMR (101 MHz, Chloroform-d) δ 194.3, 166.0 (d, J = 256.0 Hz), 137. 8, 133.0, 132.6 (d, J = 4.0 Hz), 131.3 (d, J = 9.4 Hz), 127.7, 121.4, 120.2, 119.6, 115.9 (d, J = 21.9 Hz), 109.1, 102.2, 37.8, 30.0.

¹⁹F NMR (377 MHz, Chloroform-*d*) δ -104.24.

HRMS (ESI-TOF, m/z): Mass calcd. for C₁₇H₁₄FNONa⁺[M+Na]⁺, 290.0952; found: 290.0952.

2-(1-methyl-1*H*-indol-2-yl)-1-(4-(trifluoromethyl)phenyl)ethan-1-one(4f)

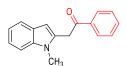

Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1 to 20/1). White solid, 24.7 mg, 78% yield; m.p. 194 -196 °C

 $\frac{^{1}\text{H NMR (400 MHz, Chloroform-}d)}{4.2 \text{ Hz}, 2 \text{Hz}, 2 \text$

¹³C NMR (101 MHz, Chloroform-*d*) δ 194.9, 138.8, 137.8, 134.8 (q, J = 32.7 Hz), 132.4, 129.0, 127.6, 125.8 (q, J = 3.7 Hz), 123.5 (d, J = 273.1 Hz), 121.5, 120.3, 119.7, 109.2, 102.4, 38.1, 30.0. ¹⁹F NMR (377 MHz, Chloroform-*d*) δ -63.18.

HRMS (ESI-TOF, m/z): Mass calcd. for C₁₈H₁₄F₃NONa⁺[M+Na]⁺, 340.0920; found: 340.0918.

1-([1,1'-biphenyl]-4-yl)-2-(1-methyl-1*H*-indol-2-yl)ethan-1-one(4g)


Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1 to 20/1). White solid, 11.3 mg, 35% yield; m.p. 198 -199 °C.

1H NMR (400 MHz, Chloroform-d) δ 8.15 – 8.13 (m, 2H), 7.73 – 7.67 (m, 2H), 7.65 – 7.62 (m, 2H), 7.57 – 7.54 (m, 1H), 7.51 – 7.47 (m, 2H), 7.44 – 7.39 (m, 1H), 7.32 – 7.30 (m, 1H), 7.22 – 7.18 (m, 1H), 7.11 – 7.07 (m, 1H), 6.42 (s, 1H), 4.50 (s, 2H), 3.72 (s, 3H).

13C NMR (101 MHz, Chloroform-d) δ 195.4, 146.2, 139.7, 137.8, 134.9, 133.4, 129.2, 129.0, 128.4, 127.7, 127.4, 127.3, 121.3, 120.2, 119.5, 109.1, 102.1, 37.8, 30.0.

HRMS (ESI-TOF, m/z): Mass calcd. for C₂₃H₁₉NONa⁺[M+Na]⁺, 348.1359; found: 348.1362.

2-(1-methyl-1*H*-indol-2-yl)-1-phenylethan-1-one(4h)

Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1 to 20/1). White solid, 18.8 mg, 75% yield; m.p. 121 -123 °C.

<u>1H NMR (400 MHz, Chloroform-d)</u> δ 8.08 – 8.05 (m, 2H), 7.62 – 7.47 (m,

4H), 7.31 (dd, J = 8.4, 1.0 Hz, 1H), 7.22 - 7.18 (m, 1H), 7.11 - 7.07 (m, 1H), 6.39 (s, 1H), 4.47 (s, 2H), 3.70 (s, 3H).

13C NMR (101 MHz, Chloroform-d) δ 195.8, 137.8, 136.2, 133.5, 133.3, 128.7, 128.6, 127.7, 121.2, 120.2, 119.5, 109.1, 102.1, 37.7, 30.0.

<u>**HRMS**</u> (ESI-TOF, m/z): Mass calcd. for $C_{17}H_{15}NONa^{+}[M+Na]^{+}$, 272.1046; found: 272.1049.

1-(3-methoxyphenyl)-2-(1-methyl-1*H*-indol-2-yl)ethan-1-one(4i)

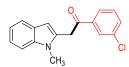
Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1 to 20/1). White solid, 24 mg, 86% yield; m.p. 156 -158 °C

 $\frac{^{1}\text{H NMR (400 MHz, Chloroform-}d)}{1.58 - 7.54 \text{ (m, 2H)}} \delta 7.66 \text{ (dt, } J = 7.8, 1.2 \text{ Hz, 1H)}, 7.58 - 7.54 \text{ (m, 2H)}, 7.40 \text{ (t, } J = 8.0 \text{ Hz, 1H)}, 7.30 \text{ (dd, } J = 8.2, 1.0 \text{ Hz, 1H)}, 7.22 - 7.18 \text{ (m, 1H)}, 7.16 - 7.07 \text{ (m, 2H)}, 6.39 \text{ (s, 1H)}, 4.45 \text{ (s, 2H)}, 3.86 \text{ (s, 3H)}, 3.69 \text{ (s, 3H)}.$

13C NMR (101 MHz, Chloroform-d) δ 195.7, 159.9, 137.8, 137.6, 133.3, 129.7, 127.7, 121.2, 121.2, 120.2, 112.0, 119.5, 112.9, 109.1, 102.1, 55.4, 37.8, 30.0.

HRMS (ESI-TOF, m/z): Mass calcd. for C₁₈H₁₇NO₂Na⁺[M+Na]⁺, 302.1152; found: 302.1153.

2-(1-methyl-1*H*-indol-2-yl)-1-(*m*-tolyl)ethan-1-one(4j)


Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1 to 20/1). White solid, 20.9 mg, 79% yield; m.p. 135 -137 °C.

 $\frac{^{1}\text{H NMR (400 MHz, Chloroform-}d)}{1.8, 1.0 \text{ Hz}, 1.0 \text{$

13C NMR (101 MHz, Chloroform-d) δ 196.0, 138.6, 137.8, 136.3, 134.3, 133.4, 129.1, 128.6, 127.7, 125.8, 121.2, 120.2, 119.4, 109.1, 102.1, 37.7, 30.0, 21.4.

HRMS (ESI-TOF, m/z): Mass calcd. for C₁₈H₁₇NONa⁺[M+Na]⁺, 286.1202; found: 286.1204.

1-(3-chlorophenyl)-2-(1-methyl-1*H*-indol-2-yl)ethan-1-one(4k)

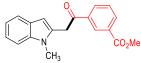
Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1 to 20/1). White solid, 24.1 mg, 85% yield; m.p. 176 -178 °C.

13C NMR (101 MHz, Chloroform-d) δ 194.6, 137.8, 137.7, 135.2, 133.4, 132.6, 130.1, 128.7, 127.6, 126.7, 121.4, 120.3, 119.6, 109.1, 102.3, 37.8, 30.0.

 $\underline{\textbf{HRMS}}$ (ESI-TOF, m/z): Mass calcd. for $C_{17}H_{14}CINONa^{+}[M+Na]^{+}$, 306.0656; found: 306.0657.

1-(3-fluorophenyl)-2-(1-methyl-1*H*-indol-2-yl)ethan-1-one(4l)

Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1 to 20/1). White solid, 22.3 mg, 83% yield; m.p. 149 -151 °C.

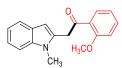

 $\frac{^{1}\text{H NMR (400 MHz, Chloroform-}d)}{1,7.55} \delta 7.85 \text{ (dt, } J = 7.8, 1.2 \text{ Hz, 1H), } 7.75 \\ -7.72 \text{ (m, 1H), } 7.55 \text{ (dt, } J = 7.8, 1.2 \text{ Hz, 1H), } 7.50 - 7.44 \text{ (m, 1H), } 7.32 - 7.27 \text{ (m, 2H), } 7.18 - 7.12 \\ \text{(m, 1H), } 7.11 - 7.07 \text{ (m, 1H), } 6.39 \text{ (s, 1H), } 4.44 \text{ (s, 2H), } 3.69 \text{ (s, 3H).}$

 $\frac{^{13}\text{C NMR (101 MHz, Chloroform-}d)}{137.8, 132.7, 130.5 (d, <math>J = 7.9 \text{ Hz}), 127.7, 124.4 (d, <math>J = 2.9 \text{ Hz}), 121.4, 120.6 (d, <math>J = 21.4 \text{ Hz}), 120.3, 119.6, 115.4 (d, <math>J = 22.4 \text{ Hz}), 109.2, 102.3, 37.9, 30.0.$

<u>19</u>**F NMR (377 MHz, Chloroform**-*d*) δ -111.34.

 $\underline{\textbf{HRMS}} \text{ (ESI-TOF, m/z): Mass calcd. for } C_{17}H_{14}FNONa^{+}[M+Na]^{+}, 290.0952; \text{ found: } 290.0951.$

methyl 3-(2-(1-methyl-1*H*-indol-2-yl)acetyl)benzoate(4m)

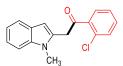

Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1 to 20/1). White solid, 21.4 mg, 70% yield; m.p. 182 -184 °C.

 $\frac{^{1}\text{H NMR (400 MHz, Chloroform-}d)}{8.22 \text{ (m, 2H), } 7.60 - 7.53 \text{ (m, 2H), } 7.30 \text{ (dd, } J = 8.2, 1.0 \text{ Hz, 1H), } 7.22 - 7.18 \text{ (m, 1H), } 7.10 - 7.06 \text{ (m, 1H), } 6.40 \text{ (s, 1H), } 4.51 \text{ (s, 2H), } 3.97 \text{ (s, 3H), } 3.70 \text{ (s, 3H).}}$

¹³C NMR (101 MHz, Chloroform-d) δ 195.0, 166.1, 13 7.8, 136.4, 134.2, 132.77, 132.7, 130.9, 129.7, 129.1, 127.7, 121.4, 120.2, 119.5, 109.1, 102.3, 52.4, 37.8, 30.0.

HRMS (ESI-TOF, m/z): Mass calcd. for C₁₉H₁₇NO₃Na⁺[M+Na]⁺, 330.1100; found: 330.1103.

1-(2-methoxyphenyl)-2-(1-methyl-1*H*-indol-2-yl)ethan-1-one(4n)


Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1 to 20/1). White solid, 16.7 mg, 60% yield; m.p. 151 -153 °C.

 $\frac{^{1}\text{H NMR (400 MHz, Chloroform-}d)}{4.51 \text{ (m, 2H), } 7.30 - 7.26 \text{ (m, 1H), } 7.19 - 7.15 \text{ (m, 1H), } 7.08 - 6.99 \text{ (m, 3H), } 6.33 \text{ (d, } J = 0.8 \text{ Hz, } 11), 4.51 \text{ (d, } J = 0.8 \text{ Hz, 2H), } 3.97 \text{ (s, 3H), } 3.67 \text{ (s, 3H).}}$

13C NMR (101 MHz, Chloroform-d) δ 198.1, 158.6, 137.7, 134.2, 133.9, 130.7, 127.8, 127.6, 120.9, 120.9, 120.1, 119.2, 111.6, 109.0, 101.6, 55.6, 42.3, 29.9.

HRMS (ESI-TOF, m/z): Mass calcd. for C₁₈H₁₇NO₂Na⁺[M+Na]⁺, 302.1152; found: 302.1153.

1-(2-chlorophenyl)-2-(1-methyl-1*H*-indol-2-yl)ethan-1-one(4o)

Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1 to 20/1). White solid, 12.7 mg, 45% yield; m.p.168 -170 °C.

 $\frac{^{1}\text{H NMR (400 MHz, Chloroform-}d)}{\text{(m, 3H), }7.32-7.28 \text{ (m, 2H), }7.22-7.18 \text{ (m, 1H), }7.10-7.06 \text{ (m, 1H), }6.37 \text{ (s, 1H), }4.47 \text{ (s, 2H), }3.70 \text{ (s, 3H).}}$

¹³C NMR (101 MHz, Chloroform-d) δ 198.9, 138.66, 137.8, 132.3, 132.0, 130.9, 130.6, 129.3,

127.7, 127.0, 121.4, 120.3, 119.5, 109.2, 102.4, 41.6, 30.0.

HRMS (ESI-TOF, m/z): Mass calcd. for C₁₇H₁₄ClNONa⁺[M+Na]⁺, 306.0656; found: 306.0657.

2-(1-methyl-1*H*-indol-2-yl)-1-(naphthalen-2-yl)ethan-1-one(4p)

O CHo

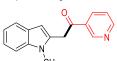

Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1 to 20/1). White solid, 17.3 mg, 58% yield; m.p. 163 - 165 °C.

 $^{\circ}$ CH₃ $^{\circ}$ $^{$

13C NMR (101 MHz, Chloroform-d) δ 195.8, 137.8, 135.8, 133.6, 133.4, 132.5, 130.4, 129.7, 128.8 128.7, 127.8, 127.7, 126.3, 124.1, 121.3, 120.2, 119.5, 109.1, 102.2, 37.8, 30.1.

<u>**HRMS**</u> (ESI-TOF, m/z): Mass calcd. for $C_{21}H_{17}NONa^{+}[M+Na]^{+}$, 322.1202; found: 322.11199.

2-(1-methyl-1*H*-indol-2-yl)-1-(quinolin-6-yl)ethan-1-one(4q)

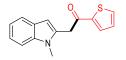

Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 10/1 to 3/1). White solid, 18.1 mg, 60% yield; m.p. 136 -138 °C.

 $^{\circ}$ CH₃ $^{\circ}$ $^{$

¹³C NMR (101 MHz, Chloroform-d) δ 195.2, 152.9, 150.2, 137.8, 137.7, 134.1, 133.0, 130.3, 130.2, 127.9, 127.7, 127.5, 122.1, 121.4, 120.3, 119.6, 109.2, 102.3, 38.0, 30.1.

HRMS (ESI-TOF, m/z): Mass calcd. for $C_{20}H_{17}N_2^+[M+H]^+$, 301.1335; found: 301.1337.

2-(1-methyl-1*H*-indol-2-yl)-1-(pyridin-3-yl)ethan-1-one(4r)


Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 5/1 to 2/1). White solid, 20.7 mg, 67% yield; m.p. 127 - 129 °C.

 $\frac{^{1}\text{H NMR (400 MHz, Chloroform-}d)}{\text{dd}, J = 4.8, 1.8 Hz, 1H), 8.30 (dt, J = 8.0, 2.0 Hz, 1H), 7.54 (dt, J = 8.0, 1.0 Hz, 1H), 7.45 – 7.41 (m 1H), 7.31 – 7.29 (m, 1H), 7.22 – 7.18 (m, 1H), 7.11 – 7.07 (m, 1H), 6.40 (s, 1H), 4.47 (s, 2H), 3.70 (s, 3H).$

13C NMR (101 MHz, Chloroform-d) δ 194.7, 153.8, 150.0, 137.8, 135.9, 132.1, 131.4, 127.6, 123.8, 121.5, 120.3, 119.6, 109.2, 102.4, 38.0, 30.0.

<u>**HRMS**</u> (ESI-TOF, m/z): Mass calcd. for $C_{16}H_{15}N_2O^+[M+H]^+$, 251.1179; found: 251.1181.

2-(1-methyl-1*H*-indol-2-yl)-1-(thiophen-2-yl)ethan-1-one(4s)

Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1 to 20/1). White solid, 16.8 mg, 66% yield; m.p. 99 -101 °C.

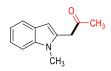
H NMR (400 MHz, Chloroform-d) δ 7.83 (dd, J = 3.8, 1.2 Hz, 1H), 7.66 (dd, J = 5.0, 1.2 Hz, 1H), 7.56 (dt, J = 8.0, 1.0 Hz, 1H), 7.31 – 7.28 (m, 1H), 7.22 – 7.18 (m, 1H), 7.13 (dd, J = 5.0, 3.8 Hz, 1H), 7.11 – 7.07 (m, 1H), 6.44 (d, J = 0.9 Hz, 1H), 4.39 (s, 1H), 4.39 (s, 2H), 3.72 (s, 3H).

13C NMR (101 MHz, Chloroform-d) δ 188.6, 143.2, 137.8, 134.3, 133, 132.9, 128.3, 127.6, 121.4, 120.2, 119.6, 109.2, 102.3, 38.8, 30.1.

HRMS (ESI-TOF, m/z): Mass calcd. for C₁₅H₁₃NOSNa⁺[M+Na]⁺, 278.0610; found: 278.0613.

1-(furan-2-yl)-2-(1-methyl-1*H*-indol-2-yl)ethan-1-one(4t)

N CH₃

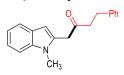

Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1 to 20/1). White solid, 15.6 mg, 65% yield; m.p. 102 -104 °C.

 $\frac{^{1}\text{H NMR (400 MHz, Chloroform-}d)}{\text{(dt, }J = 8.0, 1.0 Hz, 1H), 7.29 (dd, }J = 8.2, 1.0 Hz, 1H), 7.25 - 7.24 (m, 1H), 7.21 - 7.17 (m, 1H), 7.10 - 7.06 (m, 1H), 6.54 (dd, <math>J = 3.6, 1.8 \text{ Hz}, 1H), 6.43 (q, J = 0.8 \text{ Hz}, 1H), 4.32 (d, J = 0.7 \text{ Hz}, 2H), 3.72 (s, 3H).}$

13C NMR (101 MHz, Chloroform-d) δ 184.6, 152.0, 146.7, 137.8, 132.7, 127.7, 121.3, 120.2, 119.5, 118.2, 112.6, 109.2, 102.2, 37.5, 30.1.

<u>**HRMS**</u> (ESI-TOF, m/z): Mass calcd. for $C_{15}H_{13}NO_2Na^+[M+Na]^+$, 262.0839; found: 262.0841.

1-(1-methyl-1*H*-indol-2-yl)propan-2-one(4u)


Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1 to 20/1). Yellow oil, 6 mg, 32% yield.

 $\frac{^{1}\text{H NMR (400 MHz, Chloroform-}d)}{\text{7.28 (m, 1H), 7.23 - 7.19 (m, 1H), 7.13 - 7.09 (m, 1H), 6.41 (d, <math>J$ = 0.8 Hz, 1H), 3.87 (s, 2H), 3.65 (s, 3H), 2.20 (s, 3H).

13C NMR (101 MHz, Chloroform-d) δ 205.0, 137.8, 133.0, 127.7, 121.5, 120.2, 119.7, 109.2, 102.0, 42.9, 29.8, 28.9.

HRMS (ESI-TOF, m/z): Mass calcd. for $C_{12}H_{14}NO^{+}[M+H]^{+}$, 188.1070; found: 188.1073.

1-(1-methyl-1H-indol-2-yl)-4-phenylbutan-2-one(4v)

Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1 to 20/1). Yellow oil, 11 mg, 40% yield.

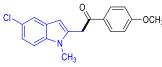
 $\frac{^{1}\text{H NMR (400 MHz, Chloroform-}d)}{7.15 \text{ (m, 5H), } 7.11 - 7.06 \text{ (m, 3H), } 6.34 \text{ (s, 1H), } 3.81 \text{ (s, 2H), } 3.52 \text{ (s, 3H),}}{2.89 - 2.85 \text{ (m, 2H), } 2.83 - 2.79 \text{ (m, 2H).}}$

13C NMR (101 MHz, Chloroform-d) δ 206.2, 140.6, 137.7, 132.8, 128.4, 128.3, 127.6, 126.2, 121.4, 120.2, 119.6, 109.2, 102.0, 42.8, 42.4, 29.7, 29.6.

HRMS (ESI-TOF, m/z): Mass calcd. for C₁₉H₁₉NONa⁺[M+Na]⁺, 300.1359; found: 300.1360.

$\hbox{2-(5-methoxy-1-methyl-1$H-indol-2-yl)-1-(4-methoxyphenyl)ethan-1-one (4aa)}$

Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1 to 20/1). White solid, 16.1 mg, 52% yield; m.p. 154 -156 °C.

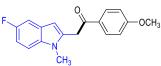

¹H NMR (400 MHz, Chloroform-d) $\delta 8.05 - 8.02$ (m, 2H), 7.19

-7.16 (m, 1H), 7.01 (d, J = 2.4 Hz, 1H), 6.97 - 6.94 (m, 2H), 6.84 (dd, J = 8.8, 2.4 Hz, 1H), 6.29 (d, J = 0.8 Hz, 1H), 4.38 (d, J = 0.8 Hz, 2H), 3.87 (s, 3H), 3.83 (s, 3H), 3.66 (s, 3H).

13C NMR (101 MHz, Chloroform-d) δ 194.3, 163.8, 154.0, 134.2, 133.1, 131.0, 129.2, 127.9, 113.9, 111.2, 109.8, 102.1, 101.5, 55.9, 55.5, 37.6, 30.2.

HRMS (ESI-TOF, m/z): Mass calcd. for C₁₉H₁₉NO₃Na⁺[M+Na]⁺, 332.1257; found: 332.1261.

2-(5-chloro-1-methyl-1*H*-indol-2-yl)-1-(4-methoxyphenyl)ethan-1-one(4ab)


Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1 to 20/1). White solid, 19.6 mg, 63% yield; m.p. 158 -160 °C.

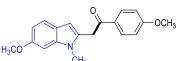
 $\frac{^{1}\text{H NMR (400 MHz, Chloroform-}d)}{\text{(dd, }J = 2.0, 0.6 \text{ Hz, 1H), } 7.20 - 7.17 \text{ (m, 1H), } 7.12 \text{ (dd, }J = 8.8, 2.0 \text{ Hz, 1H), } 6.97 - 6.94 \text{ (m, 2H), } 6.31 \text{ (d, }J = 1.0 \text{ Hz, 1H), } 4.39 \text{ (s, 2H), } 3.88 \text{ (s, 3H), } 3.66 \text{ (s, 3H).}$

13C NMR (101 MHz, Chloroform-d) δ 194.0, 163.9, 136.2, 135.2, 130.9, 129.2, 128.6, 125.1, 121.4, 119.5, 114.0, 110.1, 101.6, 55.5, 37.4, 30.3.

HRMS (ESI-TOF, m/z): Mass calcd. forC₁₈H₁₆ClNO₂Na⁺ [M+Na]⁺, 336.0762; found: 336.0759.

2-(5-fluoro-1-methyl-1*H*-indol-2-yl)-1-(4-methoxyphenyl)ethan-1-one(4ac)

Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1 to 20/1). White solid, 19.8 mg, 67% yield; m.p. 134 - 135°C.


 $\frac{1 \text{H NMR (400 MHz, Chloroform-}d)}{1.15 \text{ (m, 2H), } 6.97 - 6.89 \text{ (m, 3H), } 6.32 \text{ (d, } J = 0.8 \text{ Hz, 1H), } 4.40 \text{ (d, } J = 0.8 \text{ Hz, 2H), } 3.88 \text{ (s, 3H), } 3.67 \text{ (s, 3H).}$

 $\frac{^{13}\text{C NMR (101 MHz, Chloroform-}d)}{127.8 \text{ (d, } J = 10.2 \text{ Hz), } 113.9, 109.6 \text{ (d, } J = 9.7 \text{ Hz), } 109.5, 109.2, 104.9 \text{ (d, } J = 23.7 \text{ Hz), } 101.9 \text{ (d, } J = 4.6 \text{ Hz), } 55.52, 37.45, 30.27.$

¹⁹F NMR (377 MHz, Chloroform-d) δ -125.52.

HRMS (ESI-TOF, m/z): Mass calcd. for C₁₈H₁₆FNO₂Na⁺ [M+Na]⁺, 320.1057; found: 320.1053.

2-(6-methoxy-1-methyl-1*H*-indol-2-yl)-1-(4-methoxyphenyl)ethan-1-one(4ad)

Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1 to 20/1). White solid, 15 mg, 49% yield; m.p. 161 -162 °C.

<u>**1H NMR (400 MHz, Chloroform-***d*)</u> δ 8.06 – 8.02 (m, 2H), 7.41

-7.39 (m, 1H), 6.96 - 6.93 (m, 2H), 6.75 (d, J = 7.8 Hz, 2H), 6.29 (d, J = 0.8 Hz, 1H), 4.37 (d, J = 0.8 Hz, 2H), 3.87 (s, 6H), 3.64 (s, 3H).

¹³C NMR (101 MHz, Chloroform-d) δ 194.6, 163.8, 156.0, 138.4, 132.6, 130.9, 129.3, 122.0,

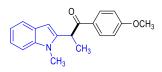
120.7, 113.9, 109.1, 101.8, 93.1, 55.8, 55.5, 37.6, 30.1.

HRMS (ESI-TOF, m/z): Mass calcd. for C₁₉H₁₉NO₃Na⁺[M+Na]⁺, 332.1257; found: 332.1257.

2-(6-chloro-1-methyl-1*H*-indol-2-yl)-1-(4-methoxyphenyl)ethan-1-one(4ae)

CI CH₃

Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1 to 20/1). White solid, 17.4 mg, 56% yield; m.p. 164 - 162 °C.


<u>**1H NMR (400 MHz, Chloroform-d)**</u> $\delta 8.05 - 8.01$ (m, 2H), 7.42

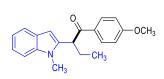
(dd, J = 8.4, 0.6 Hz, 1H), 7.28 - 7.26 (m, 1H), 7.03 (dd, J = 8.4, 1.8 Hz, 1H), 6.97 - 6.94 (m, 2H), 6.34 (q, <math>J = 0.8 Hz, 1H), 4.39 (d, J = 0.8 Hz, 2H), 3.88 (s, 3H), 3.64 (s, 3H).

13C NMR (101 MHz, Chloroform-d) δ 194.1, 163.9, 138.2, 134.6, 130.9, 129.2, 127.22, 126.2, 120.9, 120.1, 114.0, 109.2, 102.1, 55.5, 37.3, 30.2.

<u>HRMS</u> (ESI-TOF, m/z): Mass calcd. for $C_{18}H_{16}CINO_2Na^+[M+Na]^+$, 336.0762; found: 336.0759.

1-(4-methoxyphenyl)-2-(1-methyl-1*H*-indol-2-yl)propan-1-one(4af)

Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1 to 20/1). Yellow oil, 15.2 mg, 52% yield.


 $\frac{^{1}\text{H NMR (400 MHz, Chloroform-}d)}{J = 7.8, 1.0 \text{ Hz}, 1\text{H}}$ δ 7.25 – 7.26 (m, 2H), 7.20 – 7.16 (m, 1H), 7.08 –

7.05 (m, 1H), 6.88 - 6.85 (m, 2H), 6.32 (t, J = 0.6 Hz, 1H), 4.79 (q, J = 7.0 Hz, 1H), 3.82 (s, 3H), 3.71 (s, 3H), 1.64 (d, J = 7.0 Hz, 3H).

13C NMR (101 MHz, Chloroform-d) δ 197.3, 163.4, 140.2, 137.7, 130.9, 129.1, 127.8, 121.2, 120.4, 119.5, 113.8, 109.0, 100.4, 55.4, 40.6, 29.9, 17.5.

<u>HRMS</u> (ESI-TOF, m/z): Mass calcd. for $C_{19}H_{19}NO_2Na^+[M+Na]^+$, 316.1308; found: 316.1309.

1-(4-methoxyphenyl)-2-(1-methyl-1*H*-indol-2-yl)butan-1-one(4ag)

Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1 to 20/1). Yellow oil, 15.5 mg, 50% yield.

<u>¹H NMR (400 MHz, Chloroform-d)</u> δ 7.93 – 7.90 (m, 2H), 7.51 (dt, J = 7.8, 1.0 Hz, 1H), 7.28 – 7.26 (m, 2H), 7.19 – 7.15 (mm, 1H), 7.08

-7.04 (m, 1H), 6.87 - 6.84 (m, 2H), 6.34 (s, 1H), 4.58 (t, J = 7.0 Hz, 1H), 3.81 (s, 3H), 3.75 (s, 3H), 2.34 - 2.23 (m, 1H), 2.07 - 1.90 (m, 1H), 1.01 (t, J = 7.4 Hz, 3H).

13C NMR (101 MHz, Chloroform-d) δ 196.7, 163.4, 138.7, 137.7, 130.8, 129.8, 127.8, 121.2, 120.3, 119.5, 113.8, 109.0, 101.1, 55.4, 47.8, 30.0, 25.6, 12.5.

<u>HRMS</u> (ESI-TOF, m/z): Mass calcd. for $C_{20}H_{21}NO_2Na^+[M+Na]^+$, 330.1465; found: 330.14633.

1-(4-methoxyphenyl)-4-methyl-2-(1-methyl-1*H*-indol-2-yl)pentan-1-one(4ah)

H₃C CH₃ OCH₃

Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1 to 20/1). Yellow oil, 16.6 mg, 49% yield.

¹H NMR (400 MHz, Chloroform-d) δ 7.95 – 7.92 (m, 2H), 7.50 (dt, J = 7.8, 1.0 Hz, 1H), 7.28 - 7.26 (m, 1H), 7.18 – 7.14 (m, 1H), 7.07 –

7.03 (m, 1H), 6.88 - 6.84 (m, 2H), 6.33 (s, 1H), 4.78 (dd, J = 8.2, 6.2 Hz, 1H), 3.82 (s, 3H), 3.75 (s, 3H), 2.25 - 2.18 (m, 1H), 1.80 - 1.73 (m, 1H), 1.70 - 1.63 (m, 1H), 0.97 (dd, J = 6.6, 2.4 Hz, 6H).

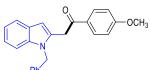
13C NMR (101 MHz, Chloroform-d) δ 196.6, 163.4, 138.8, 137.7, 130.8, 129.7, 127.8, 121.2, 120.3, 119.5, 113.8, 109.0, 101.1, 55.4, 44.1, 41.3, 30.0, 26.3, 22.8, 22.6.

<u>**HRMS**</u> (ESI-TOF, m/z): Mass calcd. for $C_{22}H_{25}NO_2Na^+[M+Na]^+$, 358.1778; found: 358.1779.

$1\hbox{-}(4\hbox{-methoxyphenyl})\hbox{-}2\hbox{-}(1\hbox{-methyl-}1H\hbox{-indol-}2\hbox{-yl})\hbox{-}3\hbox{-phenylpropan-}1\hbox{-one}(4ai)$

$$\bigcap_{\mathsf{CH}_3} \mathsf{O} \mathsf{D} \mathsf{CH}_3$$

Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1 to 20/1). Yellow oil, 15.5 mg, 42% yield.

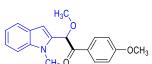

¹H NMR (400 MHz, Chloroform-d) δ 7.82 – 7.78 (m, 2H), 7.51 (d, J = 7.8 Hz, 1H), 7.23 – 7.14 (m, 5H), 7.10 – 7.04 (m, 3H), 6.82 – 6.79

(m, 2H), 6.37 (s, 1H), 4.87 (t, J = 7.2 Hz, 1H), 3.78 (s, 3H), 3.57 (dd, J = 13.6, 6.6 Hz, 1H), 3.42 (s, 3H), 3.22 (dd, J = 13.6, 7.6 Hz, 1H).

13C NMR (101 MHz, Chloroform-d) δ 195.5, 163.3, 139.5, 138.0, 137.5, 130.7, 129. 5, 129.1, 128.4, 127.9, 126.5, 121.3, 120.4, 119.6, 113.8, 109.1, 101.1, 55.4, 47.8, 39.3, 29.4.

<u>HRMS</u> (ESI-TOF, m/z): Mass calcd. for $C_{25}H_{23}NO_2Na^+[M+Na]^+$, 392.1621; found: 392.1619.

2-(1-benzyl-1*H*-indol-2-yl)-1-(4-methoxyphenyl)ethan-1-one(4aj)


Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1 to 20/1). White solid, 22 mg, 57% yield; m.p. 114 -116 °C.

Ph 1H NMR (400 MHz, Chloroform-d) δ 7.92 – 7.89 (m, 2H), 7.57 (dt, J = 7.6, 1.0 Hz, 1H), 7.26 – 7.23 (m, 4H), 7.16 – 7.07 (m, 2H), 6.95 (dd, J = 7.4, 2.1 Hz, 2H), 6.91 – 6.87 (m, 2H), 6.43 (d, J = 0.9 Hz, 1H), 5.39 (s, 2H), 4.29 (d, J = 0.8 Hz, 2H), 3.86 (s, 3H).

13C NMR (101 MHz, Chloroform-d) δ 194.4, 163.8, 137.8, 137.6, 133.7, 131.0, 129.2, 128.8, 127.3, 126.1, 121.5, 120.3, 119.7, 113.8, 109.6, 102.9, 55.5, 46.9, 37.4.

HRMS (ESI-TOF, m/z): Mass calcd. for C₂₄H₂₁NO₂Na⁺[M+Na]⁺, 378.1455; found: 378.1456.

2-methoxy-1-(4-methoxyphenyl)-2-(1-methyl-1*H*-indol-2-yl)ethan-1-one(4ak)

Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1 to 20/1). Yellow solid, 20.5 mg, 66% yield; m.p. 123 -125 °C.

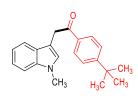
 $\frac{\text{1H NMR (400 MHz, Chloroform-d)}}{J = 8.0, 1.0 \text{ Hz}, 1\text{H}), 7.32 - 7.30 \text{ (m, 1H)}, 7.25 - 7.20 \text{ (m, 1H)}, 7.10 - 7.06 \text{ (m, 1H)}, 6.89 - 6.86 \text{ (m, 2H)}, 6.53 \text{ (s, 1H)}, 5.77 \text{ (s, 1H)}, 3.83 \text{ (s, 3H)}, 3.80 \text{ (s, 3H)}, 3.48 \text{ (s, 3H)}.}$

¹³C NMR (101 MHz, Chloroform-d) δ 193.8, 163.8, 138.4, 134.1, 131.4, 128.0, 127.1, 122.3, 120.9, 119.7, 113.7, 109.3, 104.5, 80.1, 57.1, 55.4, 30.4.

<u>HRMS</u> (ESI-TOF, m/z): Mass calcd. for $C_{19}H_{19}NO_3^+[M+Na]^+$, 332.1257; found: 332.1257.

1-(4-methoxyphenyl)-2-(1-methyl-1*H*-indol-3-yl)ethan-1-one(5a)

Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1 to 20/1). White solid, 20.1 mg, 72% yield; m.p. 117 -119 °C.


¹H NMR (400 MHz, Chloroform-d) δ 8.06 – 8.02 (m, 2H), 7.61 (dt, J = 7.8, 1.0 Hz, 1H), 7.30 – 7.20 (m, 2H), 7.15 – 7.11 (m, 1H), 6.98 (s, 1H),

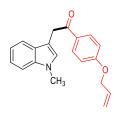
6.93 - 6.89 (m, 2H), 4.34 (d, J = 1.0 Hz, 2H), 3.85 (s, 3H), 3.74 (s, 3H).

13C NMR (101 MHz, Chloroform-d) δ 196.6, 163.4, 136.9, 130.9, 129.8, 127.8, 127.7, 121.7, 119.1, 118.9, 113.7, 109.3, 107.7, 55.4, 35.2, 32.7.

<u>**HRMS**</u> (ESI-TOF, m/z): Mass calcd. for $C_{18}H_{17}NO_2Na^+[M+Na]^+$, 302.1152; found: 302.1153.

1-(4-(tert-butyl)phenyl)-2-(1-methyl-1*H*-indol-3-yl)ethan-1-one(5b)

Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1 to 20/1). Colourless oil, 21 mg, 69% yield


¹H NMR (400 MHz, Chloroform-d) δ 8.02 – 7.99 (m, 2H), 7.62 (dt, J = 7.8, 1.0 Hz, 1H), 7.47 – 7.45 (m, 2H), 7.30 (dt, J = 8.2, 1.0 Hz, 1H), 7.26 – 7.21 (m, 1H), 7.16 – 7.12 (m, 1H), 7.01 (d, J = 1.0 Hz, 1H), 4.38 (d, J = 1.0

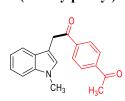
Hz, 2H), 3.74 (s, 3H), 1.33 (s, 9H).

13C NMR (101 MHz, Chloroform-d) δ 197.5, 156.7, 136.9, 134.1, 128.6, 127.8, 125.5, 121.7, 119.2, 118.9, 109.3, 107.5, 35.31, 35.07, 32.69, 31.06.

HRMS (ESI-TOF, m/z): Mass calcd. for C₂₁H₂₃NONa⁺[M+Na]⁺, 328.1672; found: 328.1664.

1-(4-(allyloxy)phenyl)-2-(1-methyl-1*H*-indol-3-yl)ethan-1-one(5c)

Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1 to 20/1). Colourless oil, 16.1 mg, 53% yield.


¹H NMR (400 MHz, Chloroform-*d*) δ 8.05 – 8.01 (m, 2H), 7.61 (dt, J = 7.8, 1.0 Hz, 1H), 7.29 (dt, J = 8.2, 1.0 Hz, 1H), 7.25 – 7.21 (m, 1H), 7.15 – 7.11 (m, 1H), 6.98 (d, J = 1.0 Hz, 1H), 6.94 – 6.90 (m, 2H), 6.09 – 5.99 (m, 1H), 5.57 – 5.25 (m, 2H), 5.42 (dq, J = 17.4, 1.6 Hz, 1H), 5.31 (dq, J = 10.6, 1.4 Hz,

1H), 4.34 (d, J = 0.4 Hz, 2H), 3.74 (s, 3H).

13C NMR (101 MHz, Chloroform-d) δ 196.6, 162.4, 136.9, 132.5, 130.9, 129.9, 127.8, 127.7, 121.7, 119.1, 118.9, 118.1, 114.4, 109.2, 107.6, 68.9, 35.2, 32.7.

HRMS (ESI-TOF, m/z): Mass calcd. for $C_{20}H_{19}NO_2Na^+[M+Na]^+$, 328.1308; found: 328.1309.

1-(4-acetylphenyl)-2-(1-methyl-1*H*-indol-3-yl)ethan-1-one(5d)

Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1 to 20/1). Yellow oil, 10.2 mg, 35% yield.

 1 H NMR (400 MHz, Chloroform-d) δ 8.13 – 8.10 (m, 2H), 8.01 – 7.98 (m, 2H), 7.60 (dt, J = 8.0, 1.0 Hz, 1H), 7.30 (dt, J = 8.2, 1.0 Hz, 1H), 7.26 – 7.22 (m, 1H), 7.16 – 7.12 (m, 1H), 6.99 (d, J = 1.0 Hz, 1H), 4.42 (d, J = 1.0 Hz,

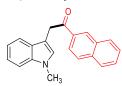
2H), 3.74 (s, 3H), 2.62 (s, 3H).

¹³C NMR (101 MHz, Chloroform-d) δ 197.5, 197.3, 140.1, 139.9, 137.0, 128.8, 128.5, 127.9, 127.6, 121.9, 119.4, 118.7, 109.4, 106.7, 35.9, 32.7, 26.8.

<u>**HRMS**</u> (ESI-TOF, m/z): Mass calcd. for $C_{19}H_{17}NO_2Na^+[M+Na]^+$, 314.1152; found: 314.1150.

methyl 3-(2-(1-methyl-1*H*-indol-3-yl)acetyl)benzoate(5e)

Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1 to 20/1). Colourless oil, 20.3 mg, 66% yield.


<u>**1H NMR (400 MHz, Chloroform-d)**</u> δ 8.74 (t, J = 1.8 Hz, 1H), 8.24 – 8.19 (m, 2H), 7.63 (dt, J = 7.8, 1.0 Hz, 1H), 7.52 (td, J = 7.8, 0.6 Hz, 1H),

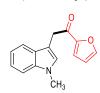
7.30 (dt, J = 8.4, 1.0 Hz, 1H), 7.26 - 7.22 (m, 1H), 7.16 - 7.12 (m, 1H), 7.02 (d, J = 1.0 Hz, 1H),4.44 (d, J = 1.0 Hz, 2H), 3.95 (s, 3H), 3.74 (s, 3H).

¹³C NMR (101 MHz, Chloroform-d) δ 196.9, 166.3, 136.9, 136.8, 133.7, 132.7, 130.6, 129.7, 128.8, 127.9, 127.7, 121.8, 119.2, 118.8, 109.3, 106.7, 52.3, 35.6, 32.7.

<u>HRMS</u> (ESI-TOF, m/z): Mass calcd. for $C_{19}H_{17}NO_3Na^+[M+Na]^+$, 330.1100; found: 330.1102.

2-(1-methyl-1*H*-indol-3-yl)-1-(naphthalen-2-yl)ethan-1-one(5f)

Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1 to 20/1). Yellow oil, 13.7 mg, 46% yield.


<u>**1H NMR (400 MHz, Chloroform-d)**</u> δ 8.62 – 8.61 (m, 1H), 8.10 (dd, J =8.6, 1.8 Hz, 1H), 7.96 - 7.93 (m, 1H), 7.89 - 7.85 (m, 2H), 7.67 (dt, J = 7.8,

1.0 Hz, 1H), 7.61 - 7.57 (m, 1H), 7.56 - 7.52 (m, 1H), 7.30 (dt, J = 8.2, 1.0 Hz, 1H), 7.26 - 7.22 (m, 1H)(m, 1H), 7.18 - 7.14 (m, 1H), 7.03 (d, J = 1.0 Hz, 1H), 4.53 (d, J = 1.0 Hz, 2H), 3.74 (s, 3H).

¹³C NMR (101 MHz, Chloroform-d) δ 197.9, 137.0, 135.6, 134.1, 132.6, 130.3, 129.6, 128.4, 127.85, 127.8, 127.7, 126.7, 124.4, 121.8, 119.2, 118.9, 109.3, 107.4, 35.5, 32.7.

HRMS (ESI-TOF, m/z): Mass calcd. for C₂₁H₁₇NONa⁺[M+Na]⁺, 322.1202; found: 322.1203.

1-(furan-2-yl)-2-(1-methyl-1H-indol-3-yl)ethan-1-one(5g)

Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1 to 20/1). Yellow oil, 9.6 mg, 40% yield.

<u>1H NMR (400 MHz, Chloroform-d)</u> δ 7.63 (dt, J = 7.8, 1.0 Hz, 1H), 7.59 (dd, J= 1.6, 0.8 Hz, 1H), 7.29 (dt, J = 8.2, 1.0 Hz, 1H), 7.24 – 7.20 (m, 2H), 7.14 – 7.10 (m, 1H), 7.06 (d, J = 1.0 Hz, 1H), 6.51 (dd, J = 3.6, 1.6 Hz, 1H), 4.25 (d, J = 1.0Hz, 2H), 3.76 (s, 3H).

¹³C NMR (101 MHz, Chloroform-d) δ 187.0, 152.5, 146.3, 136.9, 128.0, 127.8, 121.7, 119.2, 118.9, 117.6, 112.3, 109.3, 106. 7, 35.2, 32.7.

HRMS (ESI-TOF, m/z): Mass calcd. for C₁₅H₁₃NO₂Na⁺[M+Na]⁺, 262.0839; found: 262.0842.

1-(1-methyl-1*H*-indol-3-yl)propan-2-one(5h)

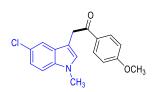
Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1 to 20/1). Yellow oil, 6 mg, 32% yield.

¹H NMR (400 MHz, Chloroform-d) δ 7.53 (dt, J = 8.0, 1.0 Hz, 1H), 7.32 (dt, <math>J =8.2, 1.0 Hz, 1H, 7.26 - 7.22 (m, 1H), 7.15 - 7.11 (m, 1H), 7.00 (d, J = 1.0 Hz, 1H),3.81 (s, 2H), 3.78 (s, 3H), 2.17 (s, 3H).

¹³C NMR (101 MHz, Chloroform-d) δ 207.5, 137.0, 127.8, 127.7, 121.9, 119.3, 119.3, 118.8, 109.3, 107.1, 40.7, 32.7, 28.9.

HRMS (ESI-TOF, m/z): Mass calcd. for C₁₂H₁₃NONa⁺[M+Na]⁺, 210.0889; found: 210.0894.

1-(1-methyl-1H-indol-3-yl)-4-phenylbutan-2-one(5i)


Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1 to 20/1). Yellow oil, 8 mg, 29% yield.

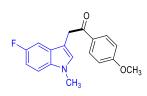
<u>**1H NMR (400 MHz, Chloroform-***d*)</u> δ 7.50 (d, J = 7.9 Hz, 1H), 7.30 (d, J = 8.2 Hz, 1H), 7.26 – 7.21 (m, 3H), 7.18 – 7.10 (m, 4H), 6.91 (s, 1H), 3.78 (s, 2H), 3.75 (s, 3H), 2.89 – 2.85 (m, 2H), 2.84 – 2.78 (m, 2H).

13C NMR (101 MHz, Chloroform-d) δ 208.4, 141.1, 136.9, 128.4, 127.8, 127.7, 126.0, 121.8, 119.26, 118.7, 109.3, 106.9, 42.85, 40.04, 32.69, 29.82.

HRMS (ESI-TOF, m/z): Mass calcd. for C₁₉H₁₉NONa⁺[M+Na]⁺, 300.1359; found: 300.1360.

2-(5-chloro-1-methyl-1*H*-indol-3-yl)-1-(4-methoxyphenyl)ethan-1-one(5j)

Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1 to 20/1). White solid, 16.6 mg, 46% yield; m.p. 143 -145 °C.


 $\frac{{}^{1}\text{H NMR (400 MHz, Chloroform-}d)}{6.05 - 8.01 (m, 2H), 7.56 (dd, J)} = 1.8, 0.8 \text{ Hz}, 1H), 7.21 - 7.15 (m, 2H), 7.01 (s, 1H), 6.95 - 6.91 (m, 2H), 7.01 (s, 1H), 7.01$

2H), 4.29 (d, J = 0.8 Hz, 2H), 3.86 (s, 3H), 3.72 (s, 3H).

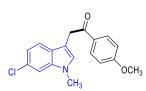
¹³C NMR (101 MHz, Chloroform-d) δ 196.1, 163.5, 135.4, 130.8, 129.6, 129.1, 128.8, 125.1, 122.0, 118.4, 113.8, 110.3, 107.4, 55.5, 34.8, 32.9.

HRMS (ESI-TOF, m/z): Mass calcd. forC₁₈H₁₆ClNO₂Na⁺[M+Na]⁺, 336.0762; found: 336.0760.

2-(5-fluoro-1-methyl-1*H*-indol-3-yl)-1-(4-methoxyphenyl)ethan-1-one(5k)

Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1 to 20/1). White solid, 15.3 mg, 52% yield; m.p. 126 -128 °C.

 $\frac{1}{1}$ H NMR (400 MHz, Chloroform-d) δ 8.05 – 8.02 (m, 2H), 7.26 – 7.16 (m, 2H), 7.03 (s, 1H), 6.99 – 6.91 (m, 3H), 4.29 (d, J = 0.8 Hz, 2H), 3.86


(s, 3H), 3.73 (s, 3H).

 $\frac{^{13}\text{C NMR (101 MHz, Chloroform-}d)}{129.4, 128.1 (d, <math>J = 10.1 \text{ Hz}), 113.8, 110.2, 109.9 (d, <math>J = 8.9 \text{ Hz}), 107.6 (d, <math>J = 5.0 \text{ Hz}), 103.8 (d, J = 23.4 \text{ Hz}), 55.4, 35.0, 33.0.$

¹⁹F NMR (377 MHz, Chloroform-*d*) δ -125.18.

HRMS (ESI-TOF, m/z): Mass calcd. for C₁₈H₁₆FNO₂Na⁺[M+Na]⁺, 320.1057; found: 320.1057.

2-(6-chloro-1-methyl-1*H*-indol-3-yl)-1-(4-methoxyphenyl)ethan-1-one(5l)

Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1 to 20/1). White solid, 14.5 mg, 46% yield; m.p. 119 -121 °C.

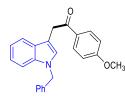
¹H NMR (400 MHz, Chloroform-d) δ 8.04 – 8.01 (m, 2H), 7.49 (d, J = 8.4 Hz, 1H), 7.27 (d, J = 1.8 Hz, 1H), 7.08 (dd, J = 8.4, 1.8 Hz, 1H), 6.98

(d, J = 1.0 Hz, 1H), 6.94 - 6.91 (m, 2H), 4.31 (d, J = 1.0 Hz, 2H), 3.86 (s, 3H), 3.70 (s, 3H).

¹³C NMR (101 MHz, Chloroform-d) δ 196.2, 163.5, 137.4, 130.9, 130.8, 129.6, 128.4, 127.9, 126.4, 119.9, 113.8, 109.3, 108.1, 55.45, 34.97, 32.78.

<u>HRMS</u> (ESI-TOF, m/z): Mass calcd. for $C_{18}H_{16}CINO_2Na^+[M+Na]^+$, 336.0762; found: 336.0760.

1-(4-methoxyphenyl)-2-(1-methyl-1*H*-indol-3-yl)propan-1-one(5m)


Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1 to 20/1). Yellow oil, 21.2 mg, 46% yield.

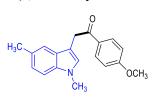
<u>**'H NMR (400 MHz, Chloroform-d)**</u> δ 8.00 – 7.97 (m, 2H), 7.70 (dt, J = 7.8, 1.0 Hz, 1H), 7.29 – 7.12 (m, 3H), 6.88 – 6.81 (m, 3H), 4.93 (q, J = 6.8 Hz, 1H), 3.80 (s, 3H), 3.69 (s, 3H), 1.57 (d, J = 6.8 Hz, 3H).

13C NMR (101 MHz, Chloroform-d) δ 199.5, 163.1, 137.1, 130.9, 130.4, 129.6, 126.6, 121.7, 119.1, 118.7, 115.2, 114.1, 113.8, 113.6, 109.4, 55.4, 38.2, 32.7, 18.8.

<u>HRMS</u> (ESI-TOF, m/z): Mass calcd. for $C_{19}H_{19}NO_2Na^+[M+Na]^+$, 316.1308; found: 316.1306.

2-(1-benzyl-1*H*-indol-3-yl)-1-(4-methoxyphenyl)ethan-1-one(5n)

Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1 to 20/1). White solid, 20.2 mg, 55% yield; m.p. 125-127 °C.


 $\frac{\text{1H NMR (400 MHz, Chloroform-}\textit{d})}{11} \delta 8.06 - 8.00 \text{ (m, 2H)}, 7.65 - 7.63 \text{ (m, 1H)}, 7.29 - 7.23 \text{ (m, 4H)}, 7.19 - 7.13 \text{ (m, 2H)}, 7.11 - 7.06 \text{ (m, 3H)}, 6.94 - 7.13 \text{ (m, 2H)}, 7.11 - 7.06 \text{ (m, 3H)}, 6.94 - 7.13 \text{ (m, 2H)}, 7.11 - 7.06 \text{ (m, 3H)}, 6.94 - 7.13 \text{ (m, 2H)}, 7.11 - 7.06 \text{ (m, 3H)}, 6.94 - 7.13 \text{ (m, 2H)}, 7.11 - 7.06 \text{ (m, 2H)}$

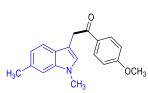
6.89 (m, 2H), 5.27 (s, 2H), 4.36 (d, J = 1.0 Hz, 2H), 3.85 (s, 3H).

13C NMR (101 MHz, Chloroform-d) δ 196.5, 163.4, 137.5, 136.6, 130.9, 130.4, 129.8, 128.7, 128.1, 127.5, 127.2, 126.8, 121.9, 119.4, 119.0, 114.1, 113.7, 109.8, 108.5, 55.42, 49.99, 35.32.

<u>HRMS</u> (ESI-TOF, m/z): Mass calcd. for $C_{24}H_{21}NO_2Na^+[M+Na]^+$, 378.1455; found: 378.1453.

2-(1,5-dimethyl-1*H*-indol-3-yl)-1-(4-methoxyphenyl)ethan-1-one(50)

Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1 to 20/1). White solid, 18.2 mg, 62% yield; m.p. 116 -117°C.


 $\frac{1 \text{H NMR (400 MHz, Chloroform-}d)}{1.8, 0.9 \text{ Hz, 1H)}, 7.17 \text{ (d, } J = 8.3 \text{ Hz, 1H)}, 7.05 \text{ (dd, } J = 8.4, 1.6 \text{ Hz, } J = 8.4, 1.6 \text{ Hz,$

1H), 6.93 - 6.89 (m, 3H), 4.31 (d, J = 0.9 Hz, 2H), 3.85 (s, 3H), 3.70 (s, 3H), 2.47 (s, 3H).

¹³C NMR (101 MHz, Chloroform-d) δ 196.6, 163.4, 135.4, 130.9, 129.8, 128.4, 128.0, 127.8, 123.4, 118.5, 113.7, 109.0, 107.1, 55.4, 35.2, 32.7, 21.5.

HRMS (ESI-TOF, m/z): Mass calcd. for $C_{19}H_{19}NO_2Na^+$ [M+Na]⁺, 316.1308; found: 316.1310.

2-(1,6-dimethyl-1*H*-indol-3-yl)-1-(4-methoxyphenyl)ethan-1-one(5p)

Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1 to 20/1). White solid, 14.7 mg, 50% yield; m.p. 103 - 105 °C.

 1 H NMR (400 MHz, Chloroform-d) δ 8.04 – 8.02 (m, 2H), 7.49 (d, J = 8.1 Hz, 1H), 7.07 (s, 1H), 6.96 (dd, J = 8.1, 1.4 Hz, 1H), 6.90 (d, J =

8.6 Hz, 3H), 4.30 (d, J = 0.9 Hz, 2H), 3.84 (s, 3H), 3.69 (s, 3H), 2.48 (s, 3H).

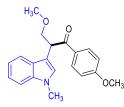
¹³C NMR (101 MHz, Chloroform-d) δ 196.6, 163.4, 137.4, 131.6, 130.9, 129.8, 127.1, 125.7, 120.9, 118.5, 113.7, 109.3, 107.6, 55.4, 35.3, 32.6, 21.8.

<u>HRMS</u> (ESI-TOF, m/z): Mass calcd. for $C_{19}H_{19}NO_2Na^+[M+Na]^+$, 316.1308; found: 316.1309.

1-(4-methoxyphenyl)-2-(1-methyl-1*H*-indol-3-yl)-3-phenylpropan-1-one(5q)

Ph O OCH3

Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1 to 20/1). Colourless oil, 15.5 mg, 42% yield.


<u>1H NMR (400 MHz, Chloroform-d)</u> δ 7.92 – 7.89 (m, 2H), 7.66 (dt, J = 7.8, 1.0 Hz, 1H), 7.29 – 7.26 (m, 1H), 7.23 (dd, J = 6.8, 1.2 Hz, 1H), 7.21 – 7.18 (m, 4H), 7.15 – 7.11 (m, 2H), 6.87 (s, 1H), 6.79 – 6.77 (m, 2H), 5.08

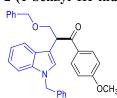
(dd, J = 8.6, 5.6 Hz, 1H), 3.77 (s, 3H), 3.69 (s, 3H), 3.62 (dd, J = 13.6, 8.6 Hz, 1H), 3.14 (dd, J = 13.6, 5.6 Hz, 1H).

13C NMR (101 MHz, Chloroform-d) δ 198.1, 163.1, 140.7, 137.1, 130.8, 129.9, 129.1, 128.2, 127.2, 126.7, 125.9, 121.7, 119.2, 118.7, 113.5, 113.1, 109.4, 55.3, 46.2, 39.6, 32.7.

HRMS (ESI-TOF, m/z): Mass calcd. for C₂₅H₂₃NO₂Na⁺[M+Na]⁺, 392.1621; found: 392.1622.

3-methoxy-1-(4-methoxyphenyl)-2-(1-methyl-1*H*-indol-3-yl)propan-1-one(5r)

Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1 to 20/1). Colourless oil, 12.9 mg, 40% yield.


¹H NMR (400 MHz, Chloroform-d) δ 8.02 – 7.98 (m, 2H), 7.79 (dt, J = 7.8, 1.2 Hz, 1H), 7.29 – 7.16 (m, 3H), 6.89 (s, 1H), 6.85 – 6.81 (m, 2H), 5.15 (dd, J = 9.4, 4.4 Hz, 1H), 4.21 (t, J = 9.4 Hz, 1H), 3.79 (s, 3H), 3.69 –

3.66 (m, 4H), 3.37 (s, 3H).

13C NMR (101 MHz, Chloroform-d) δ 197.3, 163.3, 137.1, 130.9, 129.9, 127.6, 126.9, 121.9, 119.4, 118.6, 113.6, 109.7, 109.5, 74.3, 59.1, 55.4, 44.1, 32.7.

<u>**HRMS**</u> (ESI-TOF, m/z): Mass calcd. for $C_{20}H_{21}NO_3Na^+[M+Na]^+$, 346.1414; found: 346.1409.

2-(1-benzyl-1*H*-indol-3-yl)-3-(benzyloxy)-1-(4-methoxyphenyl)propan-1-one(5s)

Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1 to 20/1). Colourless oil, 16.5 mg, 35% yield.

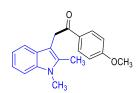
¹H NMR (400 MHz, Chloroform-d) δ 8.04 – 7.92 (m, 2H), 7.79 – 7.72 (m, 1H), 7.30 – 7.11 (m, 12H), 6.98 – 6.96 (m, 3H), 6.84 – 6.80 (m, 2H), 5.22 – 5.12 (m, 3H), 4.61 – 4.48 (m, 2H), 4.33 – 4.29 (m, 1H), 3.83 – 3.76 (m, 4H).

13C NMR (101 MHz, Chloroform-d) δ 197.4, 163.2, 138.4, 137.2, 136.6, 130.9, 130.0, 128.7, 128.3, 127.6, 127.6, 127.4, 127.2, 127.1, 126.6, 122.1, 119.7, 118.8, 113.6, 110.5, 110.0, 73.4, 71.8, 55.4, 50.1, 44.5.

HRMS (ESI-TOF, m/z): Mass calcd. for $C_{32}H_{29}NO_3Na^+[M+Na]^+$, 498.2040; found: 498.2037.

2-(1,3-dimethyl-1*H*-indol-2-yl)-1-(4-methoxyphenyl)ethan-1-one(7a)

Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1 to 20/1). White solid, 7.5 mg, 26% yield; m.p. 142 -144 °C.


¹H NMR (400 MHz, Chloroform-d) δ 8.05 – 8.01 (m, 2H), 7.52 (dt,

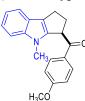
J = 7.8, 1.0 Hz, 1H, 7.27 - 7.24 (m, 1H), 7.20 - 7.10 (m, 1H), 7.10 - 7.06 (m, 1H), 6.97 - 6.93 (m, 1H)2H), 4.40 (s, 2H), 3.88 (s, 3H), 3.63 (s, 3H), 2.30 (s, 3H).

¹³C NMR (101 MHz, Chloroform-d) δ 194.7, 163.7, 137.1, 130.7, 129.9, 129.5, 128.2, 121.2, 118.7, 118.4, 113.9, 108.8, 108.4, 55.5, 35.3, 29.7, 9.1.

<u>HRMS</u> (ESI-TOF, m/z): Mass calcd. for $C_{19}H_{19}NO_2Na^+[M+Na]^+$, 316.1308; found: 316.1304.

2-(1,2-dimethyl-1*H*-indol-3-yl)-1-(4-methoxyphenyl)ethan-1-one(7a')

Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1 to 20/1). White solid, 9.1 mg, 31% yield; m.p. 91 -92°C.

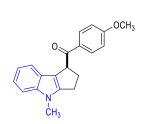

¹H NMR (400 MHz, Chloroform-d) $\delta 8.06 - 8.02$ (m, 2H), 7.49 (dt, J =7.8, 1.2 Hz, 1H, 7.26 - 7.23 (m, 1H), 7.16 - 7.12 (m, 1H), 7.09 - 7.05 (m, 1H)

1H), 6.92 – 6.88 (m, 2H), 4.30 (s, 2H), 3.84 (s, 3H), 3.66 (s, 3H), 2.38 (s, 3H).

¹³C NMR (101 MHz, Chloroform-d) δ 196.6, 163.3, 136.6, 134.55, 130.7, 129.9, 127.6, 120.7, 119.1, 117.9, 113.7, 108.7, 104.1, 55.4, 35.0, 29.6, 10.6.

HRMS (ESI-TOF, m/z): Mass calcd. for $C_{19}H_{19}NO_2Na^+[M+Na]^+$, 316.1308; found: 316.1309.

(4-methoxyphenyl)(4-methyl-1,2,3,4-tetrahydrocyclopenta[b]indol-3-yl)methanone(7b)


Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1 to 20/1). White solid, 12.8 mg, 42% yield; m.p. 183 -185 °C.

¹H NMR (400 MHz, Chloroform-d) δ 8.03 – 7.99 (m, 2H), 7.49 (dt, J = 7.8, 1.0 Hz, 1H), 7.28 – 7.26 (m, 1H), 7.20 – 7.15 (m, 1H), 7.11 – 7.07 (m, 1H), 6.99 – 6.95 (m, 2H), 4.93 - 4.88 (m, 1H), 3.89 (s, 3H), 3.56 (s, 3H), 3.13 - 2.90 (m, 3H),2.68 - 2.60 (m, 1H).

¹³C NMR (101 MHz, Chloroform-d) δ 198.8, 163.6, 143.1, 141.9, 131.1, 1290, 123.9, 120.6, 119.7, 118.9, 118.9, 113.9, 109.6, 55.5, 47.5, 35.6, 31.1, 24.1.

HRMS (ESI-TOF, m/z): Mass calcd. for C₂₀H₁₉NO₂Na⁺[M+Na]⁺, 328.1308; found: 328.1310.

(4-methoxyphenyl)(4-methyl-1,2,3,4-tetrahydrocyclopenta|b|indol-1-yl)methanone(7b')

Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1 to 20/1). White solid, 11.1 mg, 32% yield; m.p. 134 -136 °C.

<u>**1H NMR (400 MHz, Chloroform-d)**</u> δ 8.16 – 8.12 (m, 2H), 7.21 (d, J =8.2 Hz, 1H), 7.09 - 6.99 (m, 4H), 6.94 - 6.90 (m, 1H), 5.10 - 5.06 (m, 1H)1H), 3.91 (s, 3H), 3.68 (s, 3H), 3.16 - 3.09 (m, 1H), 2.97 - 2.88 (m, 2H),

2.87 - 2.78 (m, 1H).

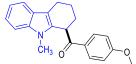
¹³C NMR (101 MHz, Chloroform-d) δ 199.8, 163.5, 147.2, 141.5, 131.0, 130.1, 123.8, 120.2, 119.3, 118.6, 115.5, 113.8, 109.5, 55.5, 46.3, 32.8, 30.9, 24.5.

(4-methoxyphenyl)(5-methyl-5,6,7,8,9,10-hexahydrocyclohepta[b]indol-6-yl)methanone(7c) (4-methoxyphenyl)(5-methyl-5,6,7,8,9,10-hexahydrocyclohepta[b]indol-10-yl)methanone(7c')

OCH N CH₃ 7d, 21% OCH₃ 7d', 27% 7d + 7d' = 48% 7d / 7d' = 1 / 1.25

(m, 4H), 1.90 - 1.57 (m, 7H).

Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1 to 20/1). White solid, 16 mg, 48% yield (yield of isolated mixture).

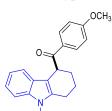

[7d] ¹H NMR (400 MHz, Chloroform-*d*) 8.05 - 8.02 (m, 2H), 7.56 (d, J = 8.0 Hz, 1H), , 7.27 - 7.06 (m, 7H), 7.02 - 6.92 (m, 6H), 5.06 (dd, J = 5.6, 4.0 Hz, 1H), 3.89 (d, J = 3.3 Hz, 6H), 3.54 (s, 3H), 33.19 - 3.12 (m, 1H), 3.02 - 2.96 (m, 3H), 2.49 - 2.34 (m, 2H), 2.26 - 2.22 (m, 1H), 2.10 - 2.02

[7d'] ¹H NMR (400 MHz, Chloroform-*d*) δ 8.11 – 8.09 (m, 2H), 7.34 (d, J = 8.0 Hz, 1H), 7.27 – 7.06 (m, 7H), 7.02 – 6.92 (m, 6H), 5.22 (t, J = 4.5 Hz, 1H), 3.89 (d, J = 3.3 Hz, 6H), 3.71 (s, 4H), 3.19 – 3.12 (m, 1H), 3.02 – 2.96 (m, 3H), 2.49 – 2.34 (m, 2H), 2.26 – 2.22 (m, 1H), 2.10 – 2.02 (m, 4H), 1.90 – 1.57 (m, 7H).

13C NMR (101 MHz, Chloroform-d) δ 199.8, 197.5, 163.5, 163.2, 141.4, 135.9, 135.1, 130.7, 130.67, 129.7, 129.1, 127.9, 127.5, 121.0, 120.4, 118.8, 118.6, 118.2, 117.0, 116.5, 114.0, 113.8, 110.5, 109.0, 108.7, 55.5, 55.4, 45.8, 43.1, 31.6, 30.4, 29.7, 29.6, 27.6, 27.2, 26.6, 25.62, 25.6, 22.9.

HRMS (ESI-TOF, m/z): Mass calcd. for C₂₂H₂₃NO₂Na⁺[M+Na]⁺, 356.1621; found: 356.1623.

(4-methoxyphenyl)(9-methyl-2,3,4,9-tetrahydro-1*H*-carbazol-1-yl)methanone(7d)



Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1 to 20/1). White solid, 13 mg, 41% yield; m.p. 182 - 183 °C.

13C NMR (101 MHz, Chloroform-d) δ 198.8, 163.7, 137.2, 133.2, 131.0, 128.6, 126.9, 121.2, 118.7, 118.3, 114.0, 111.9, 108.7, 55.5, 42.4, 29.7, 28.9, 21.1, 21.0.

HRMS (ESI-TOF, m/z): Mass calcd. for $C_{21}H_{21}NO_2Na^+[M+Na]^+$, 342.1465; found: 342.1462.

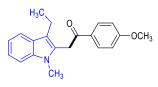
(4-methoxyphenyl)(9-methyl-2,3,4,9-tetrahydro-1*H*-carbazol-4-yl)methanone(7d')

Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1 to 20/1). White solid, 13.7 mg, 43% yield; m.p. 180 -181°C.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.14 – 8.11 (m, 2H), 7.27 – 7.24 (m, 1H), 7.13 – 7.07 (m, 2H), 7.011 – 6.91 (m, 3H), 4.90 (td, J = 6.3, 3.1 Hz, 1H), 3.90 (s, 3H), 3.66 (s, 3H), 2.90 – 2.73 (m, 2H), 2.28 – 1.88 (m, 4H).

13C NMR (101 MHz, Chloroform-d) δ 200.9, 163.4, 137.1, 137.0, 130.9, 129.8, 126.3, 120.7, 118.9, 118.2, 113.9, 108.7, 107.5, 55.5, 41.1, 29.1, 28.3, 21.9, 21.1.

<u>HRMS</u> (ESI-TOF, m/z): Mass calcd. for $C_{21}H_{21}NO_2Na^+[M+Na]^+$, 342.1465; found: 342.1462.


(9-methyl-2,3,4,9-tetrahydro-1H-carbazole-1,4-diyl)bis((4-methoxyphenyl)methanone) (7d")

Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1 to 20/1). White solid, 5 mg, 11% yield; m.p. 158 -160°C

 $\frac{\text{1H NMR (400 MHz, Chloroform-}d)}{7.11 \text{ (m, 3H), } 7.03 - 6.89 \text{ (m, 5H), } 5.07 - 4.67 \text{ (m, 2H), } 3.91 - 3.84}}{(\text{m, 6H), } 3.46 \text{ (d, } J = 5.5 \text{ Hz, 3H), } 2.59 - 2.41 \text{ (m, 1H), } 2.37 - 2.07 \text{ (m, 3H).}}$

HRMS (ESI-TOF, m/z): Mass calcd. for C₂₉H₂₇NO₄Na⁺[M+Na]⁺, 476.1832; found: 476.1829.

2-(3-ethyl-1-methyl-1*H*-indol-2-yl)-1-(4-methoxyphenyl)ethan-1-one(7e)

Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1 to 20/1). Yellow oil, 16.1 mg, 52% yield.

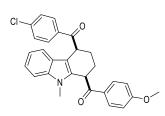
¹H NMR (400 MHz, Chloroform-d) δ 8.07 – 8.02 (m, 2H), 7.58 (dt, J = 8.0, 1.0 Hz, 1H), 7.29 – 7.25 (m, 2H), 7.20 – 7.16 (m, 1H), 7.10 –

7.06 (m, 1H), 6.99 - 6.95 (m, 2H), 4.41 (s, 2H), 3.89 (s, 3H), 3.62 (s, 3H), 2.76 (q, J = 7.6 Hz, 2H), 1.20 (t, J = 7.6 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-d) δ 194.6, 163.8, 137.2, 130.7, 129.6, 129.3, 127.2, 121.1, 118.6, 118.6, 115.5, 113.9, 108.9, 55.5, 34.9, 30.0, 17.9, 15.8.

<u>HRMS</u> (ESI-TOF, m/z): Mass calcd. for $C_{20}H_{21}NO_2Na^+[M+Na]^+$, 330.1465; found: 330.1464.

2-(3-benzyl-1-methyl-1*H*-indol-2-yl)-1-(4-methoxyphenyl)ethan-1-one(7f)


Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1 to 20/1). White solid, 18.3 mg, 31% yield; m.p. 169 -171 °C.

CH₃ IH NMR (400 MHz, Chloroform-d) δ 7.96 – 7.92 (m, 2H), 7.42 (dt, J = 8.0, 1.0 Hz, 1H), 7.29 (dt, J = 8.2, 0.9 Hz, 1H), 7.20 – 7.16 (m, 5H), 7.13 – 7.08 (m, 1H), 7.05 – 7.01 (m, 1H), 6.94 – 6.87 (m, 2H), 4.39 (s, 2H), 4.13 (s, 2H), 3.86 (s, 3H), 3.65 (s, 3H).

13C NMR (101 MHz, Chloroform-d) δ 194.4, 163.8, 141.2, 137.3, 131.0, 130.6, 129.5, 128.3, 128.3, 127.8, 125.7, 121.3, 119.0, 118.8, 113.9, 111.7, 108.9, 55.5, 35.0, 30.5, 30.2.

HRMS (ESI-TOF, m/z): Mass calcd. for $C_{25}H_{23}NO_2Na^+[M+Na]^+$, 392.1621; found: 392.16117.

(4-(4-chlorobenzoyl)-9-methyl-2,3,4,9-tetrahydro-1H-carbazol-1-yl)(4-methoxyphenyl)methanone(8)

Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 10/1 to 5/1). White solid, 29.7 mg, 65% yield; m.p. 167 -168 °C.

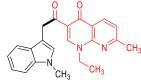
¹H NMR (400 MHz, Chloroform-*d*) δ 8.13 – 8.00 (m, 4H), 7.52 – 7.36 (m, 2H), 7.26 – 7.13 (m, 3H), 7.01 – 6.95 (m, 3H), 5.04 – 4.62 (m, 2H), 3.89 (d, J = 6.3 Hz, 3H), 3.47 (d, J = 11.5 Hz, 3H), 2.55 –

1.97 (m, 4H).

¹³C NMR (101 MHz, Chloroform-d) δ 200.6, 197.9, 163.9, 139.6, 137.4, 134.8, 130.9, 130.0, 129.1,

128.8, 128.3, 126.0, 121.5, 119.1, 118.1, 114.2, 109.5, 109.1, 55.6, 40.7, 39.7, 29.7, 24.9, 24.2.

HRMS (ESI-TOF, m/z): Mass calcd. for C₂₈H₂₄ClNO₃Na⁺[M+Na]⁺, 480.1337; found: 480.1333.

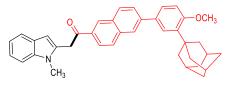

1-ethyl-7-methyl-3-(2-(1-methyl-1*H*-indol-2-yl)acetyl)-1,8-naphthyridin-4(1*H*)-one(9a)

O CH₃

Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 10/1 to 5/1). White solid, 17.2 mg, 48% yield; m.p. 199 -201 °C.

<u>**HRMS**</u> (ESI-TOF, m/z): Mass calcd. for $C_{22}H_{21}N_3O_2Na^+[M+Na]^+$, 382.1526; found: 382.1521.

1-ethyl-7-methyl-3-(2-(1-methyl-1*H*-indol-3-yl)acetyl)-1,8-naphthyridin-4(1*H*)-one(9b)


(m, 3H).

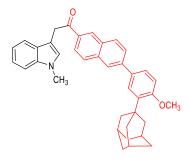
Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 10/1 to 5/1). White solid, 12.1 mg, 34% yield; m.p. 179 -181 °C.

¹H NMR (400 MHz, Chloroform-d) δ 8.69 (d, J = 8.2 Hz, 1H), 8.62 – 8.61 (m, 1H), 7.69 – 7.66 (m, 1H), 7.28 – 7.24 (m, 2H), 7.21 – 7.16 (m, 2H), 7.11 – 7.01 (m, 1H), 4.72 (s, 2H), 4.47 – 4.42 (m, 2H), 3.73 (s, 3H), 2.67 (s, 3H), 1.47 – 1.44 (m, 2H)

13C NMR (101 MHz, Chloroform-d) δ 197.1, 176.0, 162.7, 148.8, 148.5, 136.9, 136.8, 128.4, 128.4, 122.0, 121.4, 121.1, 119.5, 119.1, 118.9, 109.0, 107.7, 46.67, 39.21, 32.62, 25.04, 15.10. HRMS (ESI-TOF, m/z): Mass calcd. for C₂₂H₂₁N₃O₂Na⁺[M+Na]⁺, 382.1526; found: 382.1519.

1-(6-(3-((3r,5r,7r)-adamantan-1-yl)-4-methoxyphenyl)naphthalen-2-yl)-2-(1-methyl-1 H-indol-2-yl)ethan-1-one(9c)

Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1 to 20/1). White solid, 24.2 mg, 45% yield; m.p. 217 - 219 °C.


¹H NMR (400 MHz, Chloroform-d) δ 8.61 (d, J = 1.8 Hz,

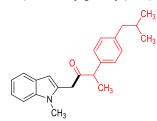
1H), 8.10 (dd, J = 8.6, 1.8 Hz, 1H), 8.02 - 8.00 (m, 2H), 7.94 (d, J = 8.6 Hz, 1H), 7.82 (dd, J = 8.6, 1.8 Hz, 1H), 7.61 (d, J = 2.4 Hz, 1H), 7.57 - 7.53 (m, 2H), 7.31 (dd, J = 8.2, 1.0 Hz, 1H), 7.21 - 7.17 (m, 1H), 7.10 - 7.06 (m, 1H), 7.00 (d, J = 8.6 Hz, 1H), 6.43 (s, 1H), 4.61 (s, 2H), 3.91 (s, 3H), 3.74 (s, 3H), 2.19 - 2.18 (m, 6H), 2.11 (t, J = 3.4 Hz, 3H), 1.81 (t, J = 3.2 Hz, 6H).

13C NMR (101 MHz, Chloroform-d) δ 195.7, 159.1, 142.0, 139.1, 137.8, 136.2, 133.5, 133.2, 132.4, 131.2, 130.3, 130.0, 128.7, 127.8, 126.7, 126.0, 125.8 124.7, 124.5, 121.2, 120.2, 119.5, 112.2, 109.1, 102.2, 55.2, 40.6, 37.8, 37.2, 37.1, 30.1, 29.1.

HRMS (ESI-TOF, m/z): Mass calcd. for C₃₈H₃₇NO₂Na⁺[M+Na]⁺, 562.2717; found: 562.2714.

1-(6-(3-((3r,5r,7r)-adamantan-1-yl)-4-methoxyphenyl)naphthalen-2-yl)-2-(1-methyl-1*H*-indol-3-yl)ethan-1-one(9d)

Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1 to 20/1). White solid, 21 mg, 39% yield; m.p. 192 -194 °C.

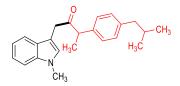

¹H NMR (400 MHz, Chloroform-*d*) δ 8.61 (d, J = 1.8 Hz, 1H), 8.11 (dd, J = 8.6, 1.8 Hz, 1H), 8.00 – 7.96 (m, 2H), 7.91 (d, J = 8.6 Hz, 1H), 7.79 (dd, J = 8.6, 1.8 Hz, 1H), 7.68 (dt, J = 7.8, 1.0 Hz, 1H), 7.60 (d, J = 2.4 Hz, 1H), 7.54 (dd, J = 8.4, 2.4 Hz, 1H), 7.32 – 7.29 (m, 1H), 7.24 (dd, J = 8.2, 1.2 Hz, 1H), 7.16 – 7.14 (m, 1H),

7.03 (d, J = 1.2 Hz, 1H), 7.00 (d, J = 8.4 Hz, 1H), 4.53 (d, J = 1.0 Hz, 2H), 3.91 (s, 3H), 3.74 (s, 3H), 2.19 (d, J = 3.0 Hz, 6H), 2.11 (s, 3H), 1.80 (d, J = 3.2 Hz, 6H).

¹³C NMR (101 MHz, Chloroform-d) δ 197.8, 159.0, 141.6, 139.1, 137.0, 136.0, 133.7, 132.5, 131.3, 130.1, 123.0, 128.5, 127.9, 126.5, 126.0, 125.7, 124.8, 124.7, 121.8, 119.2, 118.9, 112.2, 109.3, 107.6, 55.2, 40.6, 37.2, 37.1, 35.5, 32.7, 29.1.

HRMS (ESI-TOF, m/z): Mass calcd. for C₃₈H₃₇NO₂Na⁺[M+Na]⁺, 562.2717; found: 562.2716.

3-(4-isobutylphenyl)-1-(1-methyl-1*H*-indol-2-yl)butan-2-one(9e)


6.6, 1.4 Hz, 6H).

Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1 to 20/1). Colourless oil, 19.3 mg, 58% yield. ¹H NMR (400 MHz, Chloroform-d) δ 7.56 (dt, J = 7.8, 1.0 Hz, 1H), 7.24 – 7.17 (m, 2H), 7.13 – 7.05 (m, 5H), 6.29 (s, 1H), 3.95 (q, J = 7.0 Hz, 1H), 3.87 – 3.77 (m, 2H), 3.39 (s, 3H), 2.47 (d, J = 7.2 Hz, 2H), 1.87 (dt, J = 13.6, 6.8 Hz, 1H), 1.39 (d, J = 7.0 Hz, 3H), 0.93 (dd, J =

¹³C NMR (101 MHz, Chloroform-d) δ 207.0, 140.9, 137.6, 137.2, 133.1, 129.7, 127.7, 121.2, 120.1, 119.5, 109.1, 102.0, 51.1, 45.0, 40.1, 30.2, 29.5, 22.4, 22.3, 17.5.

<u>HRMS</u> (ESI-TOF, m/z): Mass calcd. for $C_{23}H_{27}NONa^{+}[M+Na]^{+}$, 356.1985; found: 356.1981.

3-(4-isobutylphenyl)-1-(1-methyl-1*H*-indol-3-yl)butan-2-one(9f)

Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1 to 20/1). Colourless oil, 10.6 mg, 32% yield.

¹H NMR (400 MHz, Chloroform-d) δ 7.31 (dt, J= 7.8, 1.0 Hz, 1H), 7.28 (dt, J= 8.2, 1.0 Hz, 1H), 7.22 – 7.18 (m, 1H), 7.11 (s, 4H), 7.09

-7.02 (m, 1H), 6.86 (s, 1H), 3.90 (q, J = 6.8 Hz, 1H), 3.80 -3.69 (m, 5H), 2.47 (d, J = 7.2 Hz, 2H), 1.87 (dt, J = 13.6, 6.8 Hz, 1H), 1.34 (d, J = 6.8 Hz, 3H), 0.92 (d, J = 6.6 Hz, 6H).

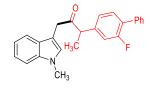
13C NMR (101 MHz, Chloroform-d) δ 209.0, 140.6, 138.0, 136.8, 129.6, 128.0, 127.8, 127.7, 121.7, 119.1, 118.8, 109.2, 107.1, 51.1, 45.0, 37.7, 32.7, 30.2, 22.4, 17.8.

HRMS (ESI-TOF, m/z): Mass calcd. for C₂₃H₂₇NONa⁺[M+Na]⁺, 356.1985; found: 356.1984.

3-(2-fluoro-[1,1'-biphenyl]-4-yl)-1-(1-methyl-1*H*-indol-2-yl)butan-2-one(9g)

Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1 to 20/1). Colourless oil, 19.1 mg, 51% yield. ¹H NMR (400 MHz, Chloroform-d) δ 7.58 (dt, J = 7.8, 1.0 Hz, 1H), 7.55 - 7.52 (m, 2H), 7.48 - 7.43 (m, 2H), 7.41 - 7.33 (m, 3H), 7.26 - 7.18 (m,

2H), 7.13 - 7.09 (m, 1H), 6.99 - 6.96 (m, 2H), 6.36 (d, J = 0.8 Hz, 1H), 4.02 (z, J = 7.0 Hz, 1H), 2.07 - 2.81 (m, 2H), 2.47 (z, 2H), 1.42 (d, J = 0.8 Hz, 1H), 2.07 - 2.81 (m, 2H), 2.47 (z, 2H), 1.42 (d, J = 0.8 Hz, 1H), 2.07 - 2.81 (m, 2H), 2.47 (z, 2H), 1.42 (d, J = 0.8 Hz, 1H), 2.07 - 2.81 (m, 2H), 2.47 (z, 2H), 2.47 (


4.02 (q, J = 7.0 Hz, 1H), 3.97 - 3.81 (m, 2H), 3.47 (s, 3H), 1.42 (d, J = 3.81 (m, 2H), 3.47 (s, 3H), 3.47 (s, 3H), 3.42 (d, J = 3.81 (m, 2H), 3.47 (s, 3H), 3.42 (d, J = 3.81 (m, 2H), 3.47 (s, 3H), 3.42 (d, J = 3.81 (m, 2H), 3.47 (s, 3H), 3.42 (d, J = 3.81 (m, 2H), 3.47 (s, 3H), 3.42 (d, J = 3.81 (m, 2H), 3.47 (s, 3H), 3.42 (d, J = 3.81 (m, 2H), 3.47 (s, 3H), 3.42 (d, J = 3.81 (m, 2H), 3.47 (s, 3H), 3.42 (d, J = 3.81 (m, 2H), 3.47 (s, 3H), 3.42 (d, J = 3.81 (m, 2H), 3.47 (s, 3H), 3.42 (d, J = 3.81 (m, 2H), 3.47 (s, 3H), 3.42 (d, J = 3.81 (m, 2H), 3.47 (s, 3H), 3.42 (d, J = 3.81 (m, 2H), 3.47 (s, 3H), 3.42 (d, J = 3.81 (m, 2H), 3.47 (m, 2H), 3.47

7.0 Hz, 3H).

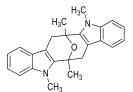
¹³C NMR (101 MHz, Chloroform-d) δ 206.3, 159.83 (d, J = 249.3 Hz), 141.21 (d, J = 7.4 Hz), 137.7, 135.2, 132.6, 131.10 (d, J = 3.8 Hz), 128.9 (d, J = 2.9 Hz), 128.5, 128.1, 127.8, 127.6, 124.0 (d, J = 3.5 Hz), 121.47, 119.63, 115.54 (d, J = 23.3 Hz), 109.14, 102.23, 50.5, 40.7, 29.7, 17.7. ¹⁹F NMR (377 MHz, Chloroform-d) δ -116.92.

<u>HRMS</u> (ESI-TOF, m/z): Mass calcd. for C₂₅H₂₂FNONa⁺[M+Na]⁺, 394.1578; found: 394.1574.

3-(2-fluoro-[1,1'-biphenyl]-4-yl)-1-(1-methyl-1*H*-indol-3-yl)butan-2-one(9h)

Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1 to 20/1). Colourless oil, 18.9 mg, 51% yield.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.55 – 7.53 (m, 2H), 7.47 – 7.43 (m, 2H), 7.40 – 7.35 (m, 3H), 7.30 (dt, J = 8.4, 1.0 Hz, 1H), 7.25 – 7.21 (m, 1H), 7.12 – 7.07 (m, 1H), 7.02 (dd, J = 8.0, 1.8 Hz, 1H), 6.96 (dd, J


= 11.6, 1.8 Hz, 1H), 6.91 (s, 1H), 3.97 (q, J = 7.0 Hz, 1H), 3.89 – 3.77 (m, 2H), 3.76 (s, 3H), 1.39 (d, J = 7.0 Hz, 3H).

 $\frac{^{13}\text{C NMR (101 MHz, Chloroform-}d)}{135.4, 131.0 (d, J = 4.2 Hz), 128.9 (d, J = 2.9 Hz), 128.5, 128.0, 127.8, 127.7, 123.9 (d, J = 3.6 Hz), 121.8, 119.3, 118.7, 115.6 (d, J = 23.3 Hz), 109.3, 106.7, 50.6, 38.3, 32.7, 17.9.$

¹⁹F NMR (377 MHz, Chloroform-*d*) δ -117.39.

HRMS (ESI-TOF, m/z): Mass calcd. for C₂₅H₂₂FNONa⁺[M+Na]⁺, 394.1578; found: 394.1572.

5,6,12,13-tetramethyl-5,6,7,12,13,14-hexahydro-6,13-epoxycycloocta[1,2-b:5,6-b'|diindole(10)

Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1 to 20/1). White solid, 26.7 mg, 75% yield; m.p. 195 - 197 °C.

¹H NMR (400 MHz, Chloroform-d) δ 7.37 (dt, J = 7.8, 1.0 Hz, 2H), 7.18 (dt, J = 8.2, 1.0 Hz, 2H), 7.13 – 7.09 (m, 2H), 7.03 – 6.99 (m, 2H), 3.78 (s,

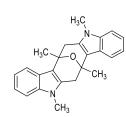
6H), 3.22–3.10 (m, 4H), 1.91 (s, 6H).

13C NMR (101 MHz, Chloroform-d) δ 137.7, 137.5, 126.1, 121.2, 118.9, 117.7, 108.8, 107.0, 72.1, 34.1, 31.3, 27.0.

<u>**HRMS**</u> (ESI-TOF, m/z): Mass calcd. for $C_{24}H_{24}N_2ONa^+[M+Na]^+$, 379.1781; found: 379.1775.

1,3,9-trimethyl-2-(1-methyl-1H-indol-3-yl)-9*H*-carbazole(11)

Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1 to 20/1). White solid, 12.2 mg, 36% yield; m.p. 212 -214 °C.

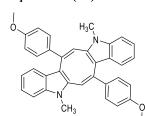

¹H NMR (400 MHz, Chloroform-d) δ 8.06 (dt, J = 7.8, 1.0 Hz, 1H), 7.87 (s, 1H), 7.47 – 7.36 (m, 3H), 7.29 – 7.19 (m, 3H), 7.10 – 7.06 (m, 1H),

6.95 (s, 1H), 4.12 (s, 3H), 3.90 (s, 3H), 2.58 (s, 3H), 2.21 (s, 3H).

13C NMR (101 MHz, Chloroform-d) δ 142.5, 139.1, 136.8, 132.9, 129.8, 128.3, 127.6, 125.3, 122.9, 122.7, 121.5, 121.1, 120.2, 119.8, 119.1, 118.7, 118.1, 115.2, 109.1, 108.6, 33.0, 32.8, 21.7, 17.4.

<u>**HRMS**</u> (ESI-TOF, m/z): Mass calcd. for $C_{24}H_{23}N_2^+[M+H]^+$, 339.1856; found: 339.1850.

5,7,12,14-tetramethyl-5,6,7,12,13,14-hexahydro-7,14-epoxycycloocta[1,2-b:5,6-b']diindole(12)

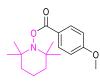

Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1 to 20/1). Yellow solid, 20.9 mg, 59% yield; m.p. 185 - 187 °C

¹H NMR (400 MHz, Chloroform-d)</sup> δ 7.59 – 7.599 (m, 2H), 7.21 – 7.18 (m, 2H), 7.14 – 7.07 (m, 4H), 3.48 (s, 6H), 3.15 – 3.01 (m, 4H), 1.99 (s, 6H). ¹³C NMR (101 MHz, Chloroform-d) δ 137.0, 134.4, 123.9, 120.2, 118.8,

118.3, 112.6, 109.0, 72.2, 34.7, 29.0, 28.2.

<u>HRMS</u> (ESI-TOF, m/z): Mass calcd. for $C_{24}H_{24}N_2ONa^+[M+Na]^+$, 379.1781; found: 379.1775.

(6Z,13Z)-7,14-bis(4-methoxyphenyl)-5,12-dimethyl-5,12-dihydrocycloocta[1,2-b:5,6-b'|diindole(13)

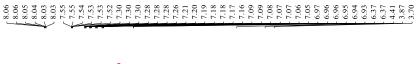

Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1 to 20/1). Yellow solid, 33.3 mg, 64% yield; m.p. 300 - 302 °C.

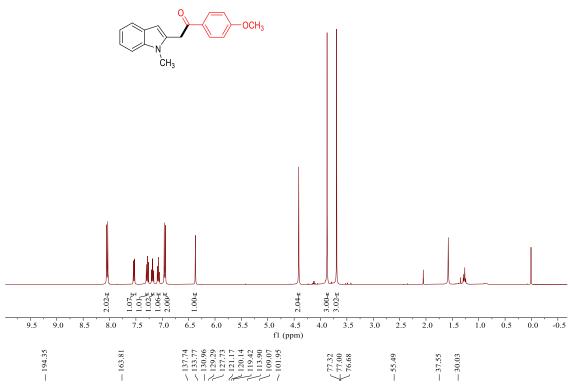
¹H NMR (400 MHz, Chloroform-d) δ 7.41 – 7.37 (m, 4H), 7.20 (dt, J = 8.2, 0.8 Hz, 2H), 7.10 – 7.05 (m, 2H), 6.85 – 6.80 (m, 8H), 6.70 (dt, J = 7.8, 1.0 Hz, 2H), 3.82 (s, 6H), 3.75 (s, 6H).

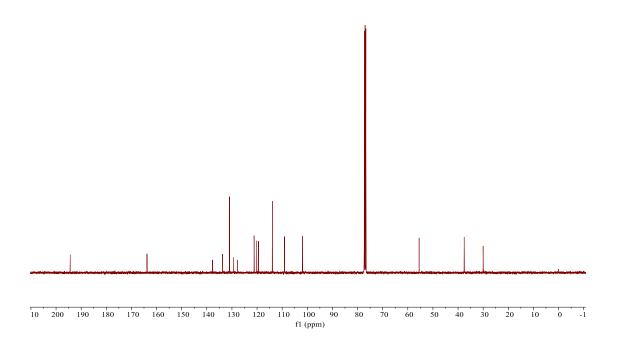
13C NMR (101 MHz, Chloroform-d) δ 159.6, 144.7, 138.1, 138.1, 134.3, 129.1, 127.2, 121.3, 120.5, 119.1, 117.0, 113.9, 113.6, 108.9, 55.3, 29.9.

HRMS (ESI-TOF, m/z): Mass calcd. for $C_{36}H_{30}N_2O_2Na^+[M+Na]^+$, 545.2199; found: 545.2194.

2,2,6,6-tetramethylpiperidin-1-yl 4-methoxybenzoate(14)

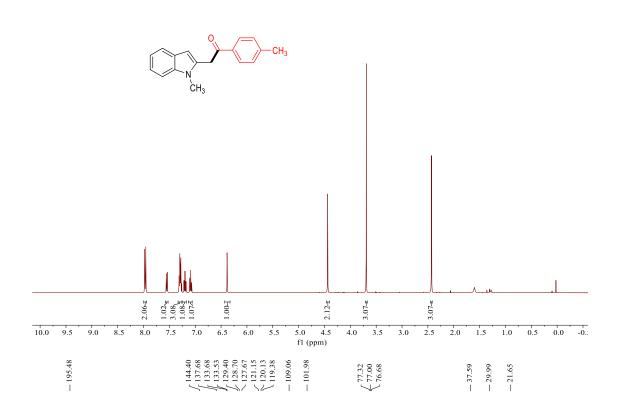

Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1 to 20/1). Colourless oil, 5.6 mg, 19% yield.

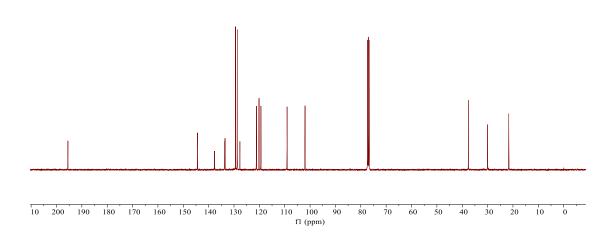

1H NMR (400 MHz, Chloroform-d) δ 8.05 – 8.01 (m, 2H), 6.96 – 6.93 (m, 2H), 3.87 (s, 3H), 1.82 – 1.63 (m, 3H), 1.60 – 1.56 (m, 2H), 1.48 – 1.42 (m, 1H), 1.26 (s, 6H), 1.11 (s, 6H).

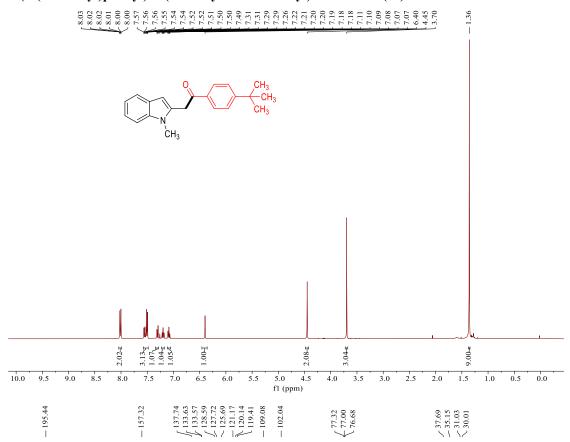

13C NMR (101 MHz, Chloroform-d) δ 166.0, 163.2, 131.4, 121.9, 113.6, 60.2, 55.3, 38.9, 31.8, 20.7, 16.9.

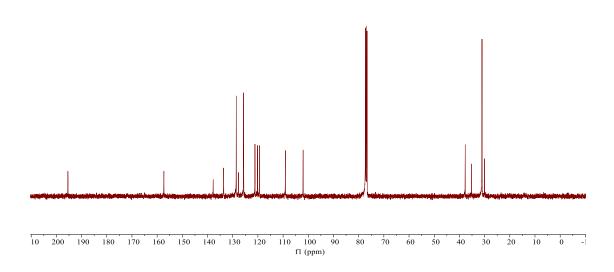
X. NMR spectra

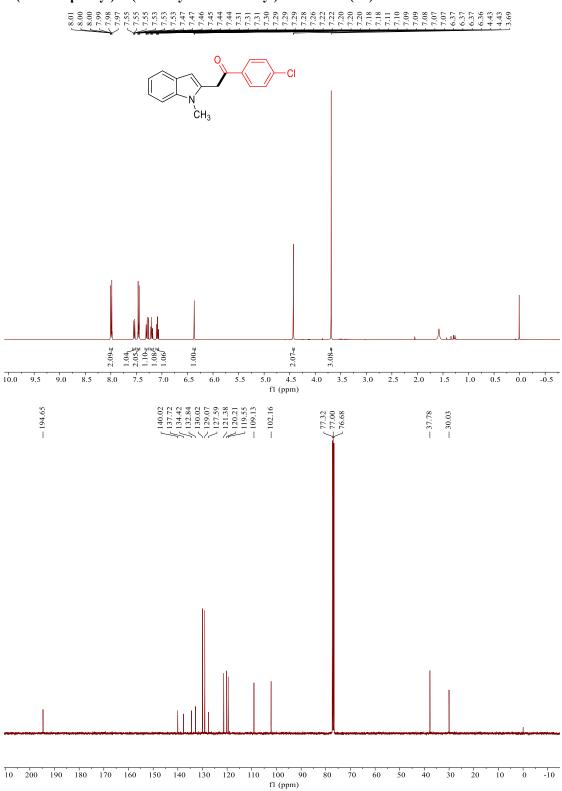
$1\hbox{-}(4\hbox{-methoxyphenyl})\hbox{-}2\hbox{-}(1\hbox{-methyl-}1H\hbox{-indol-}2\hbox{-yl})\hbox{ethan-}1\hbox{-one}(4a)$



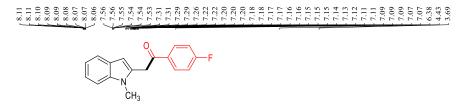


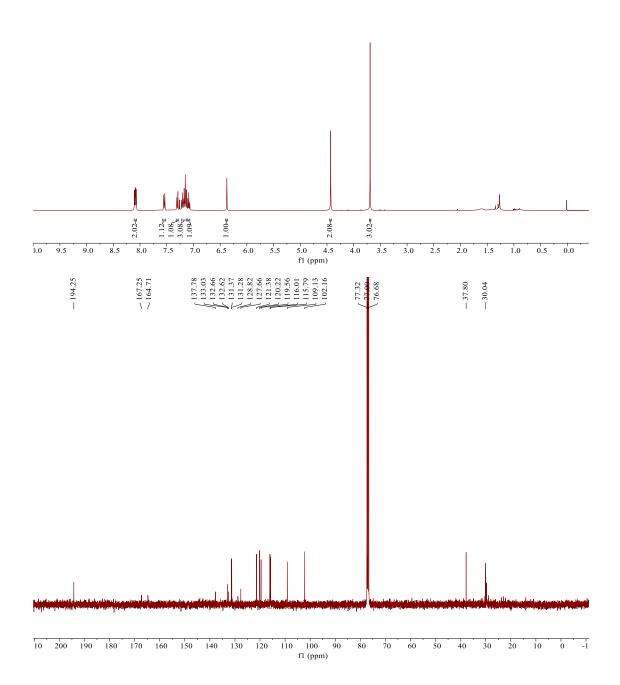

$\hbox{2-}(1-methyl-1 H-indol-2-yl)-1-(p-tolyl) ethan-1-one (4b)$



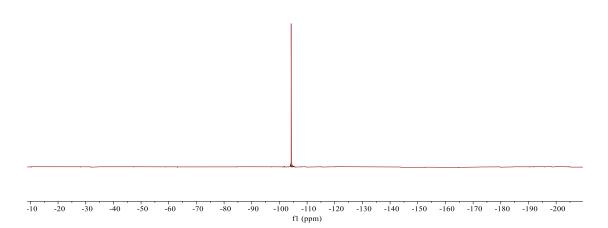


$1-(4-(tert-butyl)phenyl)-2-(1-methyl-1 \\ H-indol-2-yl)ethan-1-one(4c)$

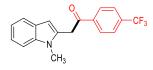


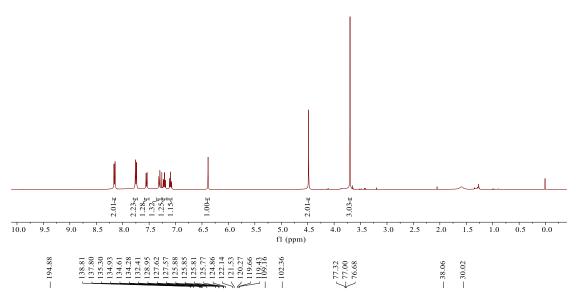


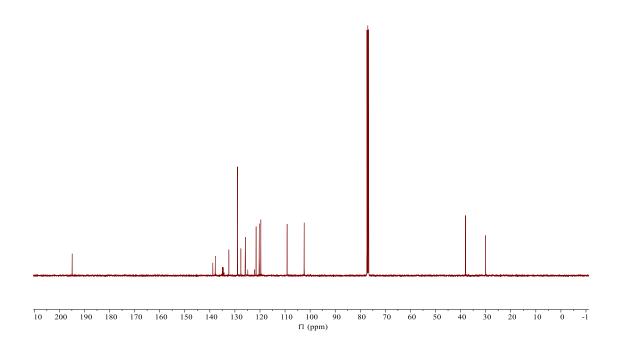
$1\hbox{-}(4\hbox{-}chlorophenyl)\hbox{-}2\hbox{-}(1\hbox{-}methyl\hbox{-}1H\hbox{-}indol\hbox{-}2\hbox{-}yl)ethan\hbox{-}1\hbox{-}one(4d)$

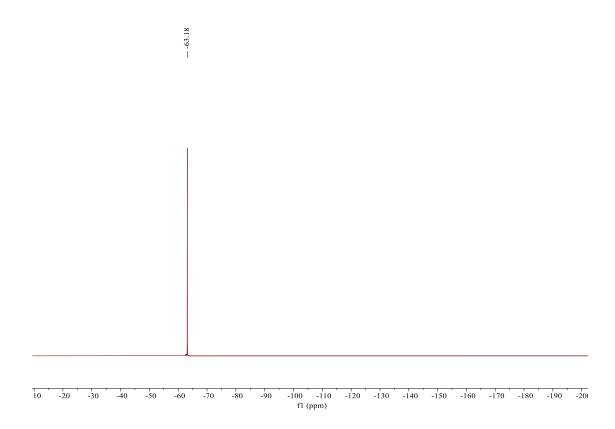


$1\hbox{-}(4\hbox{-fluorophenyl})\hbox{-}2\hbox{-}(1\hbox{-methyl}\hbox{-}1H\hbox{-indol-}2\hbox{-yl})\hbox{ethan-}1\hbox{-one}(4\hbox{e})$

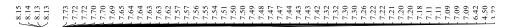


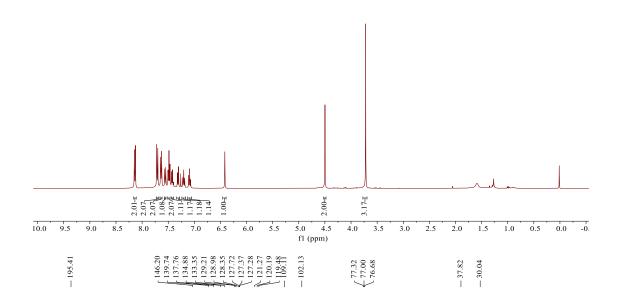


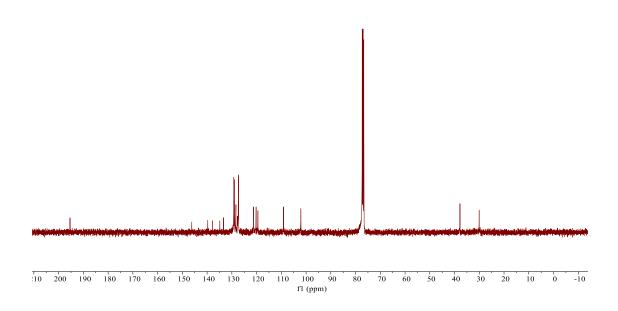


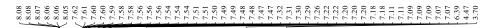

$\hbox{2-}(1-methyl-1 H-indol-2-yl)-1-(4-(trifluoromethyl)phenyl) ethan-1-one (4f)$

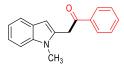
8.16

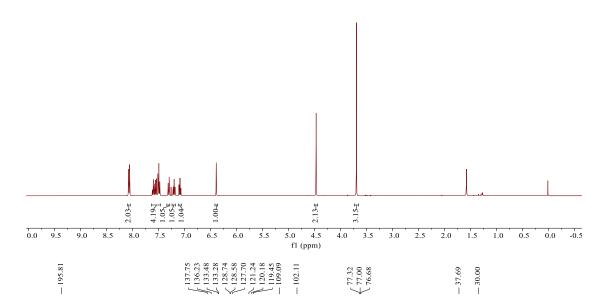


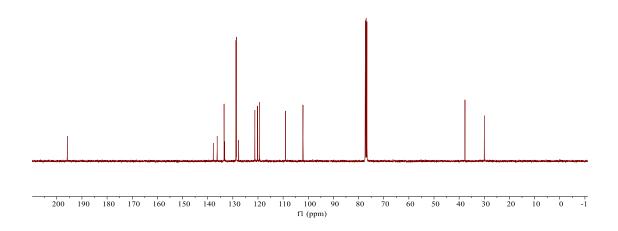




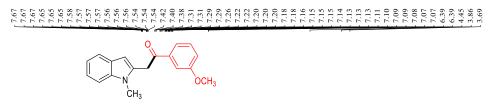

$1\hbox{-}([1,1'\hbox{-biphenyl}]\hbox{-}4\hbox{-}yl)\hbox{-}2\hbox{-}(1\hbox{-methyl}\hbox{-}1H\hbox{-indol-}2\hbox{-}yl)\hbox{ethan-}1\hbox{-one}(4g)$

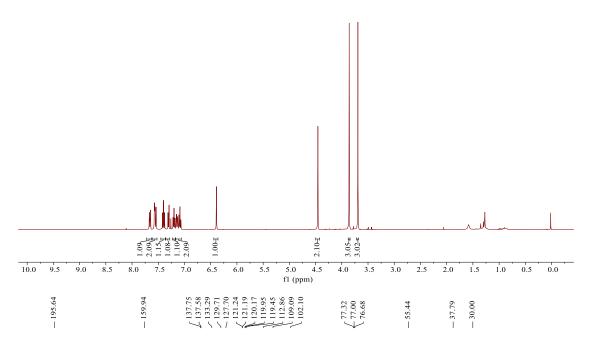


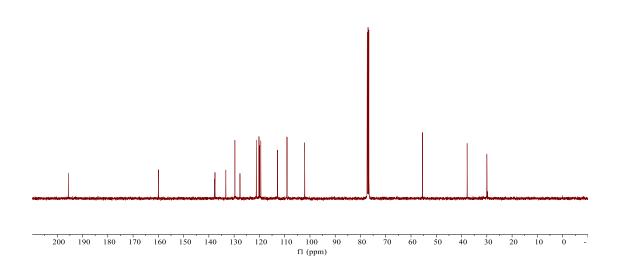


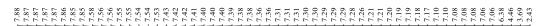


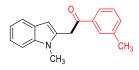
2-(1-methyl-1*H*-indol-2-yl)-1-phenylethan-1-one(4h)

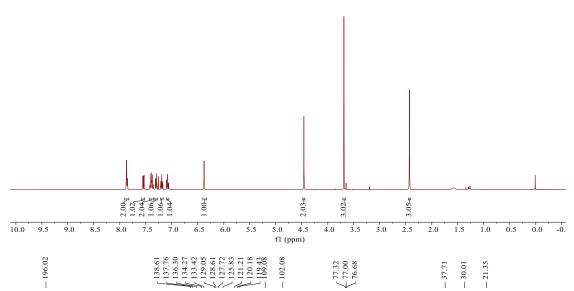


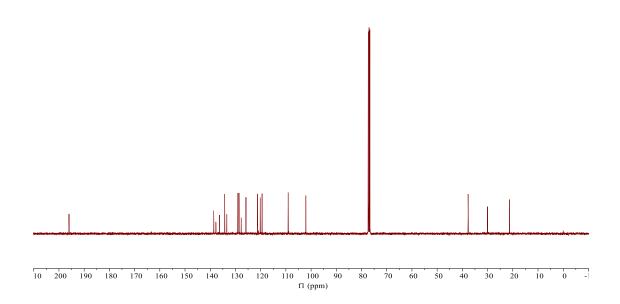




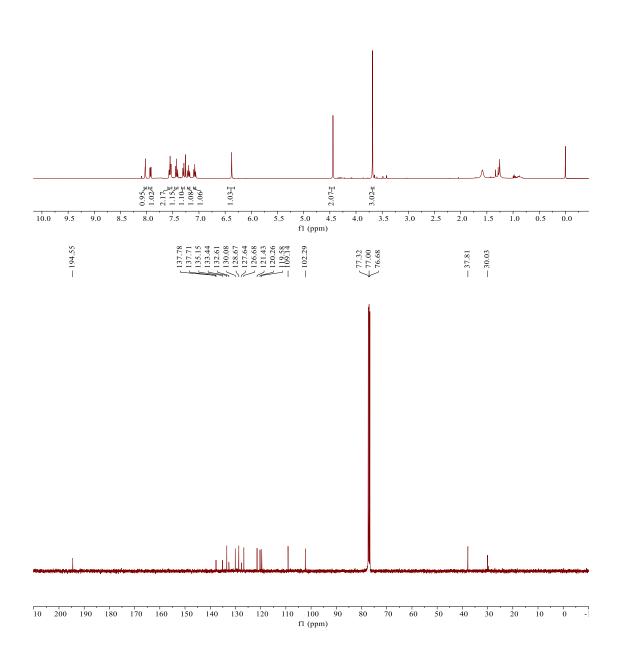

1-(3-methoxyphenyl)-2-(1-methyl-1*H*-indol-2-yl)ethan-1-one(4i)

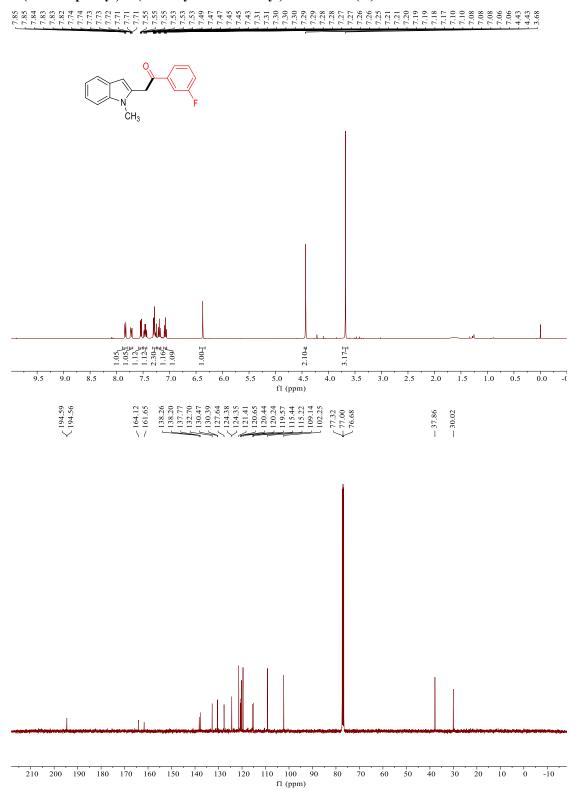




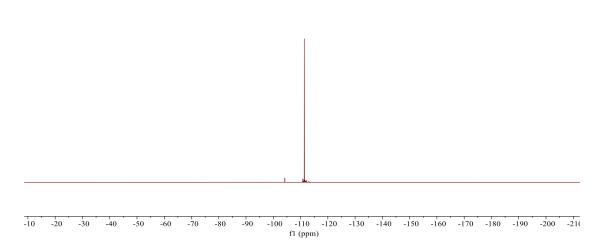


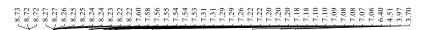
$\hbox{2-}(1-methyl-1 H-indol-2-yl)-1-(m-tolyl) ethan-1-one (4j)$

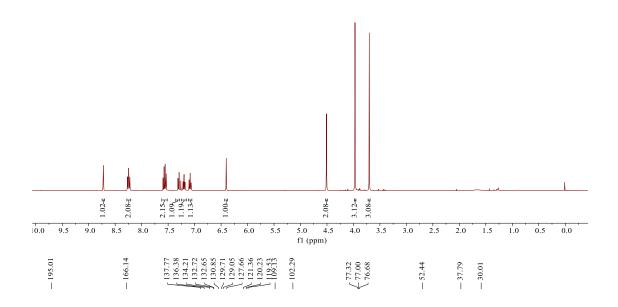


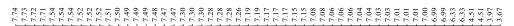


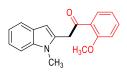
$1-(3-chlorophenyl)-2-(1-methyl-1 \\ H-indol-2-yl)ethan-1-one(4k)$

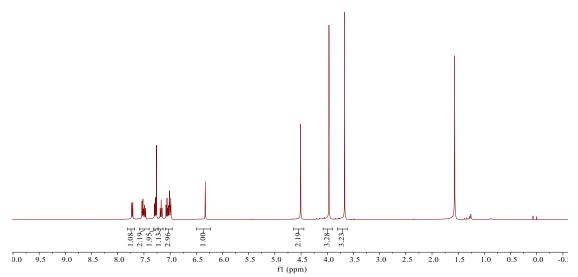


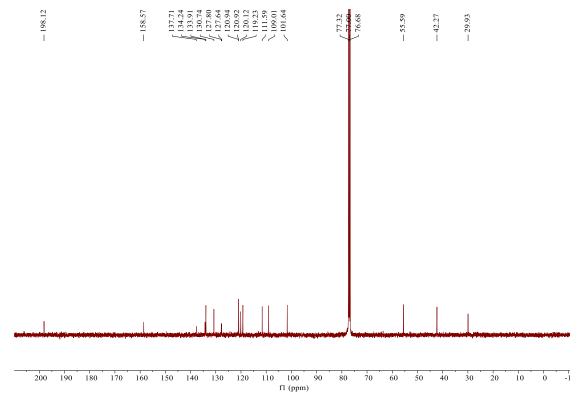

$1\hbox{-}(3\hbox{-fluorophenyl})\hbox{-}2\hbox{-}(1\hbox{-methyl-}1H\hbox{-indol-}2\hbox{-yl})\hbox{ethan-}1\hbox{-one}(4l)$



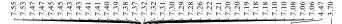

methyl 3-(2-(1-methyl-1*H*-indol-2-yl)acetyl)benzoate(4m)

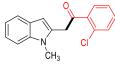


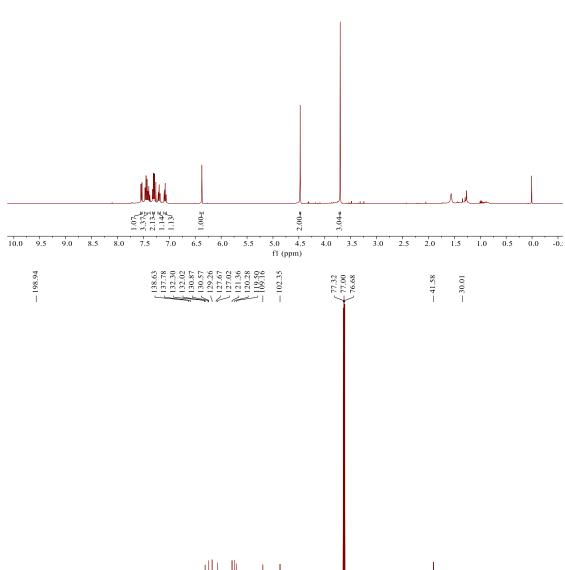




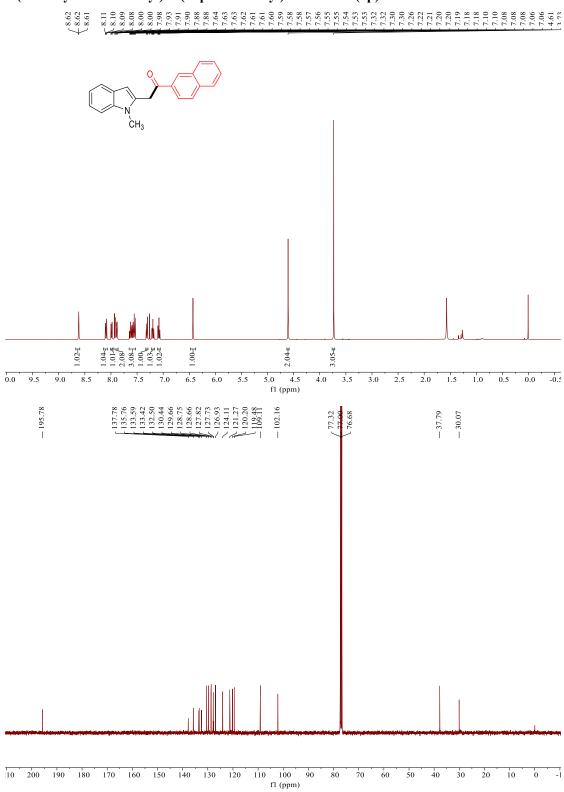
$1\hbox{-}(2\hbox{-methoxyphenyl})\hbox{-}2\hbox{-}(1\hbox{-methyl}\hbox{-}1H\hbox{-indol-}2\hbox{-yl})\hbox{ethan-}1\hbox{-one}(4n)$

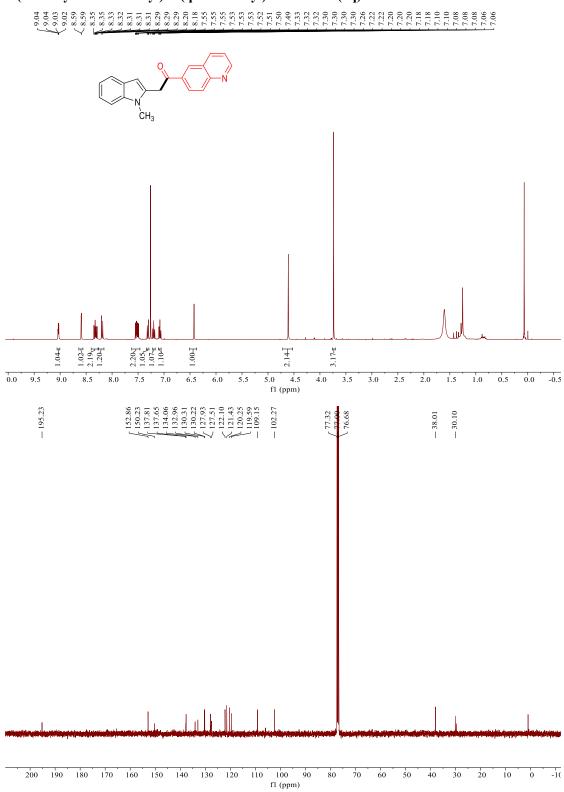




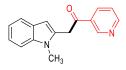


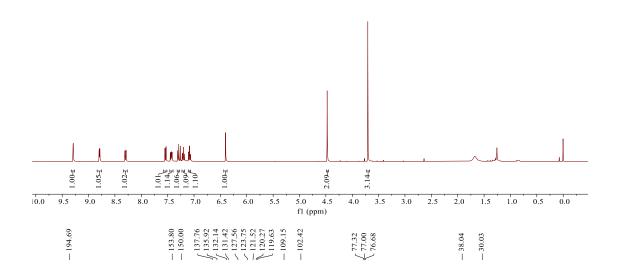
$1-(2-chlorophenyl)-2-(1-methyl-1 \\ H-indol-2-yl)ethan-1-one(4o)$

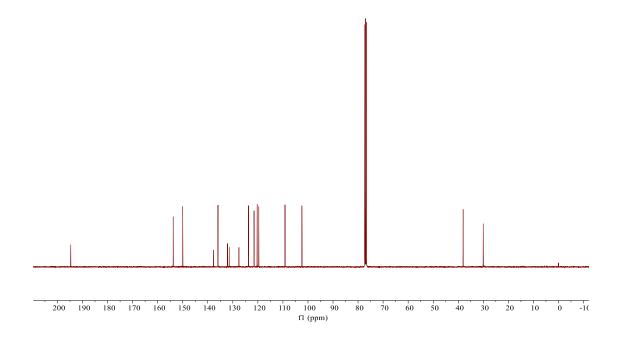



10 200 190 180 170 160 150 140 130 120 110 100 90 f1 (ppm)

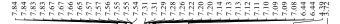

$\hbox{2-}(1-methyl-1 H-indol-2-yl)-1-(naphthalen-2-yl)ethan-1-one(4p)$

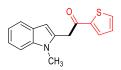


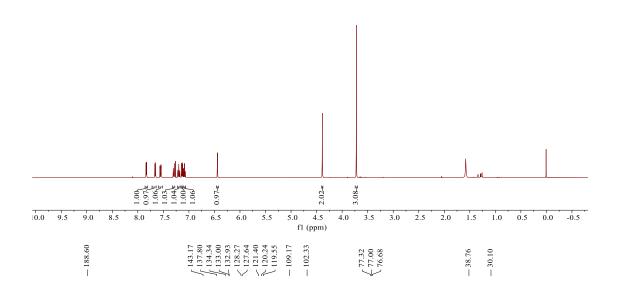

$\hbox{2-}(1-methyl-1 H-indol-2-yl)-1-(quinolin-6-yl)ethan-1-one(4q)$

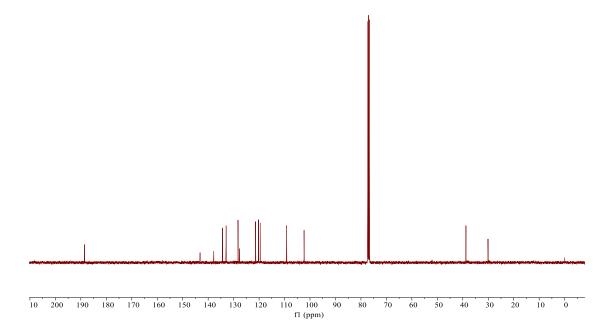


$\hbox{2-}(1-methyl-1 H-indol-2-yl)-1-(pyridin-3-yl)ethan-1-one(4r)$

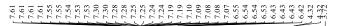


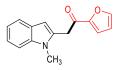


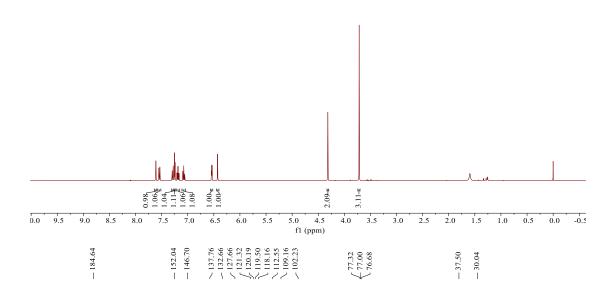


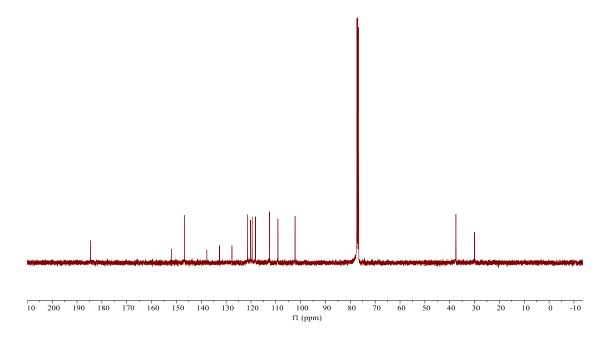


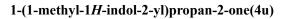
$\hbox{2-}(1-methyl-1 H-indol-2-yl)-1-(thiophen-2-yl)ethan-1-one (4s)$

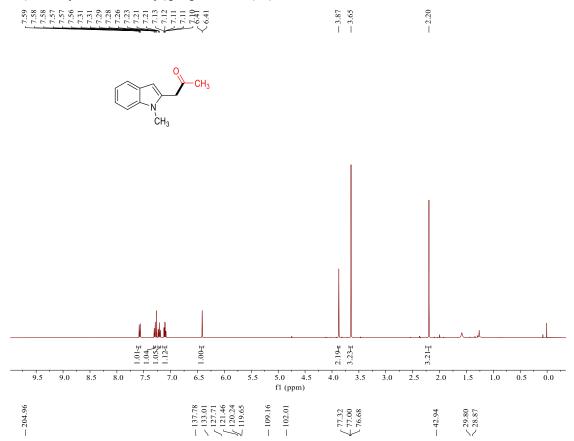


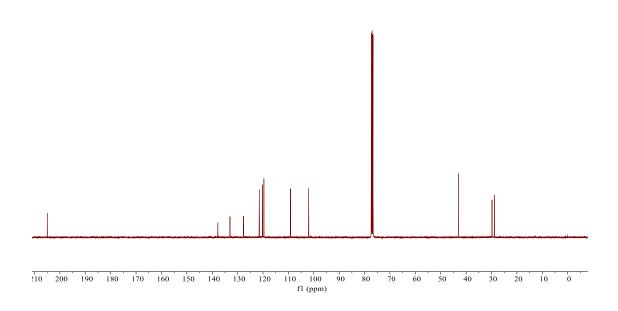


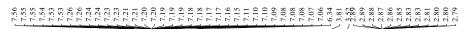


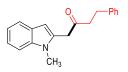


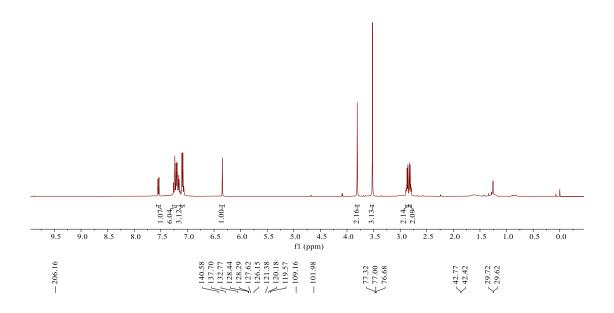

$1\hbox{-}(furan\hbox{-}2\hbox{-}yl)\hbox{-}2\hbox{-}(1\hbox{-}methyl\hbox{-}1H\hbox{-}indol\hbox{-}2\hbox{-}yl)ethan\hbox{-}1\hbox{-}one(3t)$

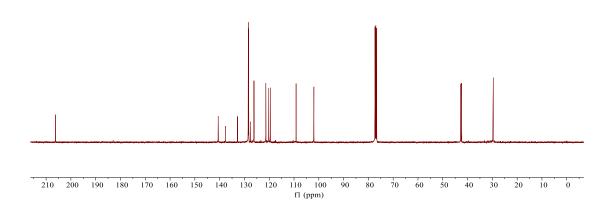




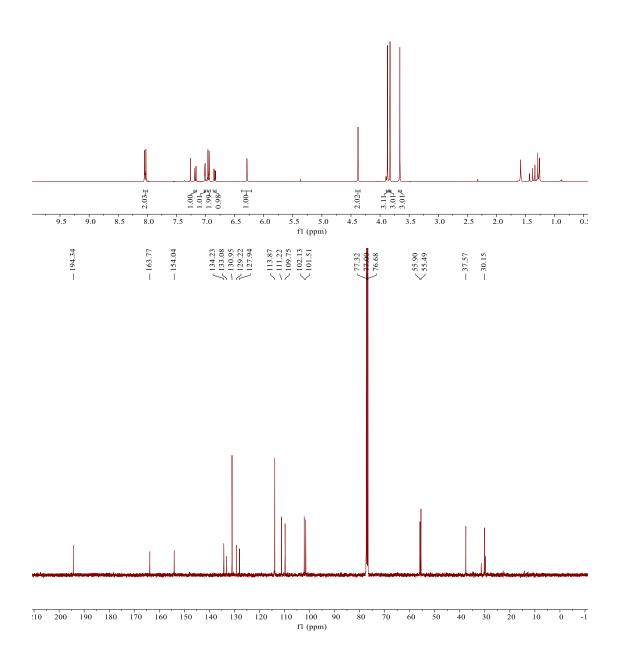


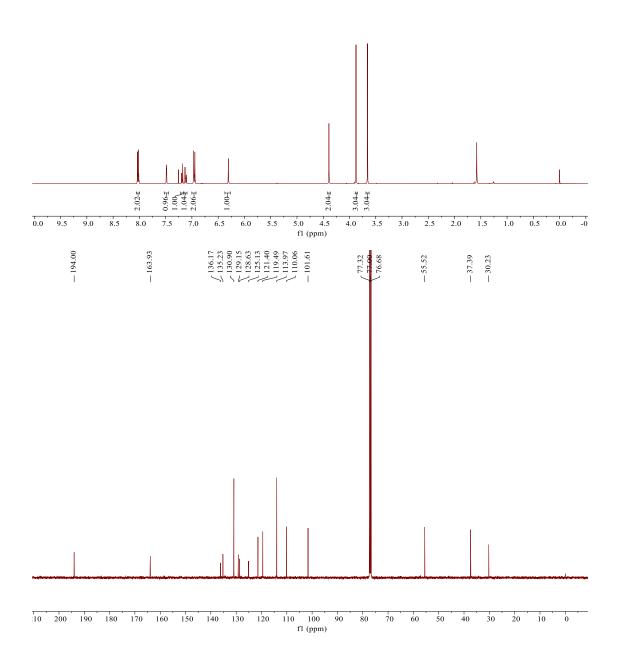






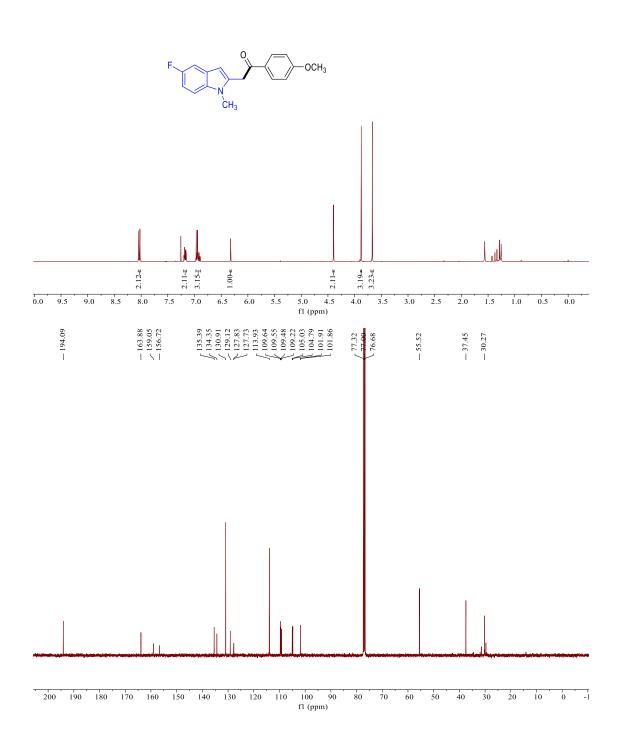
1-(1-methyl-1H-indol-2-yl)-4-phenylbutan-2-one(4v)

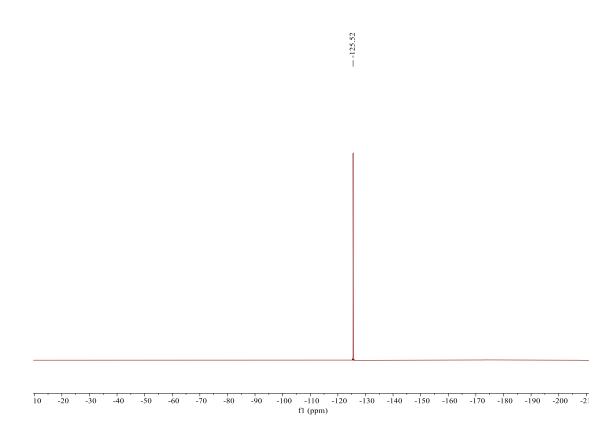


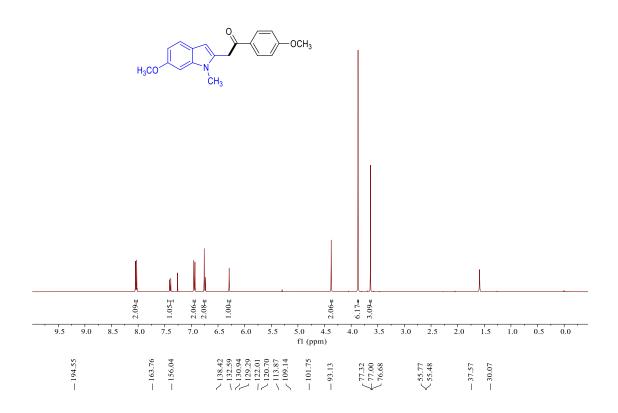


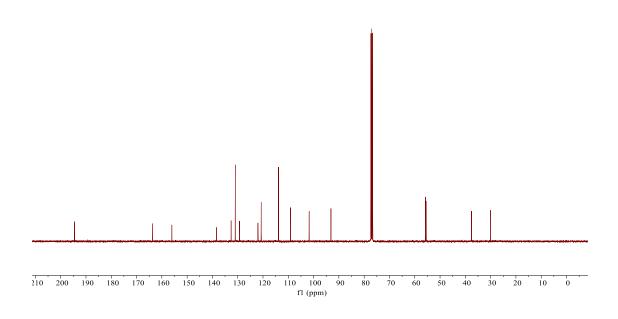
$\hbox{2-}(5-methoxy-1-methyl-1 \textit{H-}indol-2-yl)-1-(4-methoxyphenyl) ethan-1-one (4aa)$

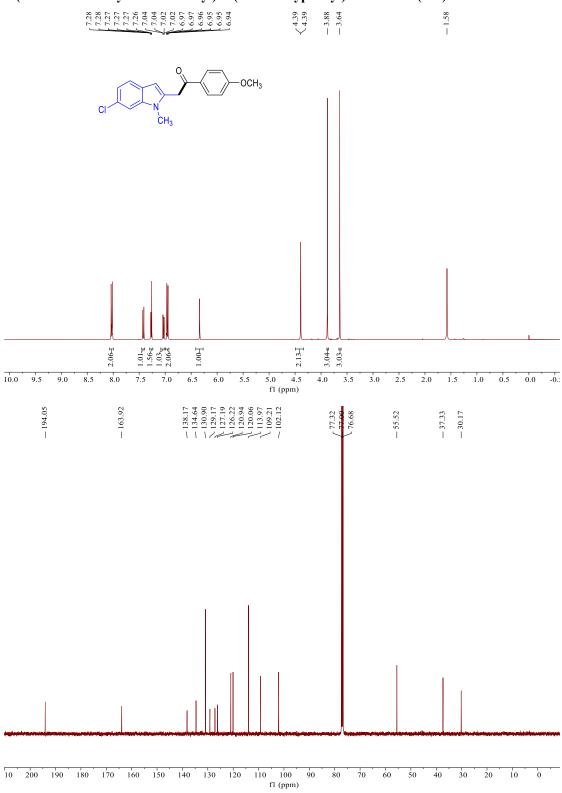
$$H_3CO$$
 CH_3
 CH_3




$\hbox{2-(5-chloro-1-methyl-1H-indol-2-yl)-1-(4-methoxyphenyl)ethan-1-one(4ab)}$

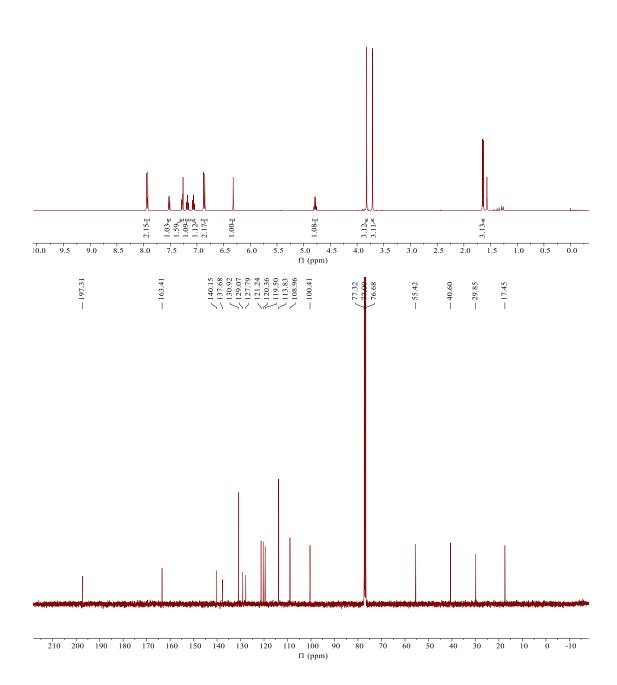

$\hbox{2-(5-fluoro-1-methyl-1H-indol-2-yl)-1-(4-methoxyphenyl)ethan-1-one(4ac)}$


8.03 8.04 8.04 8.05

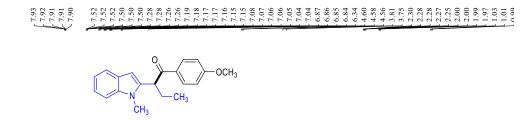


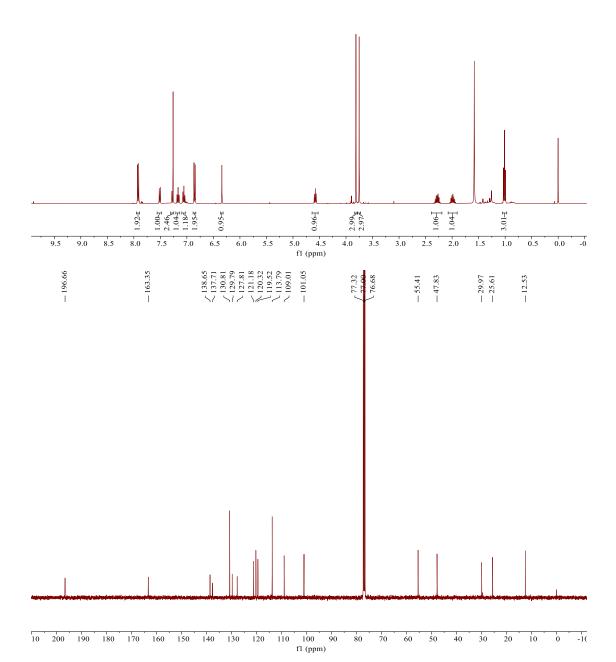
$\hbox{2-(6-methoxy-1-methyl-1H-indol-2-yl)-1-(4-methoxyphenyl)ethan-1-one (4ad)}$

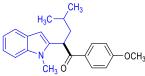


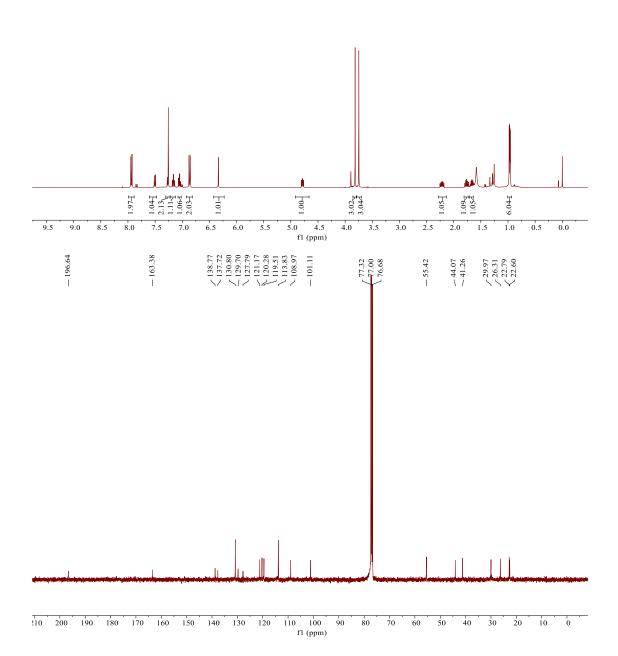


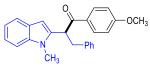
$\hbox{2-(6-chloro-1-methyl-1H-indol-2-yl)-1-(4-methoxyphenyl)ethan-1-one(4ae)}$

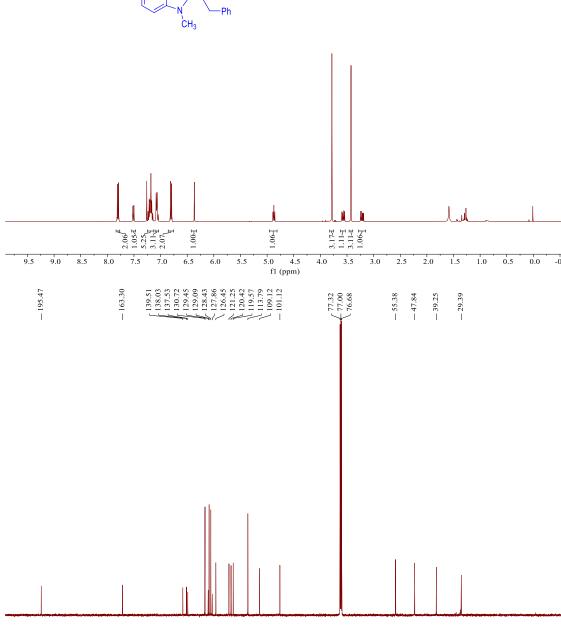


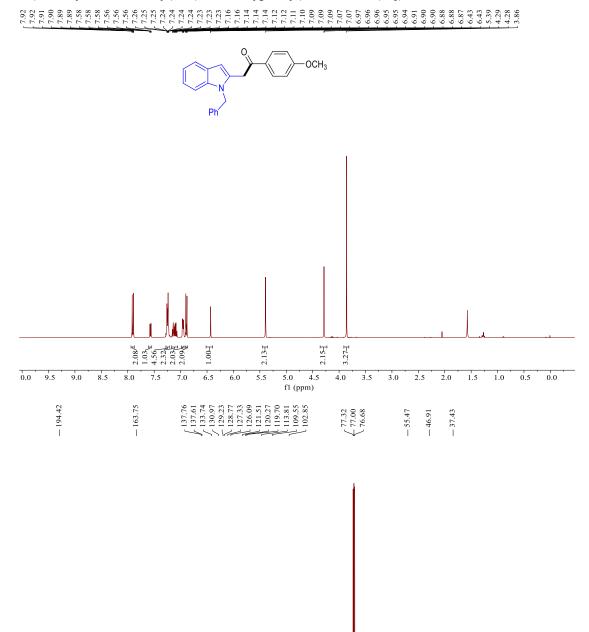

$1\hbox{-}(4\hbox{-methoxyphenyl})\hbox{-}2\hbox{-}(1\hbox{-methyl-}1H\hbox{-indol-}2\hbox{-yl}) propan-1\hbox{-one}(4af)$


$1\hbox{-}(4\hbox{-}methoxyphenyl)\hbox{-}2\hbox{-}(1\hbox{-}methyl\hbox{-}1H\hbox{-}indol\hbox{-}2\hbox{-}yl)butan\hbox{-}1\hbox{-}one(4ag)$



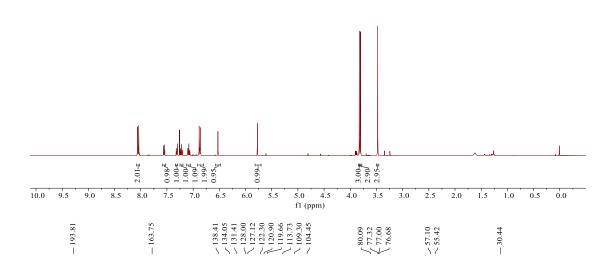

$1-(4-methoxyphenyl)-4-methyl-2-(1-methyl-1 \\ H-indol-2-yl)pentan-1-one(4ah)$

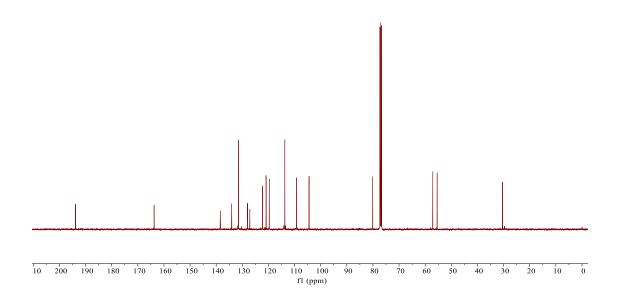



$1\hbox{-}(4\hbox{-}methoxyphenyl)\hbox{-}2\hbox{-}(1\hbox{-}methyl\hbox{-}1H\hbox{-}indol\hbox{-}2\hbox{-}yl)\hbox{-}3\hbox{-}phenylpropan-1\hbox{-}one(4ai)$

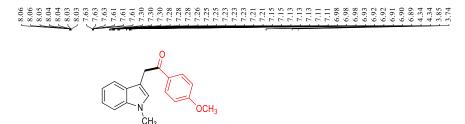
200 190 180 170 160 150 140 130 120 110 100 90 f1 (ppm)

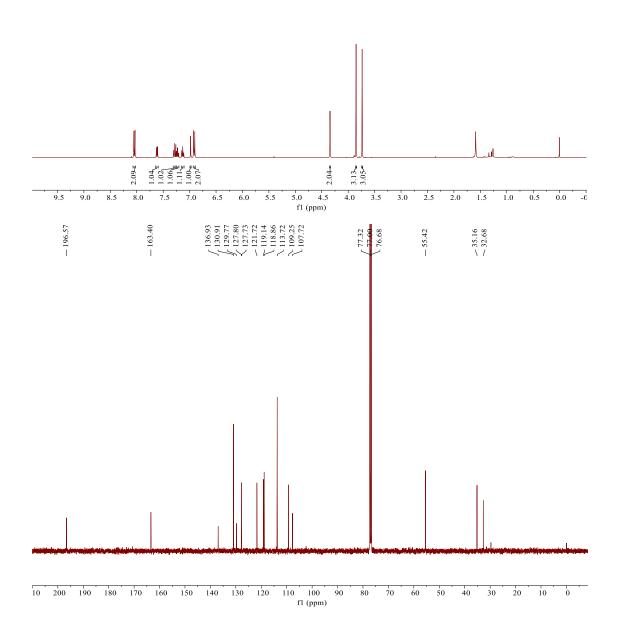
$\hbox{2-}(1-benzyl-1 \\ H-indol-2-yl)-1-(4-methoxyphenyl) ethan-1-one (4aj)$

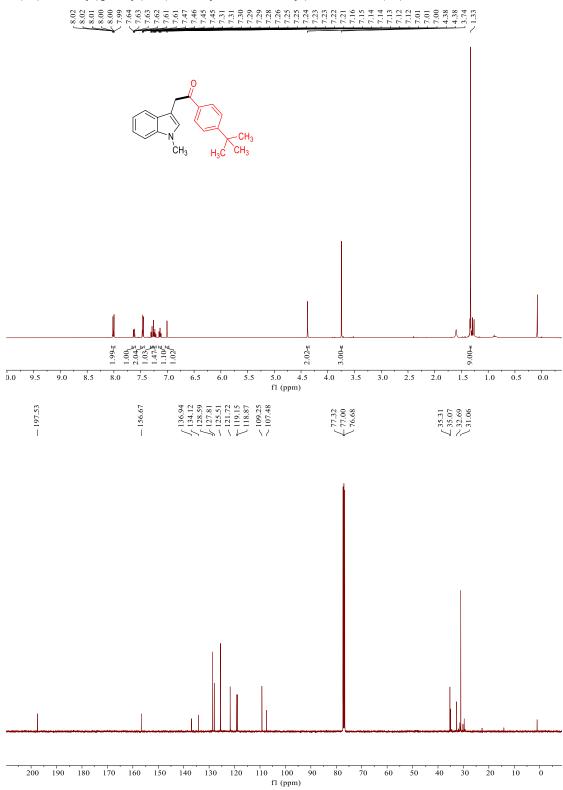



70

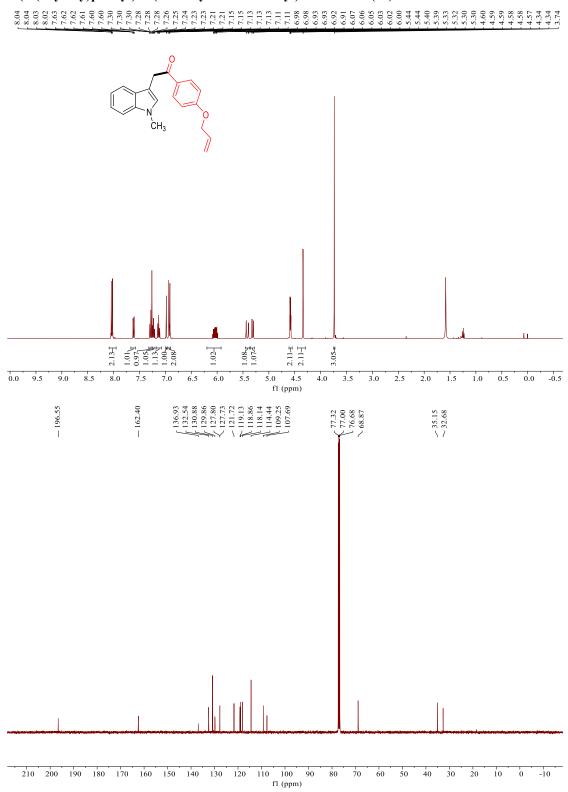
10 200 190 180 170 160 150 140 130 120 110 100 90 f1 (ppm)

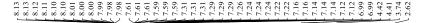

2-methoxy-1-(4-methoxyphenyl)-2-(1-methyl-1H-indol-2-yl)ethan-1-one(4ak)

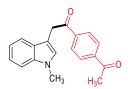


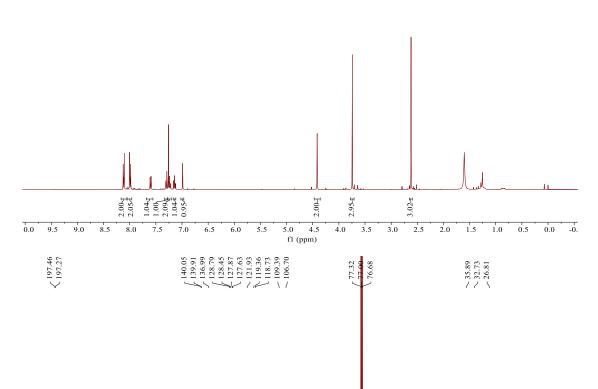


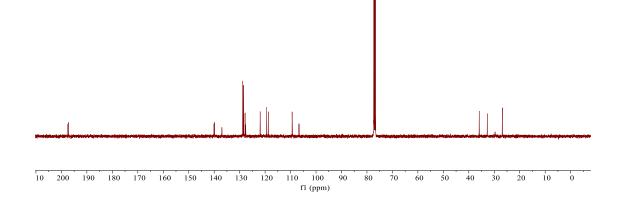
1-(4-methoxyphenyl)-2-(1-methyl-1*H*-indol-3-yl)ethan-1-one(5a)



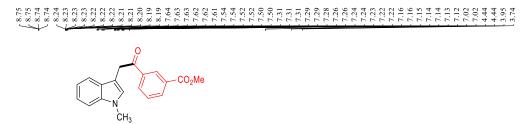

1-(4-(tert-butyl)phenyl)-2-(1-methyl-1 H-indol-3-yl)ethan-1-one (5b)

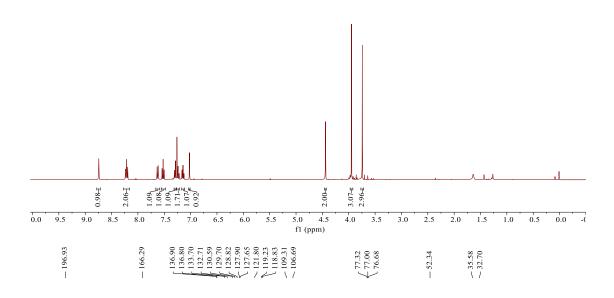


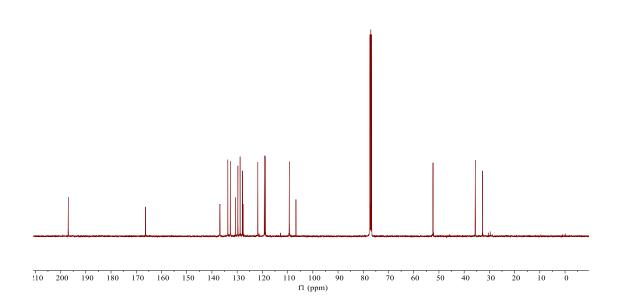

1-(4-(allyloxy)phenyl)-2-(1-methyl-1*H*-indol-3-yl)ethan-1-one(5c)

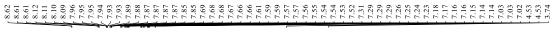


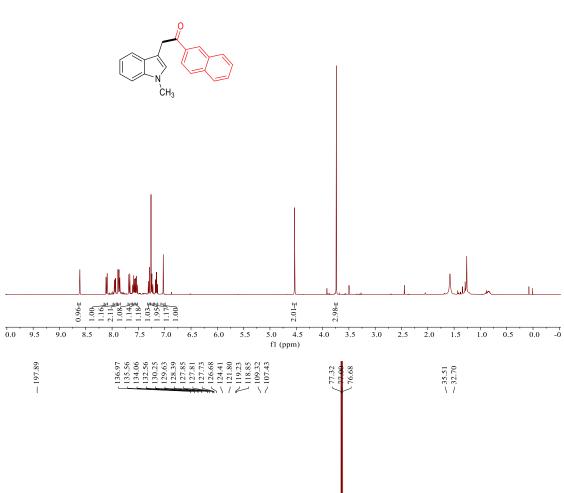
1-(4-acetylphenyl)-2-(1-methyl-1*H*-indol-3-yl)ethan-1-one(5d)



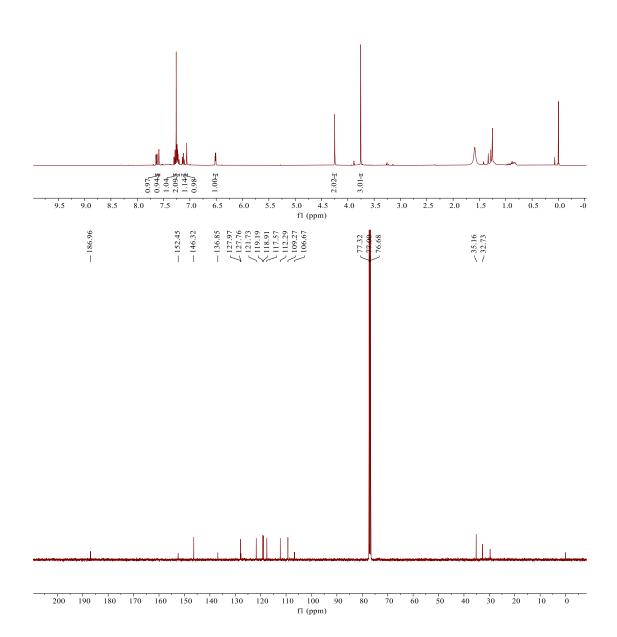


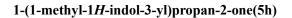


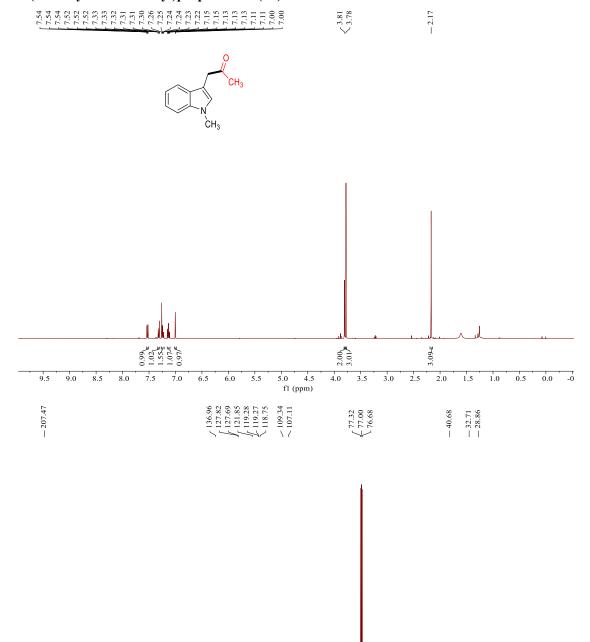

methyl 3-(2-(1-methyl-1*H*-indol-3-yl)acetyl)benzoate(5e)

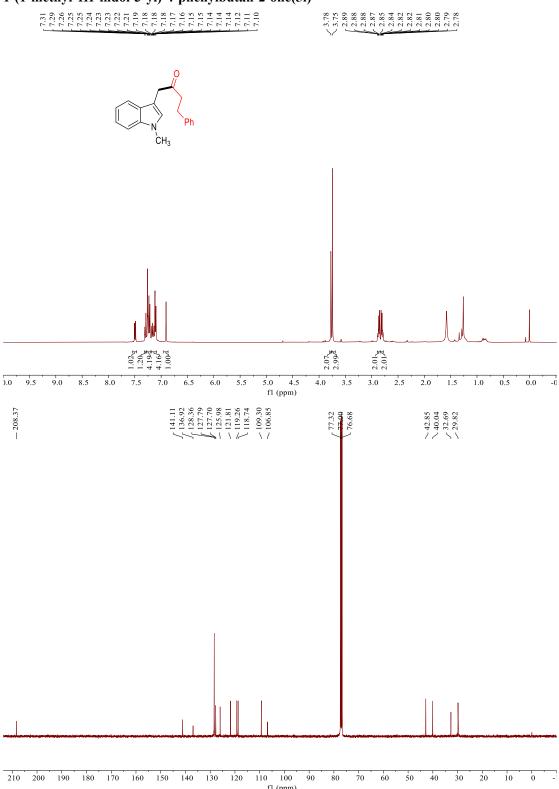


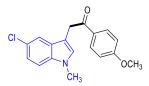
$\hbox{2-}(1-methyl-1 H-indol-3-yl)-1-(naphthalen-2-yl)ethan-1-one (5f)$

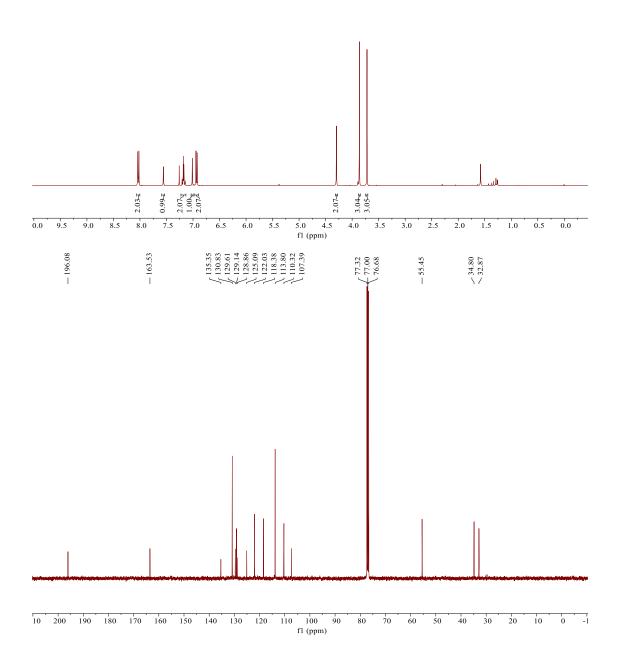




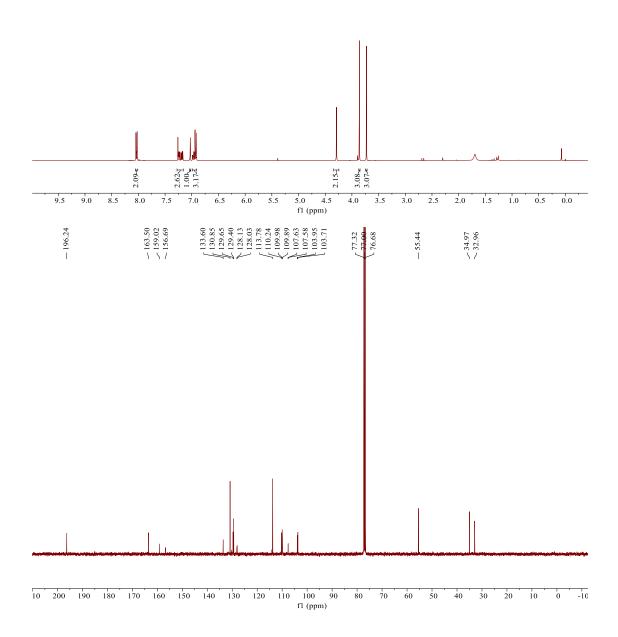

$1\hbox{-}(furan\hbox{-} 2\hbox{-} yl)\hbox{-} 2\hbox{-}(1\hbox{-}methyl\hbox{-} 1H\hbox{-}indol\hbox{-} 3\hbox{-} yl)ethan\hbox{-} 1\hbox{-}one(5g)$

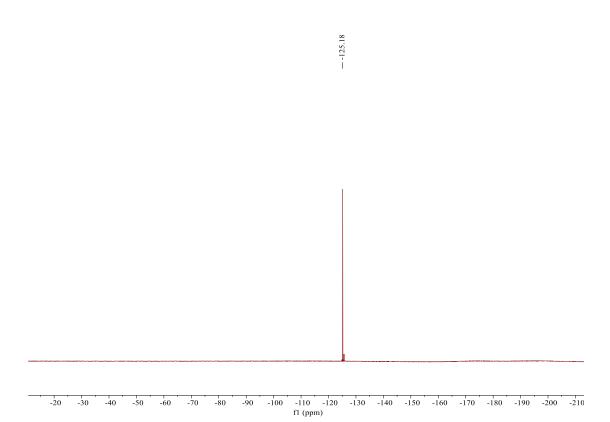


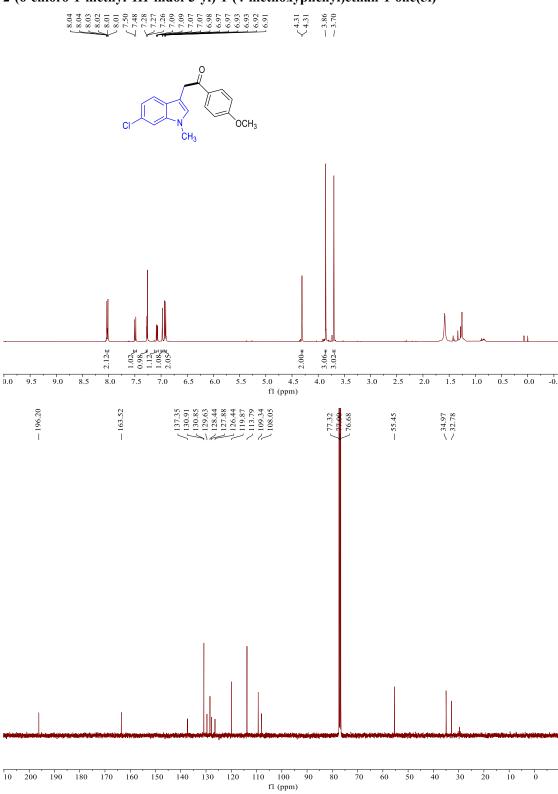



210 200 190 180 170 160 150 140 130 120 110 100 f1 (ppm)

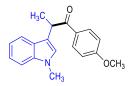
1-(1-methyl-1*H*-indol-3-yl)-4-phenylbutan-2-one(5i)

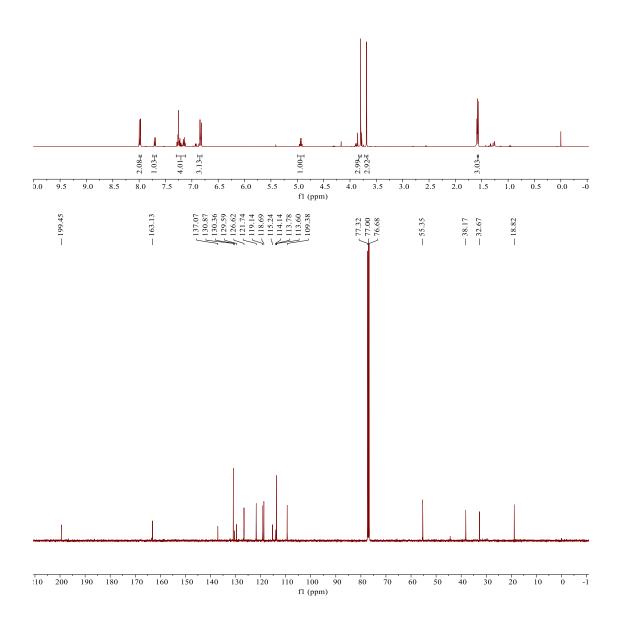



$\hbox{2-}(5-chloro-1-methyl-1 \\ H-indol-3-yl)-1-(4-methoxyphenyl) ethan-1-one (5j)$

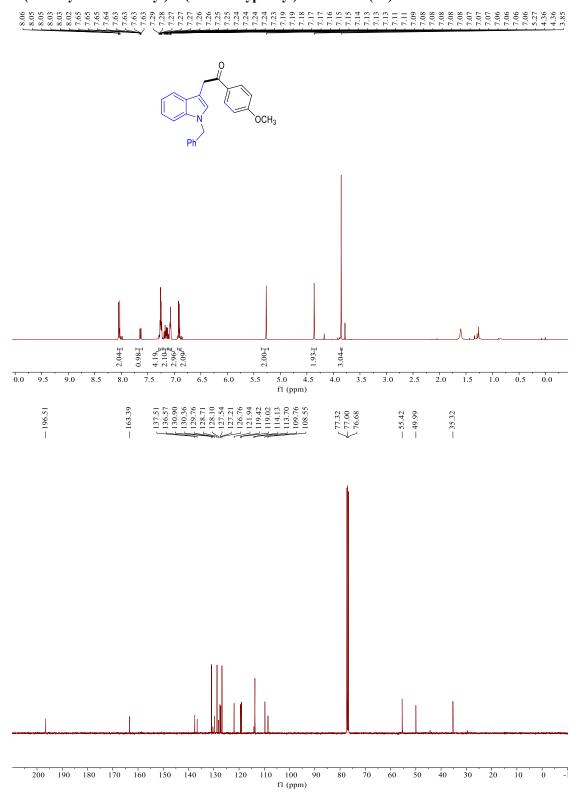


$\hbox{2-(5-fluoro-1-methyl-1H-indol-3-yl)-1-(4-methoxyphenyl)ethan-1-one(5k)}$

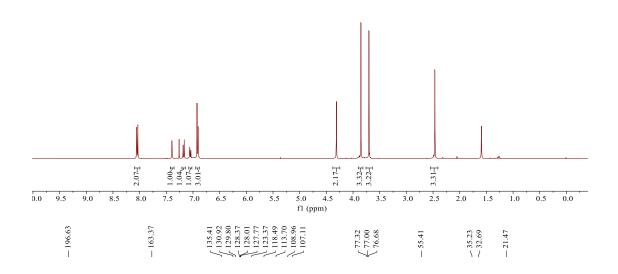


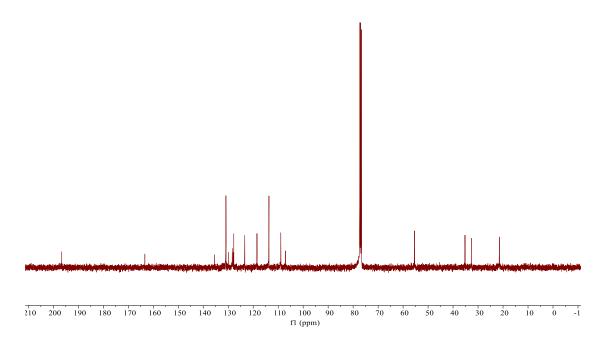


$\hbox{2-}(6-chloro-1-methyl-1 \\ H-indol-3-yl)-1-(4-methoxyphenyl) ethan-1-one (5l)$

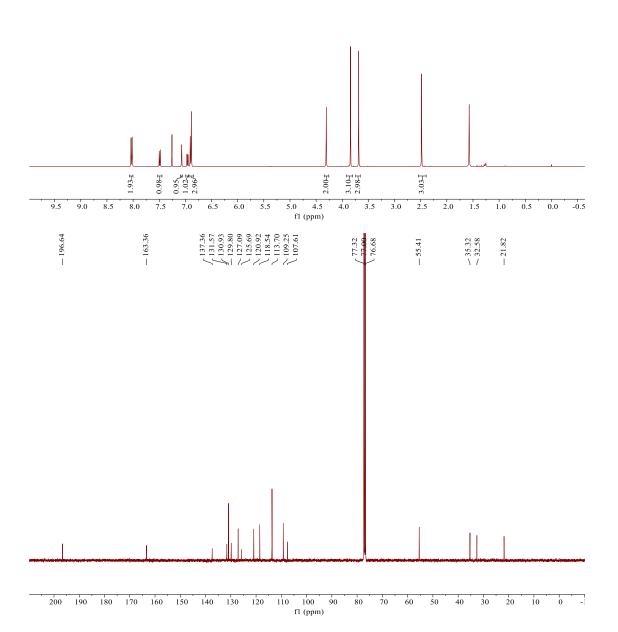


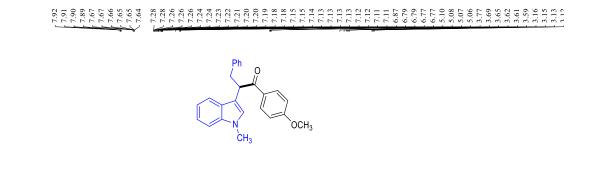
$1\hbox{-}(4\hbox{-}methoxyphenyl)\hbox{-}2\hbox{-}(1\hbox{-}methyl\hbox{-}1H\hbox{-}indol\hbox{-}3\hbox{-}yl)propan\hbox{-}1\hbox{-}one(5m)$

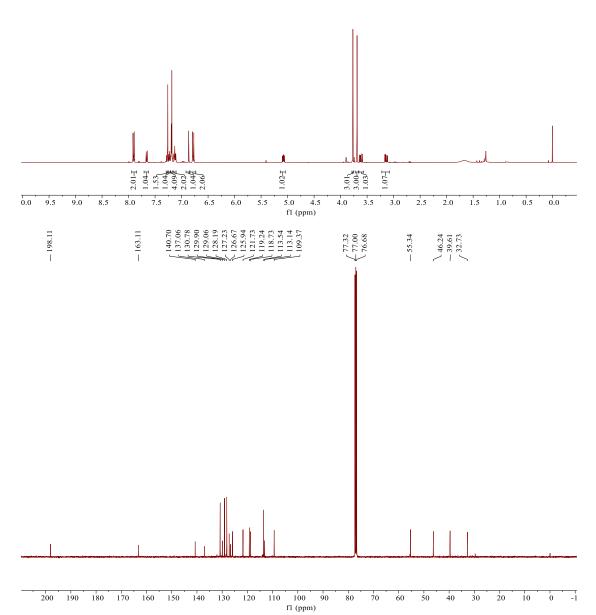


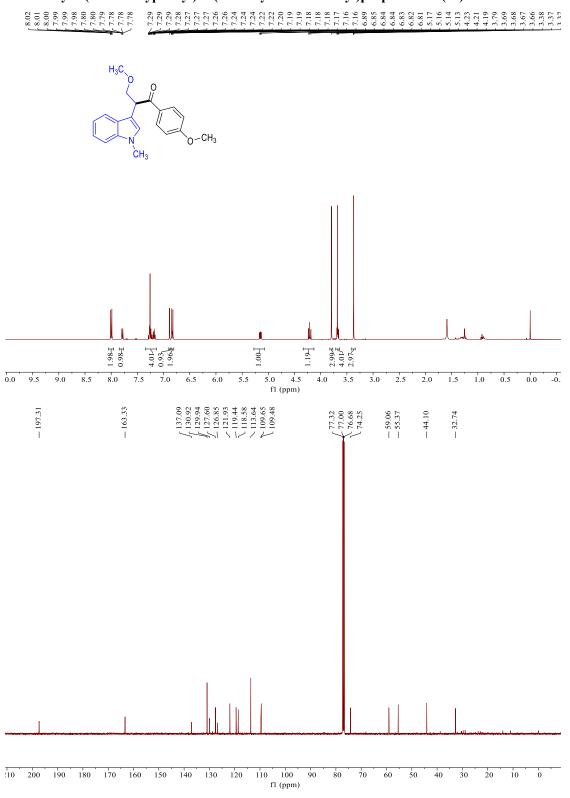

$\hbox{2-}(1-benzyl-1 \\ H-indol-3-yl)-1-(4-methoxyphenyl) ethan-1-one (5n)$

$\hbox{2-(1,5-dimethyl-1$H$-indol-3-yl)-1-(4-methoxyphenyl)ethan-1-one (50)}$

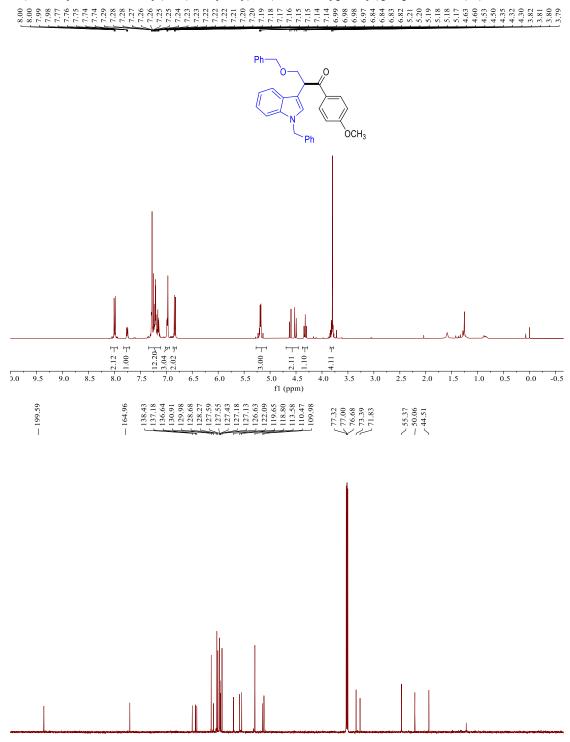

$$H_3C$$
 CH_3
 CH_3




$\hbox{2-(1,6-dimethyl-1$H$-indol-3-yl)-1-(4-methoxyphenyl)ethan-1-one (5p)}$



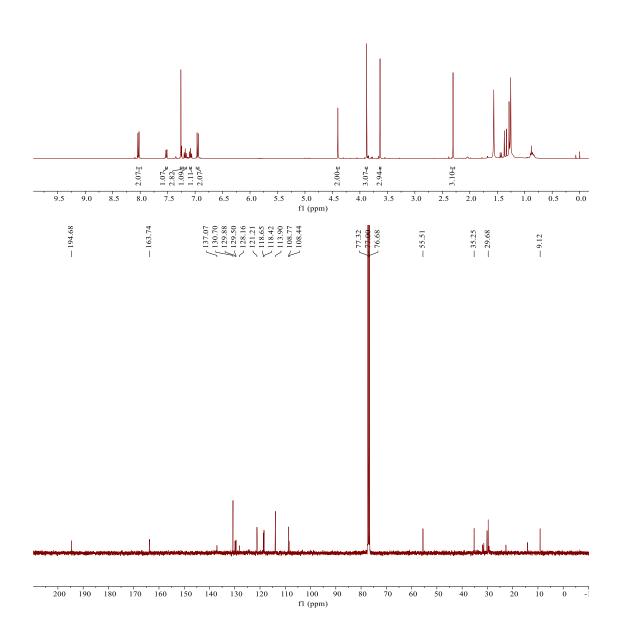
$1-(4-methoxyphenyl)-2-(1-methyl-1 \\ H-indol-3-yl)-3-phenyl propan-1-one (5q)$



$3-methoxy-1-(4-methoxyphenyl)-2-(1-methyl-1 \\ H-indol-3-yl)propan-1-one(5r)$

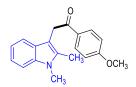
$\hbox{2-(1-benzyl-1$H-indol-3-yl)-3-(benzyloxy)-1-(4-methoxyphenyl)} propan-1-one (5s)$

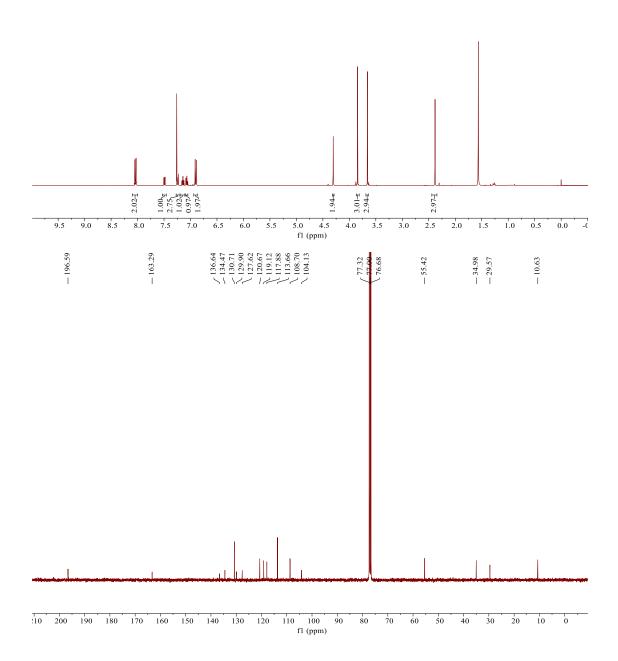
100

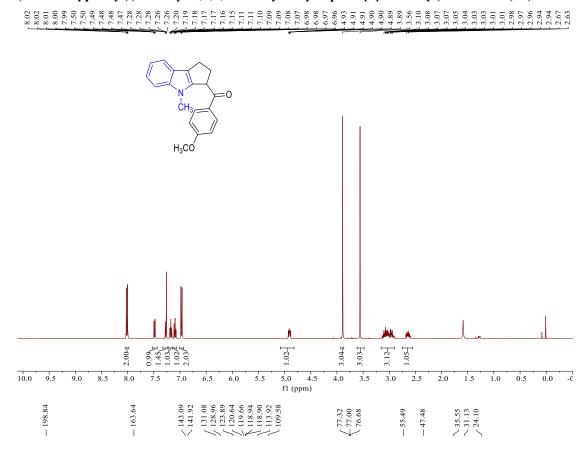

70

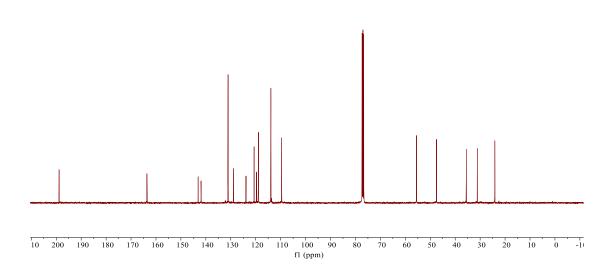
160

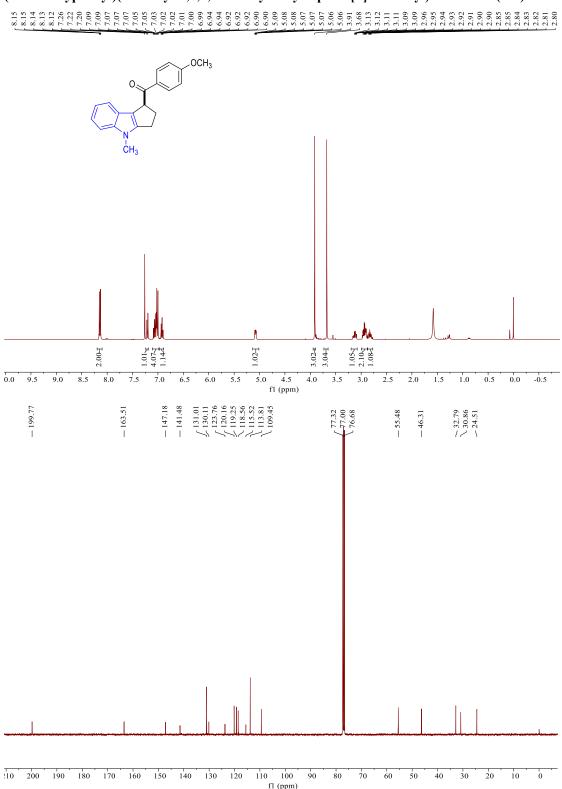
150 140


130 120

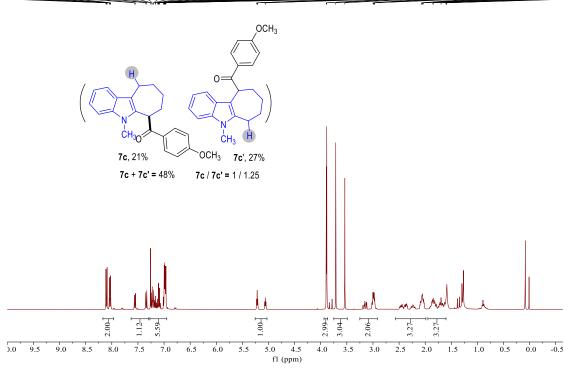

$\hbox{2-(1,3-dimethyl-1$H-indol-2-yl)-1-(4-methoxyphenyl)ethan-1-one (7a)}$


$\hbox{2-(1,2-dimethyl-1$H$-indol-3-yl)-1-(4-methoxyphenyl)ethan-1-one(7a')}$

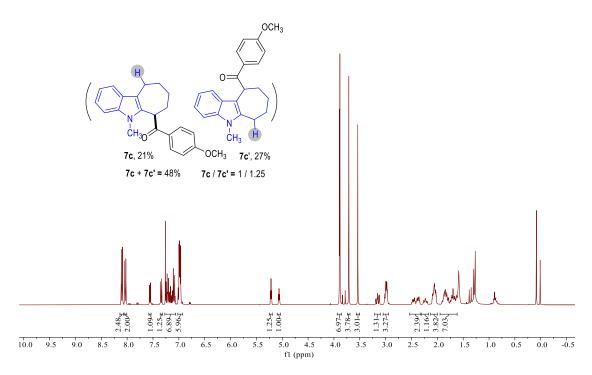


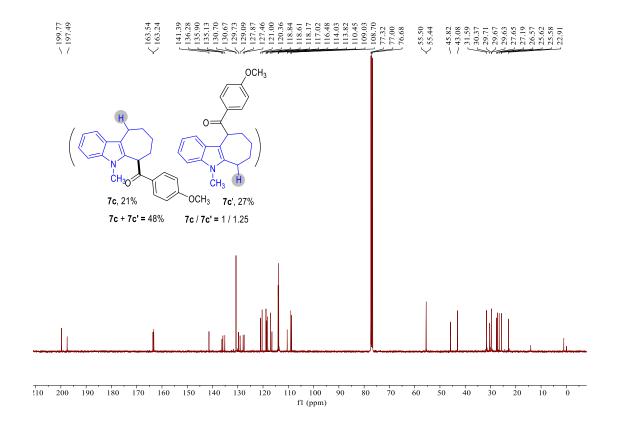


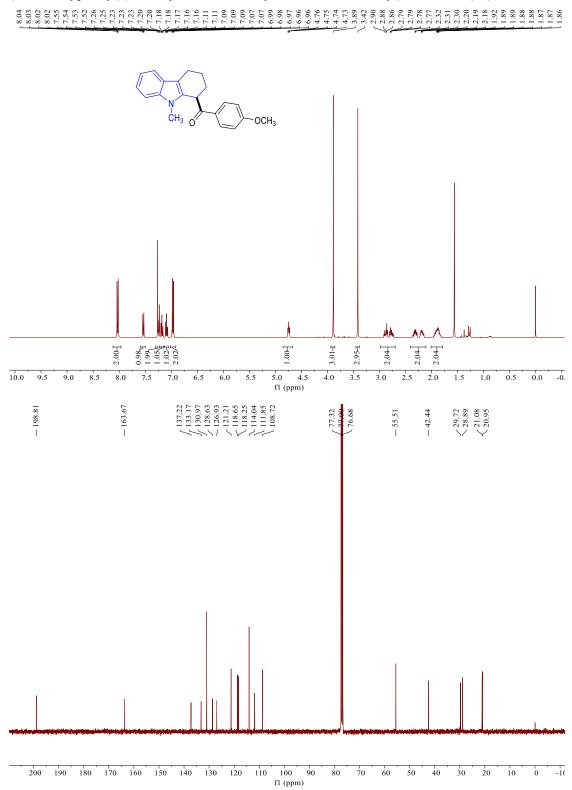
$(4-methoxyphenyl) (4-methyl-1,2,3,4-tetrahydrocyclopenta [\emph{b}] indol-3-yl) methanone (7b)$



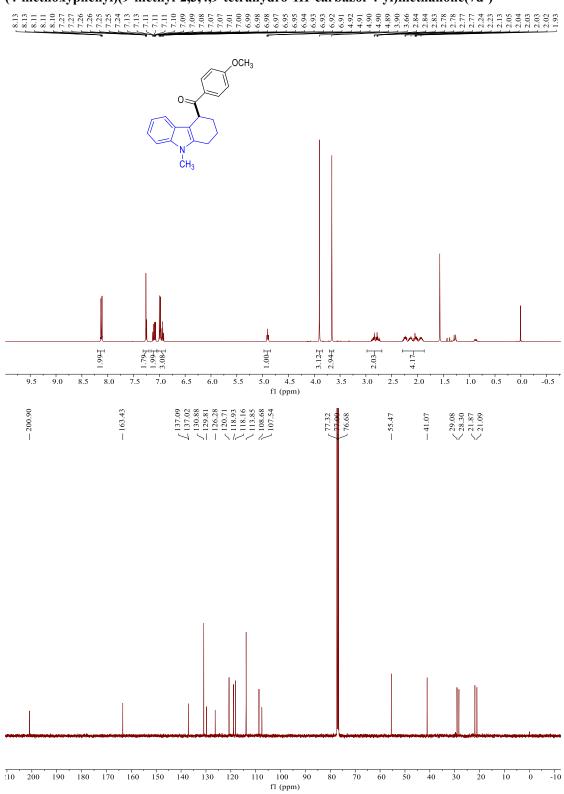
(4-methoxyphenyl) (4-methyl-1,2,3,4-tetrahydrocyclopenta [b] indol-1-yl) methanone (7b')



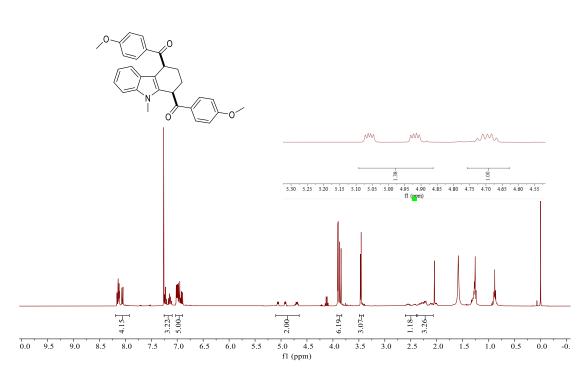

$(4-methoxyphenyl)(5-methyl-5,6,7,8,9,10-hexahydrocyclohepta[b]indol-6-yl)methanone(7c)\\ (4-methoxyphenyl)(5-methyl-5,6,7,8,9,10-hexahydrocyclohepta[b]indol-10-yl)methanone(7c')$



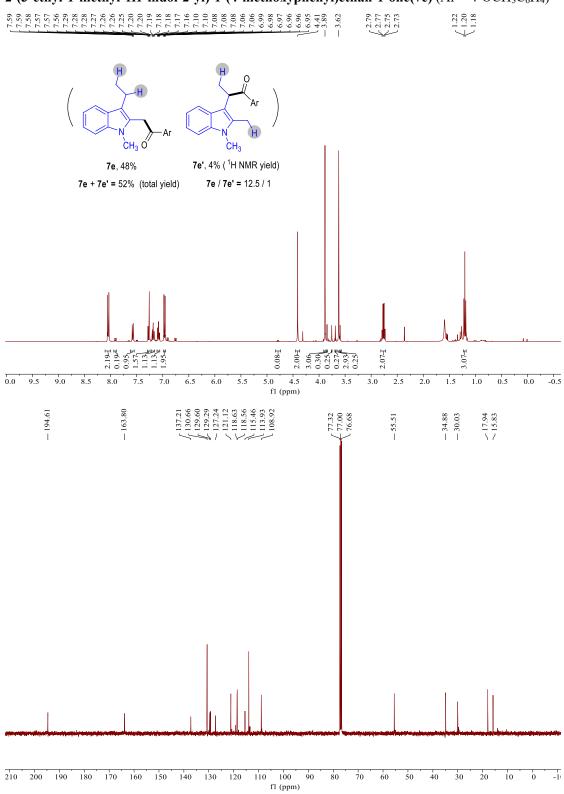
8.11 8.00



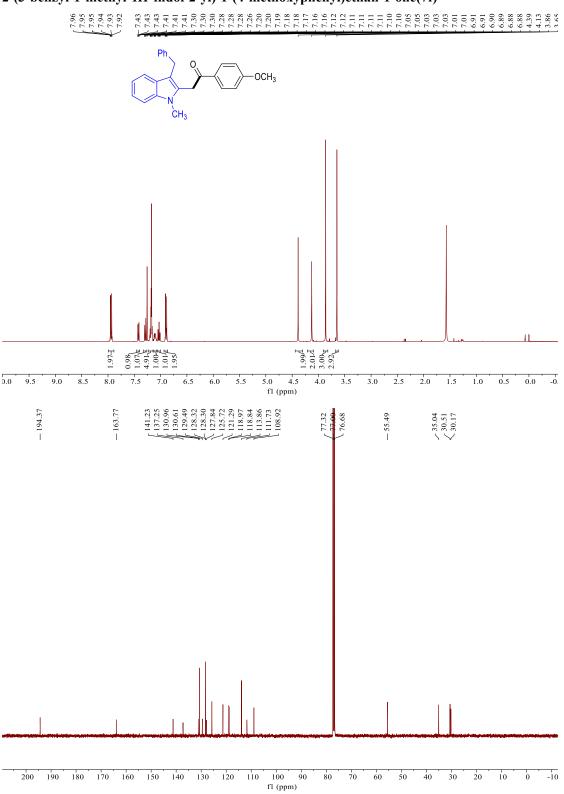
(4-methoxyphenyl) (9-methyl-2, 3, 4, 9-tetrahydro-1 H- carbazol-1-yl) methanone (7d)

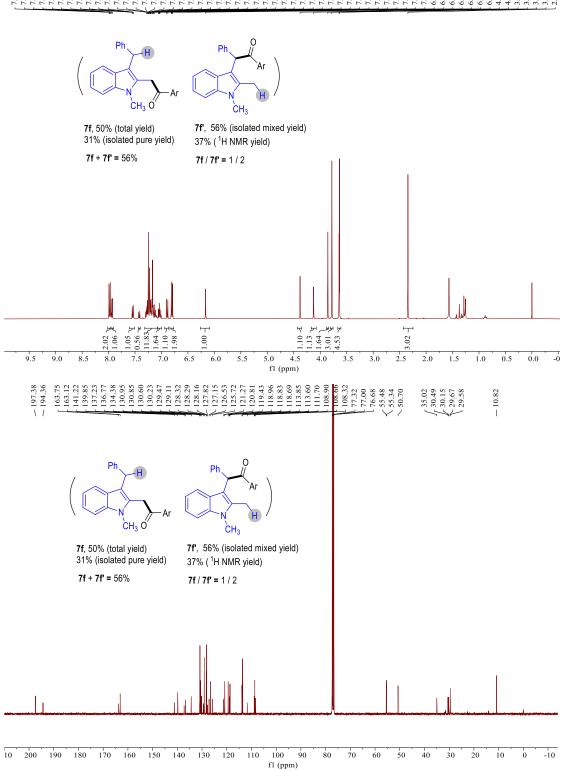


(4-methoxyphenyl) (9-methyl-2,3,4,9-tetrahydro-1 H- carbazol-4-yl) methanone (7d')

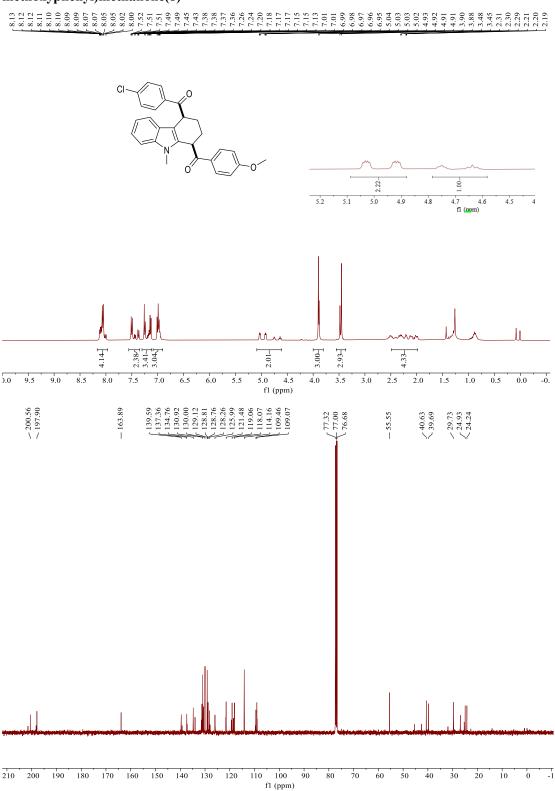


$(9-methyl-2,3,4,9-tetrahydro-1H-carbazole-1,4-diyl) bis ((4-methoxyphenyl) methanone) \ (7d")$

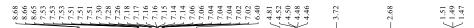


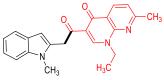


$\textbf{2-(3-ethyl-1-methyl-1} \textbf{H-indol-2-yl)-1-(4-methoxyphenyl)ethan-1-one(7e)} \ (Ar = 4-OCH_3C_6H_4)$

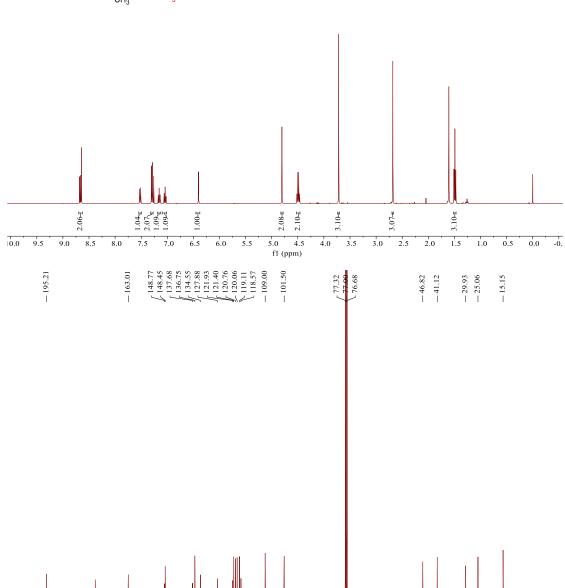


$\hbox{2-}(3-benzyl-1-methyl-1 \\ H-indol-2-yl)-1-(4-methoxyphenyl) ethan-1-one (7f)$

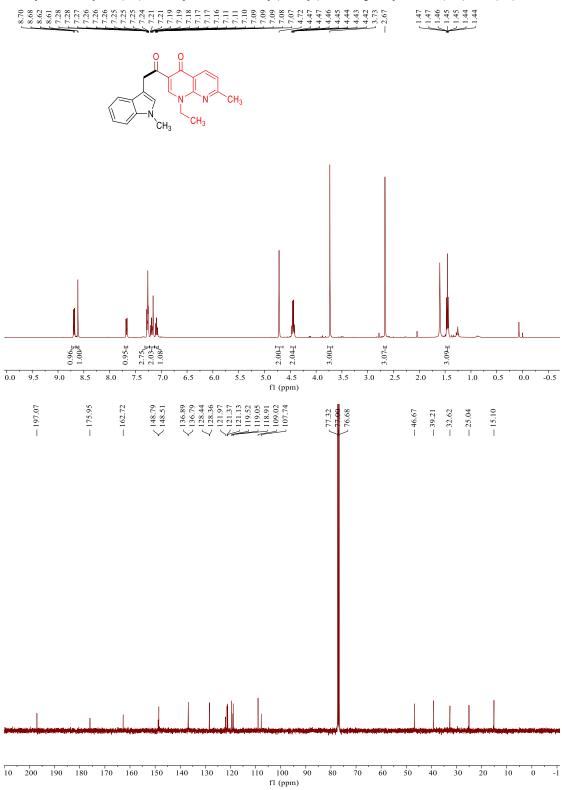




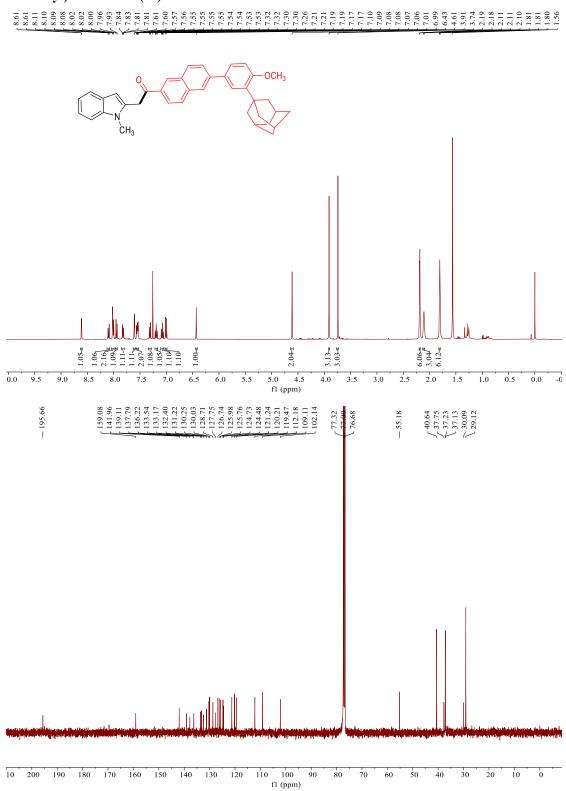
(4-(4-chlorobenzoyl)-9-methyl-2, 3, 4, 9-tetra hydro-1 H-carbazol-1-yl) (4-methoxyphenyl) methanone (8)



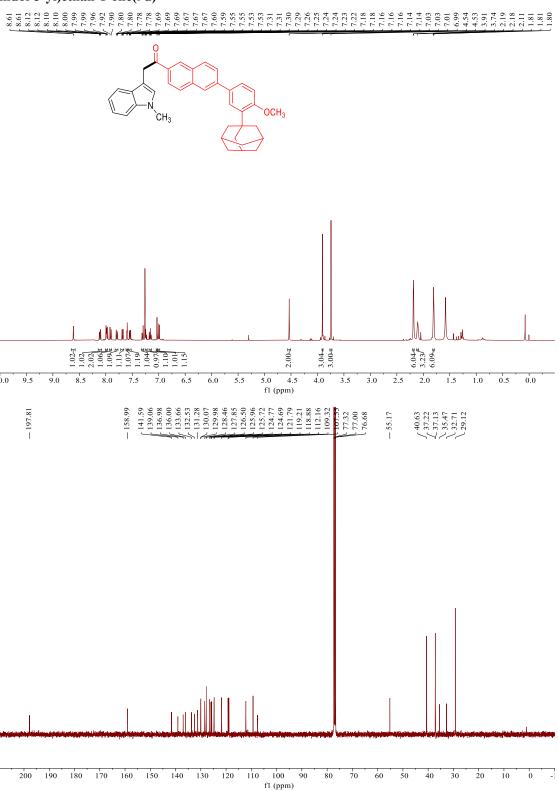
1-ethyl-7-methyl-3-(2-(1-methyl-1H-indol-2-yl)acetyl)-1, 8-naphthyridin-4(1H)-one(9a)

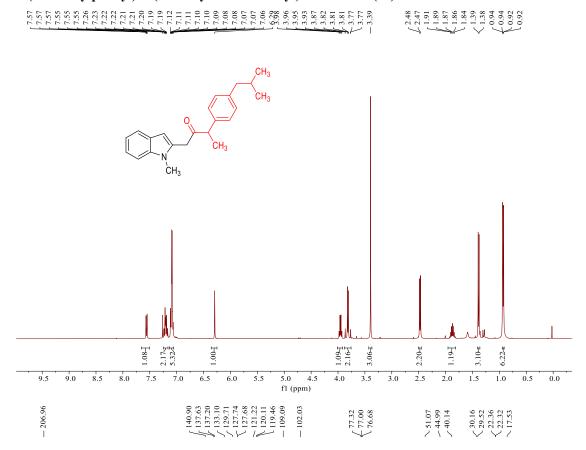


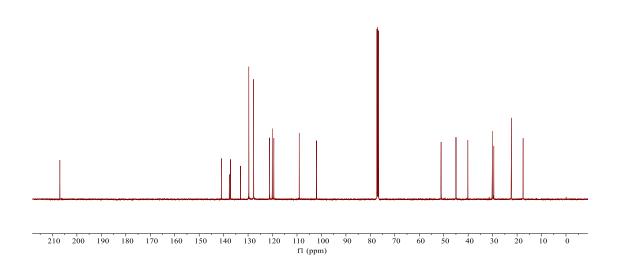
210 200 190 180 170 160 150 140 130



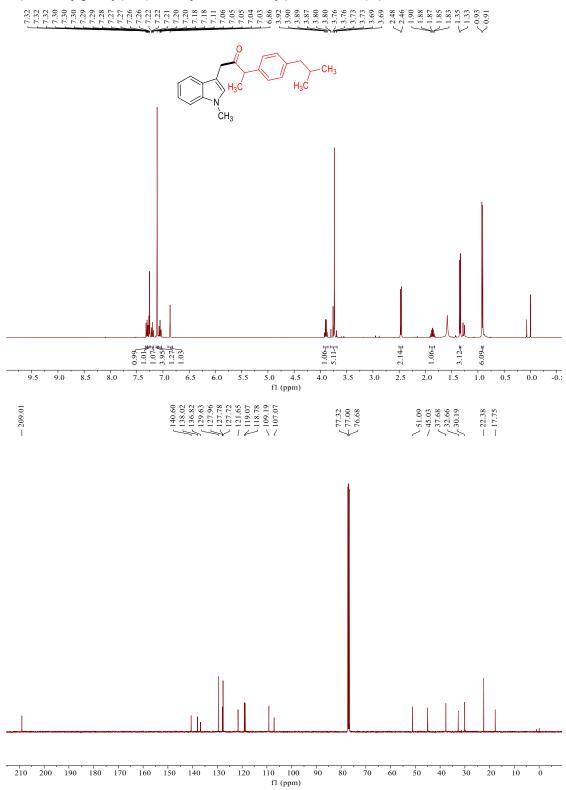
120 110 100 f1 (ppm)


1-ethyl-7-methyl-3-(2-(1-methyl-1H-indol-3-yl)acetyl)-1, 8-naphthyridin-4(1H)-one(9b)

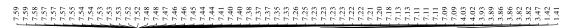

1-(6-(3-((3r,5r,7r)-adamantan-1-yl)-4-methoxyphenyl)naphthalen-2-yl)-2-(1-methyl-1 H-indol-2-yl)ethan-1-one(9c)

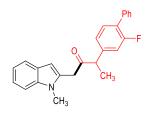


1-(6-(3-((3r,5r,7r)-adamantan-1-yl)-4-methoxyphenyl)naphthalen-2-yl)-2-(1-methyl-1 H-indol-3-yl)ethan-1-one(9d)

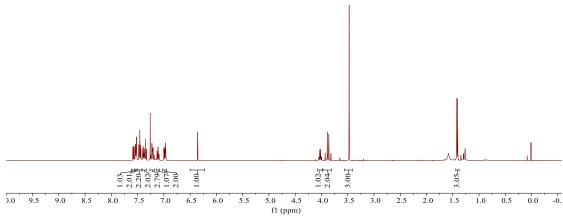


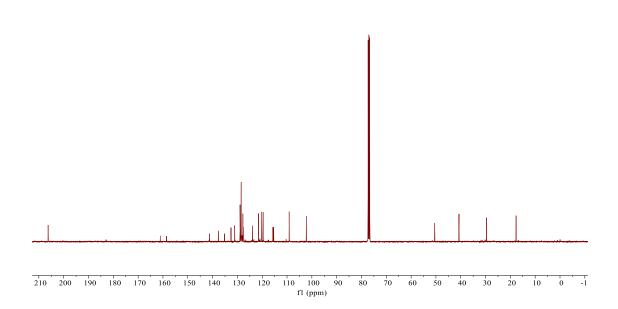
$3\hbox{-}(4\hbox{-}isobutylphenyl)\hbox{-}1\hbox{-}(1\hbox{-}methyl\hbox{-}1H\hbox{-}indol\hbox{-}2\hbox{-}yl)butan\hbox{-}2\hbox{-}one(9e)$

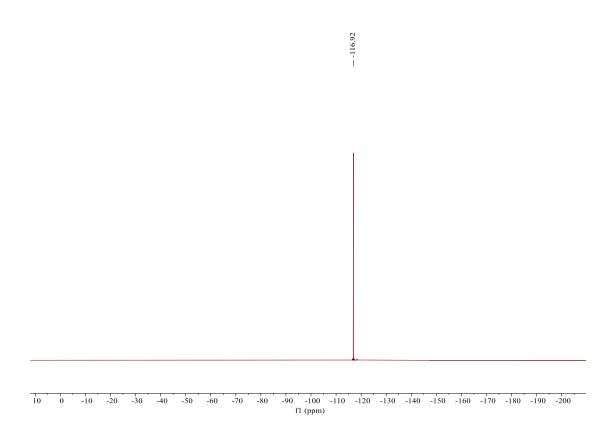


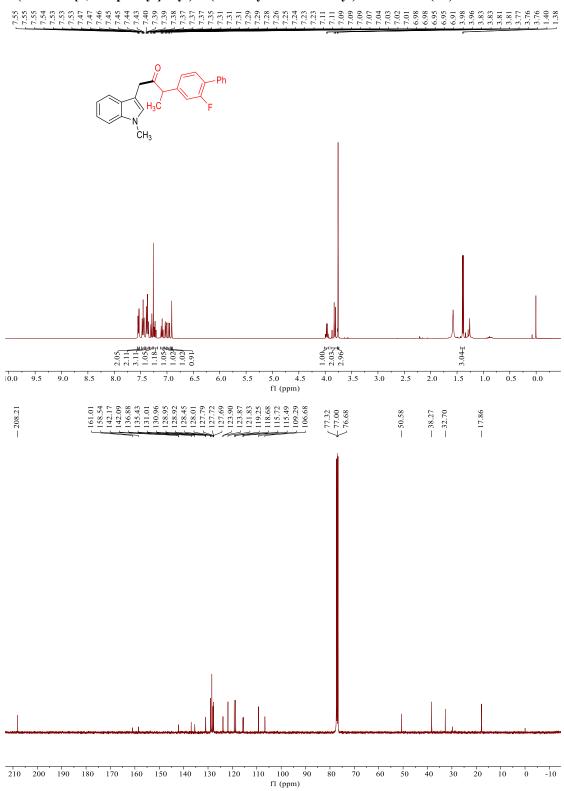


$3\hbox{-}(4\hbox{-}isobutylphenyl)\hbox{-}1\hbox{-}(1\hbox{-}methyl\hbox{-}1H\hbox{-}indol\hbox{-}3\hbox{-}yl)butan\hbox{-}2\hbox{-}one(9f)$

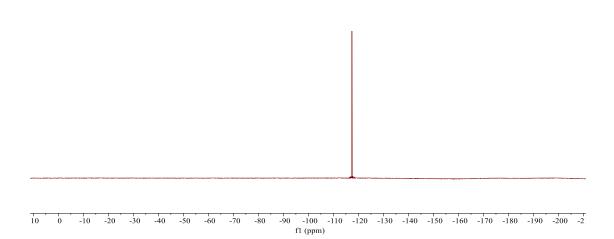

3-(2-fluoro-[1,1'-biphenyl]-4-yl)-1-(1-methyl-1H-indol-2-yl) but an -2-one (9g)

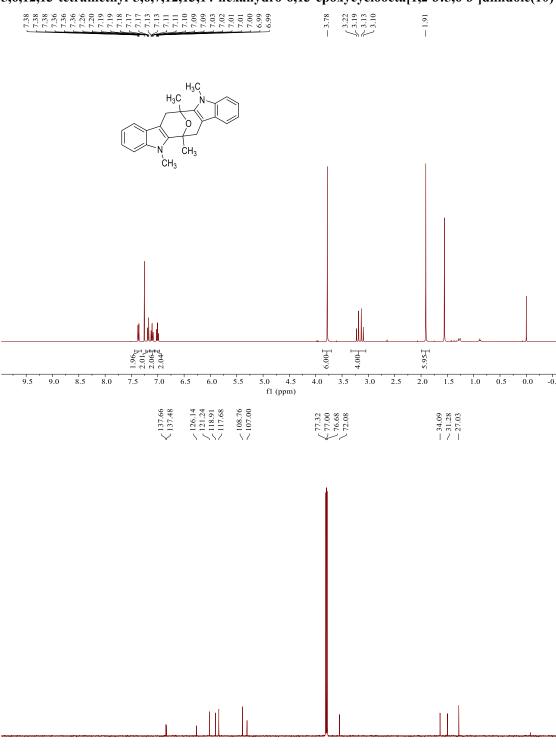

161.07 158.59 141.18 137.68 133.58 131.22 131.08 131.12 131.08 131.08 128.48 128.48 128.49 128.49 128.49 128.49 128.48 128.48 128.48 128.48 128.48 128.48 128.19 128.10 128.10 129.10 129.10 120.20 12


-206.27

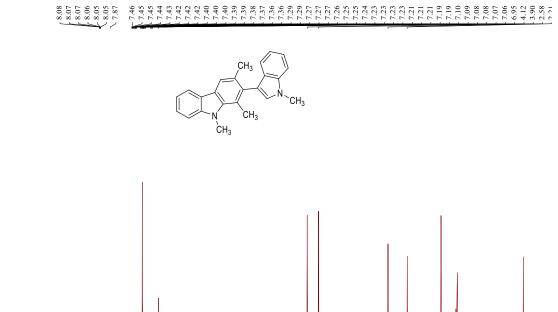

 $\left\{ \frac{77.32}{77.00} \right\}$

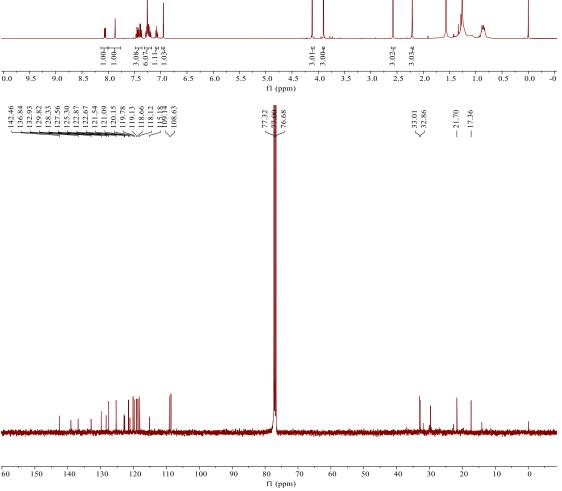
-29.66



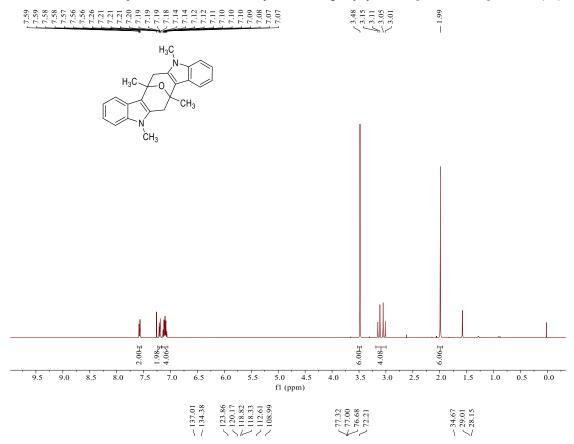

$3-(2-fluoro-[1,1'-biphenyl]-4-yl)-1-(1-methyl-1 \\ H-indol-3-yl) but an -2-one(9h)$

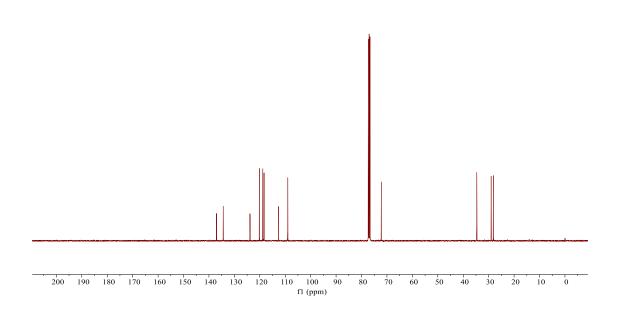
5,6,12,13-tetramethyl-5,6,7,12,13,14-hexahydro-6,13-epoxycycloocta[1,2-b:5,6-b']diindole(10)

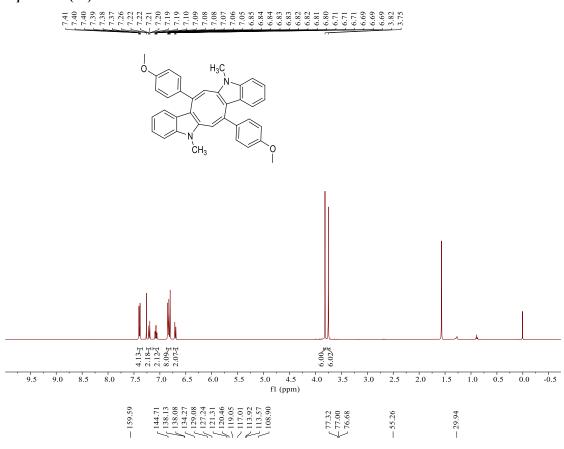


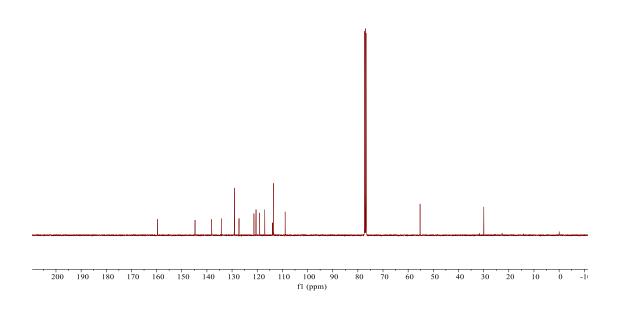

100 90 f1 (ppm)

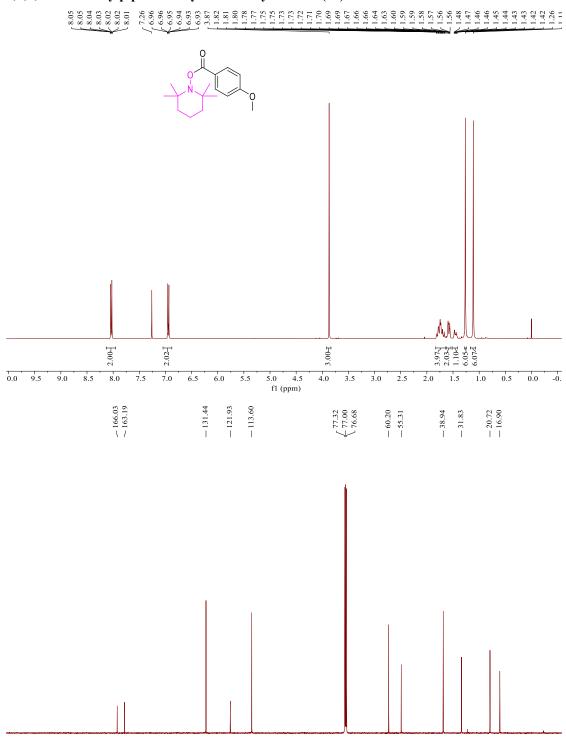
170 160 150 140


130 120


$1,\!3,\!9\text{-trimethyl-2-}(1\text{-methyl-1}H\text{-indol-3-yl})\!-\!9H\text{-carbazole}(11)$




5,7,12,14-tetramethyl-5,6,7,12,13,14-hexahydro-7,14-epoxycycloocta[1,2-b:5,6-b']diindole(12)



$(6Z,13Z)-7,14-b is (4-methoxyphenyl)-5,12-d imethyl-5,12-d ihydrocycloocta [1,2-b:5,6-b'] \\ d i indole (13)$

2,2,6,6-tetramethylpiperidin-1-yl 4-methoxybenzoate(14)

200 190 180 170 160 150 140 130 120 110 100 fl (ppm)