Supporting Information

Visible light-induced FeCl₃-catalyzed chlorination of C–H bonds with MgCl₂

Jing Huang ^{a,b}, Yidong Liu ^b, Xia Tian^b, Shao-Fei Ni^{*c}, Shen Li ^b, Zhan-Hui Zhang^{*a}, Dong Li ^c, Shouxin Liu^{*b}

^aCollege of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, P. R. China. E-mail: zhanhui@hebtu.edu.cn

^b State Key Laboratory of Molecular chemistry for Drug, Hebei Collaborative Innovation Center of New Drug Creation, Hebei University of Science & Technology, Shijiazhuang 050018, P. R. China.

E-mail: chsxliu@hotmail.com

^c Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province Shantou University, Shantou, Guangdong, 515063 P. R. China.

E-mail: sfni@stu.edu.cn

Table of Contents

Section 1. Radical trapping experiments	S3
Section 2. Further details of proposed mechanism	S4
Section 3. DFT studies experiments	
Section 4. NMR and GS-MS spectra	S10

Section 1. Radical trapping experiments

[Electron paramagnetic resonance (EPR) spectra were recordedon a Bruker A300 spectrophotometer. EPR spectrawere obtained on solutionsamples (100 mM), using 1–20mW microwavepower and 100kHz field modulation with theamplitude set to 1G. The g-values for each EPR spectrum were extracted from simulations performed using Easy Spin (v5.2.23).]

Figure S1. ESR spectra of DMPO capturing generated chlorine radical

Section 2. Further details of the proposed mechanism

Scheme S1 Chlorination reaction mechanism

Section 3. DFT studies experiments

Computational details:

All calculations were performed using Gaussian 16, Revision A.03 package.¹ All of the reactants, intermediates, transition states, products were optimized by the DFT with the ω B97X-D functional.² For geometry optimizations and frequency calculations, BS-I basis set system was employed. In BS-I, we employed 6-31G(d) basis sets for all atom. All the stationary structures were characterized with no imaginary frequency and the transition state structures (TSs) were characterized with a single imaginary frequency. Intrinsic reaction coordinate (IRC) calculations were performed on the TSs. The solvent effect of acetonitrile was evaluated through the SMD method,³ in which a better basis system BS-II was used. In BS-II, we employed def2tzvp basis sets for all atom. All reported energies are free energies at a concentration of 1 M.

Figure S2. DFT calculations on the chlorination of toluene reaction

Cartesian coordinates of the optimized structures:

Int1

С

E = -731.586799 a.u.

0 2			
С	-3.33784600	-1.41834900	1.06193400
С	-2.48271700	-0.72453300	0.21641000
С	-2.62472600	0.65437500	0.04826200
С	-3.61814000	1.33613700	0.75284400
С	-4.47182500	0.64341300	1.60143500
С	-4.33267800	-0.73306800	1.75582000
Н	-3.22451300	-2.49116400	1.18941900
Н	-1.69523300	-1.25358700	-0.31880900
Н	-3.71458200	2.41177800	0.64051400
Н	-5.24650700	1.17956000	2.14428500
Н	-5.00019800	-1.27412200	2.41951200
С	-1.66831200	1.40642700	-0.81543800
Н	-1.25860000	0.79848600	-1.64037700
Н	-2.10093200	2.32639600	-1.24037600
Cl	0.68998460	2.27312728	0.83792692
Н	-0.81576484	1.70772164	-0.18903168
TS1			
E = -731.586482 a.u.			
0 2			
С	-3.33404600	-1.41834900	1.06193400
С	-2.47891700	-0.72833300	0.21641000
С	-2.61332600	0.66197500	0.04066200

-3.61814000

0.75664400

1.33993700

С	-4.47182500	0.64721300	1.60143500
С	-4.33267800	-0.73306800	1.75582000
Н	-3.22451300	-2.49116400	1.18561900
Н	-1.69523300	-1.25738700	-0.31880900
Н	-3.71838200	2.41557800	0.64051400
Н	-5.24650700	1.17956000	2.14428500
Н	-5.00019800	-1.27412200	2.41951200
С	-1.69871200	1.39122700	-0.82303800
Н	-1.17500000	0.80988600	-1.58337700
Н	-2.03253200	2.36819600	-1.17577600
Cl	0.55371200	2.22101100	0.74636900
Н	-0.69463700	1.74906600	-0.07988400

lnt2

E = -270.811959 a.u.

02			
С	-3.02388584	-1.22748275	1.30395430
С	-2.12391529	-0.36951162	0.67117473
С	-2.52258761	0.91771202	0.31153962
С	-3.82214377	1.34707371	0.58360373
С	-4.72198725	0.48908944	1.21580760
С	-4.32273678	-0.79815585	1.57637452
Н	-2.70923276	-2.24215501	1.58781424
Н	-1.09976476	-0.70801949	0.45723569
Н	-4.13627270	2.36202716	0.29989819
Н	-5.74626212	0.82717860	1.43035579
Н	-5.03223678	-1.47430259	2.07493681
С	-1.52899795	1.86513725	-0.38614587
Н	-1.61011280	1.74894167	-1.44672070
Н	-1.75391604	2.87679324	-0.11994292

TS2

E = -1191.123726 a.u.

0 2			
С	0.01245500	0.32461400	0.29914000
С	-0.01576500	-0.23537000	1.56376400
С	1.18842900	-0.51962000	2.26697600
С	2.41554800	-0.20570200	1.61821300
С	2.43021500	0.35404900	0.35337100
С	1.23220800	0.62361100	-0.31593700
Н	-0.91963100	0.53501700	-0.21705600
Н	-0.96601800	-0.46295100	2.03947100
Н	3.34882700	-0.41031100	2.13606000
Н	3.37902500	0.58732200	-0.12084100

Н	1.24907500	1.06501100	-1.30751600
С	1.16631800	-1.08081100	3.55844700
Н	0.22856400	-1.31323800	4.05213800
Н	2.08642300	-1.29043000	4.09378400
Cl	1.02045700	4.26325300	4.34883800
Cl	1.07809300	2.39800200	3.58228600

P1

E = -1191.167568 a.u.

02			
С	-2.09702315	-0.07912676	0.00086200
С	-0.70186315	-0.07912676	0.00086200
С	-0.00432515	1.12862424	0.00086200
С	-0.70197915	2.33713324	-0.00033700
С	-2.09680415	2.33705524	-0.00081600
С	-2.79440515	1.12884924	0.00018000
Н	-2.64678215	-1.03144376	0.00131200
Н	-0.15235515	-1.03163976	0.00217700
Н	-0.15177915	3.28927624	-0.00039600
Н	-2.64692615	3.28933624	-0.00176900
Н	-3.89400915	1.12903224	0.00000000
С	1.53567459	1.12873627	0.00174986
Н	1.89292155	1.14115381	-1.00677402
Н	1.89198081	1.99615182	0.51705186
Cl	2.12197863	-0.31833783	0.81404544
Cl	2.91222360	-2.39721996	2.32693036

TS3

E = -1191.158292 a.u.

02			
С	0.32105900	0.77210900	0.00896200
С	0.52212900	0.86295600	1.38221100
С	1.49520800	0.08047500	2.00603400
С	2.26844000	-0.79127100	1.23716900
С	2.06939100	-0.88185900	-0.13660800
С	1.09491800	-0.10040500	-0.75242400
Н	-0.44152700	1.38132800	-0.46643400
Н	-0.07996800	1.54659500	1.97572800
Н	3.03110700	-1.39921400	1.71721100
Н	2.67339000	-1.56501200	-0.72598000
Н	0.93706100	-0.17298200	-1.82427900
С	1.71661500	0.17695200	3.48530900
Н	2.08078500	-0.75915200	3.91057700
Cl	2.92371200	1.44506700	3.93023800

Н	0.79226700	0.45859200	4.01197900
Cl	-1.50552800	0.09913700	4.44363500

lnt3

E = -730.393263 a.u.

02			
С	-0.00012500	0.19050100	0.16580900
С	0.04614900	-0.03192000	1.53162500
С	1.28616100	-0.18305900	2.18751400
С	2.47457500	-0.08831000	1.43854700
С	2.41723500	0.13495600	0.07244300
С	1.18454900	0.27401300	-0.56783300
Н	-0.95834400	0.30217000	-0.33100800
Н	-0.87284800	-0.08350800	2.10848000
Н	3.43310100	-0.18983200	1.93585300
Н	3.33679600	0.20480200	-0.49956300
Н	1.14729400	0.45098900	-1.63819400
С	1.27067500	-0.39009700	3.61106700
Н	0.34249300	-0.67673900	4.09306600
Cl	2.65599000	-0.99081600	4.43680900

TS4

E = -1650.702169 a.u.

0 2			
С	-0.00012500	0.19050100	0.16580900
С	0.04614900	-0.03192000	1.53162500
С	1.28616100	-0.18305900	2.18751400
С	2.47457500	-0.08831000	1.43854700
С	2.41723500	0.13495600	0.07244300
С	1.18454900	0.27401300	-0.56783300
Н	-0.95834400	0.30217000	-0.33100800
Н	-0.87284800	-0.08350800	2.10848000
Н	3.43310100	-0.18983200	1.93585300
Н	3.33679600	0.20480200	-0.49956300
Н	1.14729400	0.45098900	-1.63819400
С	1.27067500	-0.39009700	3.61106700
Н	0.34249300	-0.67673900	4.09306600
Cl	0.73804200	3.77369200	5.34406800
Cl	1.00919900	1.81047500	4.39120800
Cl	2.65599000	-0.99081600	4.43680900

P2

E = -1650.735062 a.u. 0 2

С	-0.00012500	0.16800100	0.17480900	
С	0.04614900	-0.00942000	1.54962500	
С	1.28166100	-0.10655900	2.20101400	
С	2.47007500	-0.05681000	1.46104700	
С	2.41723500	0.12145600	0.08594300	
С	1.18454900	0.25151300	-0.55433300	
Н	-0.95834400	0.26617000	-0.32650800	
Н	-0.87284800	-0.02500800	2.13098000	
Н	3.42410100	-0.12683200	1.96735300	
Н	3.33679600	0.17780200	-0.48606300	
Н	1.14729400	0.41498900	-1.62469400	
С	1.26617500	-0.12459700	3.70106700	
Н	0.34699300	-0.59123900	4.09756600	
Cl	0.72004200	3.87719200	5.40706800	
Cl	1.05869900	1.56297500	4.26520800	
Cl	2.62899000	-0.96381600	4.43230900	

Section 4. NMR and GS-MS spectra

Chlorination of toluene

GS-MS of Chlorination of toluene reaction solution

Chlorination of o-Cl-toluene

GS-MS of Chlorination of o-Cl-toluene reaction solution

Chlorination of m-Cl-toluene

Chlorination of p-Cl-toluene

Chlorination of 4-F-toluene

¹HNMR of 4-Fluorobenzyl chloride (2e)

GS-MS of Chlorination of 4-F-toluene reaction solution

Chlorination of 4-OMe-toluene

Chlorination of o-NO₂-toluene

¹HNMR of 2-Nitrobenzyl chloride (2g)

¹³CNMR of 2-Nitrobenzyl chloride (2g)

-42.85

Chlorination of m-NO₂-toluene

¹HNMR of 3-Nitrobenzyl chloride (2h)

GS-MS of Chlorination of *p*-NO₂-toluene reaction solution

Chlorination of o-Xylene

GS-MS of Chlorination of o-Xylene reaction solution

Chlorination of m-Xylene

¹H NMR of 3-Methylbenzyl chloride (2k)

GS-MS of Chlorination of *m*-Xylene reaction solution

Chlorination of p-Xylene

GS-MS of Chlorination of *p*-Xylene reaction solution

Chlorination of 4,4'-dimethyl-1,1'-biphenyl

GS-MS of Chlorination of 4,4'-dimethyl-1,1'-biphenyl reaction solution

Chlorination of ethylbenzene

GS-MS of Chlorination of ethylbenzene reaction solution

Chlorination of ethylbenzene

GS-MS of Chlorination of reaction solution

Chlorination of isopropylbenzene

GS-MS of Chlorination of isopropylbenzene reaction solution

Chlorination of 1-methylnaphthalene

¹HNMR of 1-(chloromethyl)naphthalene (2r)

¹³CNMR of 1-(chloromethyl)naphthalene (2r)

Chlorination of 2-methylquinoline

GS-MS of chlorination of 2-methylquinoline reaction solution

Chlorination of 2-methylpyridine

90 80 fl (ppm)

GS-MS of chlorination of 2-methylpyridine reaction solution

Chlorination of 2-Methylthiophene

¹HNMR of 2-(chloromethyl) thiophene (2u)

¹³CNMR of 2-(chloromethyl) thiophene (2u)

GS-MS of chlorination of 2-Methylthiophene reaction solution

Chlorination of cyclohexan

¹HNMR of Chlorocyclohexane (2w)

GS-MS of chlorination of cyclohexan reaction solution

Chlorination of 2,3-dimethylbutane

¹HNMR of 1-chloro-2,3-dimethylbutane (2x)

GS-MS of chlorination of 2,3-dimethylbutane reaction solution

Chlorination of acetophenone

¹HNMR of 2-Chloroacetophenone (4a)

GS-MS of chlorination of acetophenone reaction solution

Chlorination of 4-Cl-acetophene

¹³CNMR of 2,4'-Dichloroacetophenone (4b)

GS-MS of chlorination of 4-Cl-acetophene reaction solution

Chlorination of 4-OMe-acetophene

¹HNMR of 2-Chloro-1-(4-methoxyphenyl)ethanone (4c)

GS-MS of chlorination of 4-OMe-acetophene reaction solution

Chlorination of 3,3-dimethyl-2-butanone

GS-MS of chlorination of 3,3-dimethyl-2-butanone reaction solution

Chlorination of cyclohexanone

¹HNMR of 2-Cl-cyclohexanone (4e)

GS-MS of chlorination of cyclohexanone reaction solution

References

Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, **2016**.

2. S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction *J. Comput. Chem.* **2006**, *27*, 1787.

3. A. V. Marenich, C. J. Cramer, D. G. Truhlar, Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. *J. Phys. Chem. B.*, **2009**, *113*, 6378.