Supporting Information

Photochemical Selective Difluoroalkylation reactions of

Bicyclobutanes: Direct Sustainable Pathways to Functionalized

Bioisosteres for Drug Discovery

Yunxin Duan ^a, Yerong Xu ^a, Yunzhe Li ^a, Lin Mao ^a, Jianquan Feng ^a, Ruyue Zhang ^a,

Weifang Tang^a, Tao Lu^{*a}, Yadong Chen^{*a, b}, Jie Feng^{*a, b}

^a School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing,

211198, PR China

^b Hebei API Crystallization Technology Innovation Center, Shijiazhuang, PR China.

Contents

1. General information	3
2. General procedures for the synthesis of substrates and products	3
2.1. Preparation of bicyclo[1.1.0]butane compounds	3
2.2. Preparation of 2-bromo-2,2-difluoroacetates	8
2.3. Preparation of 2-bromo-2,2-difluoroacetamides	11
2.4. Preparation of 2-bromo-2,2-difluroketones	15
2.5. Preparation of bromodifluoromethyl substituted heterocycles	16
2.6. General procedure A for the synthesis of 3a	18
2.7. General procedure B for the synthesis of 4a	18
2.8. Gram-scale synthesis	19
2.9. Late-stage functionalization	20
2.10. Applications in ATR inhibitors	21
3. Reaction optimization	23
3.1. Optimization of reaction conditions for the preparation of 3a	23
3.2. Optimization of reaction conditions for the preparation of 4a	26
4. Mechanistic studies	26
4.1. Radical trapping experiments	26
4.2. Light on/off experiments	28
4.3. Deuterium labelling experiments	30
4.4. DFT calculations	32
5. Product characterization	49
6. Reference	79
7. NMR spectra (¹ H, ¹³ C and ¹⁹ F)	82

1. General information

Unless otherwise noted, all reactants or reagents including dry solvents were obtained from commercial suppliers and used as received. All the reactions were conducted using reaction tube (10 mL). The reactions were performed under nitrogen atmosphere. Blue LEDs (25W, equipped with a thermotank) was used as light source. Analytical thin layer chromatography (TLC) was performed using Silica Gel 60 F25 plates. Column chromatograph was performed on silica gel 200~300 mesh. ¹H, ¹⁹F and ¹³C NMR spectra were obtained in CDCl₃, acetone-*d*₆, or DMSO-*d*₆ using 300 MHz, 400 MHz Varian NMR spectrometer. Chemical shifts in ¹H NMR and ¹⁹F NMR spectra are reported in parts per million (ppm) on the δ scale from an internal standard of residual CDCl₃ (7.26 ppm). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), integration, and coupling constant in Hertz (Hz). Chemical shifts in ¹³C NMR spectra are reported in ppm on the δ scale from the central peak of residual CDCl₃ (77.16 ppm). High resolution mass spectrometry (HRMS) was recorded on TOF premier for ESI⁺.

2. General procedures for the synthesis of substrates and products

2.1 Preparation of bicyclo[1.1.0]butane compounds

Scheme S1. Synthesis of bicyclo[1.1.0]butane compounds 1a-1k^a

^a Reagents and conditions: (a) Na₂SO₃, NaHCO₃, H₂O, 80 °C, 12 h; (b) 4-bromo-1-butene, DMF,

60 °C, 12 h; (c) Oxone, NaHCO₃, acetone/H₂O, rt, 12 h; (d) *n*-BuLi, anhydrous THF, 0 °C; (e) MsCl, TEA, DCM, 0 °C to rt, 12 h; (f) *n*-BuLi, anhydrous THF, 0 °C.

The preparations of bicyclo[1.1.0]butane compounds **1a-1k** were outlined in **Scheme S1** according to the procedure disclosed by Baran et al.¹

Step a: To a solution of **Sm1** (19.2 mmol, 1.0 equiv.), and Na₂SO₃ (38.4 mmol, 2.0 equiv.) in H_2O (60 mL) was slowly added NaHCO₃ (38.4 mmol, 2.0 equiv.). The reaction mixture was stirred at 80 °C for 12 h then cooled to room temperature and concentrated under reduced pressure. The crude product was obtained by drying for couple hours and could be used directly in the next step without further purification.

Step b: To a solution of **Sm2** (14.4 mmol, 1.0 equiv.) in DMF (60 mL) was slowly added 4bromo-1-butene (28.8 mmol, 2.0 equiv.). The reaction was stirred at 60 °C for 12 h then cooled to room temperature. The mixture was extracted by EtOAc (100 mL x 3) and washed with H₂O followed by saturated NaCl solution. The organic layers were dried over anhydrous Na₂SO₄, filtered, and evaporated to give residue, which was purified by silica gel column chromatography with petroleum ether/EtOAc (30:1 to 20:1, v/v) as eluents furnishing the desired product.

Step c: To a solution of **Sm3** (11.5 mmol, 1.0 equiv.), and Oxone (17.3 mmol, 1.5 equiv.) in acetone (50 mL) and H_2O (50 mL) was slowly added NaHCO₃ (57.5 mmol, 5.0 equiv.). The reaction mixture was stirred at room temperature for 12 h. The reaction mixture was evaporated to remove acetone then extracted by EtOAc (50 mL x 3) and washed with H_2O followed by saturated NaCl solution. The organic layers were dried over anhydrous Na₂SO₄, filtered, and evaporated to give residue, which was purified by silica gel column chromatography with petroleum ether/EtOAc (6:1 to 4:1, v/v) as eluents furnishing the desired product.

Step d: To a solution of **Sm4** (5 mmol, 1.0 equiv.) in anhydrous THF (30 mL) was dropwise added *n*-BuLi (2.5 M in hexane, 2.2 mL, 1.1 equiv.) in an ice/water bath. The reaction mixture was stirred at 0 °C for 15 min under a nitrogen atmosphere then quenched with saturated NH₄Cl solution. The mixture was extracted by EtOAc (50 mL x 3) and washed with H₂O followed by saturated NaCl solution. The organic layers were dried over anhydrous Na₂SO₄, filtered, and evaporated to give residue, which was purified by silica gel column chromatography with petroleum ether/EtOAc (5:1 to 3:1, v/v) as eluents furnishing the desired product. Step e: To a solution of **Sm5** (5 mmol, 1.0 equiv.), and TEA (10 mmol, 2.0 equiv.) in DCM (30 mL) was dropwise added MsCl (7.5 mmol, 1.5 equiv.) in an ice/water bath. The reaction was stirred at room temperature for 12 h. The mixture was extracted by DCM (50 mL x 3) and washed with H₂O followed by saturated NaCl solution. The organic layers were dried over anhydrous Na₂SO₄, filtered, and evaporated to give residue, which was purified by silica gel column chromatography with petroleum ether/EtOAc (3:1 to 1:1, v/v) as eluents furnishing the desired product.

Step f: To a solution of **Sm6** (1 mmol, 1.0 equiv.) in anhydrous THF (20 mL) was dropwise added *n*-BuLi (2.5 M in hexane, 0.44 mL, 1.1 equiv.) in an ice/water bath. The reaction mixture was stirred at 0 °C for 15 min under a nitrogen atmosphere then quenched with saturated NH₄Cl solution. The mixture was extracted by EtOAc (50 mL x 3) and washed with H₂O followed by saturated NaCl solution. The organic layers were dried over anhydrous Na₂SO₄, filtered, and evaporated to give residue, which was purified by silica gel column chromatography with petroleum ether/EtOAc (20:1 to 10:1, v/v) as eluents furnishing the desired product.

1-(phenylsulfonyl)bicyclo[1.1.0]butane (1a)

White solid. Yield: 44 %. ¹**H NMR** (300 MHz, DMSO- d_6) δ 7.95 – 7.87 (m, 2H), 7.78 – 7.71 (m, 1H), 7.71 – 7.63 (m, 2H), 2.87 – 2.78 (m, 1H), 2.40 – 2.30 (m, 2H), 1.46 – 1.37 (m, 2H). The spectroscopic data of **1a** was consistent with previously reported data.²

1-tosylbicyclo[1.1.0]butane (1b)

White solid. Yield: 54 %. ¹**H NMR** (300 MHz, CDCl₃) δ 7.81 (d, *J* = 8.4 Hz, 2H), 7.35 (d, *J* = 7.9 Hz, 2H), 2.54 – 2.47 (m, 3H), 2.44 (s, 3H), 1.37 – 1.34 (m, 2H). The spectroscopic data of **1b** was consistent with previously reported data.²

1-((4-methoxyphenyl)sulfonyl)bicyclo[1.1.0]butane (1c)

White solid. Yield: 58 %. ¹**H NMR** (300 MHz, CDCl₃) δ 7.86 (d, J = 8.9 Hz, 2H), 7.01 (d, J = 9.0 Hz, 2H), 3.88 (s, 3H), 2.48 (s, 3H), 1.35 (s, 2H). The spectroscopic data of **1c** was consistent with previously reported data.²

1-([1,1'-biphenyl]-4-ylsulfonyl)bicyclo[1.1.0]butane (1d)

White solid. Yield: 60 %. ¹**H NMR** (300 MHz, CDCl₃) δ 8.01 (d, J = 8.6 Hz, 2H), 7.76 (d, J = 8.7 Hz, 2H), 7.65 – 7.59 (m, 2H), 7.53 – 7.39 (m, 3H), 2.63 – 2.58 (m, 1H), 2.56 (d, J = 3.3 Hz, 2H), 1.42 (d, J = 2.7 Hz, 2H). ¹³**C NMR** (101 MHz, DMSO- d_6) δ 144.9, 140.1, 138.4, 129.2, 128.7, 127.8, 127.5, 127.2, 37.7, 22.9, 12.3. **HRMS** (ESI) for C₁₆H₁₅O₂S [M + H]⁺, calcd: 271.0787, found: 271.0791.

1-((4-fluorophenyl)sulfonyl)bicyclo[1.1.0]butane (1e)

White solid. Yield: 56 %. ¹H NMR (300 MHz, CDCl₃) δ 8.05 – 7.97 (m, 2H), 7.30 (d, J = 8.7 Hz, 2H), 2.68 – 2.62 (m, 1H), 2.57 (d, J = 3.6 Hz, 2H), 1.45 (d, J = 2.8 Hz, 2H). ¹⁹F NMR (282 MHz, CDCl₃) δ -104.71. The spectroscopic data of **1e** was consistent with previously reported data.²

1-((4-chlorophenyl)sulfonyl)bicyclo[1.1.0]butane (1f)

White solid. Yield: 52 %. ¹**H NMR** (300 MHz, CDCl₃) δ 7.88 (d, *J* = 8.6 Hz, 2H), 7.53 (d, *J* = 8.6 Hz, 2H), 2.65 – 2.58 (m, 1H), 2.52 (d, *J* = 3.9 Hz, 2H), 1.40 (s, 2H). The spectroscopic data of **1f** was consistent with previously reported data.²

1-((4-bromophenyl)sulfonyl)bicyclo[1.1.0]butane (1g)

White solid. Yield: 40 %. ¹**H NMR** (300 MHz, CDCl₃) δ 7.81 (d, J = 8.7 Hz, 2H), 7.70 (d, J = 8.7 Hz, 2H), 2.66 – 2.58 (m, 1H), 2.52 (d, J = 3.6 Hz, 2H), 1.40 (s, 2H). The spectroscopic data of **1g** was consistent with previously reported data.³

1-((4-(trifluoromethyl)phenyl)sulfonyl)bicyclo[1.1.0]butane (1h)

White solid. Yield: 60 %. ¹**H NMR** (300 MHz, CDCl₃) δ 8.08 (d, J = 8.1 Hz, 2H), 7.83 (d, J = 8.2 Hz, 2H), 2.72 – 2.65 (m, 1H), 2.55 (d, J = 3.8 Hz, 2H), 1.43 (d, J = 2.8 Hz, 2H). ¹⁹**F NMR** (282 MHz, CDCl₃) δ -63.11. The spectroscopic data of **1h** was consistent with previously reported data.² **1-((4-(trifluoromethoxy)phenyl)sulfonyl)bicyclo[1.1.0]butane (1i)**

White solid. Yield: 54 %. ¹**H NMR** (300 MHz, CDCl₃) δ 8.03 – 7.96 (m, 2H), 7.38 (d, J = 7.9 Hz, 2H), 2.68 – 2.61 (m, 1H), 2.54 (d, J = 3.7 Hz, 2H), 1.42 (d, J = 2.8 Hz, 2H). ¹⁹**F NMR** (282 MHz, CDCl₃) δ -57.68. The spectroscopic data of **1i** was consistent with previously reported data.²

1-((3-fluorophenyl)sulfonyl)bicyclo[1.1.0]butane (1j)

White solid. Yield: 42 %. ¹H NMR (300 MHz, CDCl₃) δ 7.77 – 7.71 (m, 1H), 7.67 – 7.61 (m, 1H), 7.59 – 7.51 (m, 1H), 7.36 – 7.28 (m, 1H), 2.66 – 2.60 (m, 1H), 2.53 (d, *J* = 3.8 Hz, 2H), 1.42 (d, *J* = 2.8 Hz, 2H). ¹⁹F NMR (282 MHz, CDCl₃) δ -109.52. The spectroscopic data of **1j** was consistent with previously reported data.²

1-((2-fluorophenyl)sulfonyl)bicyclo[1.1.0]butane (1k)

White solid. Yield: 35 %. ¹H NMR (300 MHz, CDCl₃) δ 8.00 – 7.91 (m, 1H), 7.67 – 7.57 (m, 1H), 7.36 – 7.20 (m, 2H), 2.71 – 2.64 (m, 1H), 2.60 (d, J = 4.7 Hz, 2H), 1.46 (d, J = 5.0 Hz, 2H). ¹⁹F NMR (282 MHz, CDCl₃) δ -108.49. The spectroscopic data of 1k was consistent with previously reported data.³

2.2 Preparation of 2-bromo-2,2-difluoroacetates

To a 2-bromo-2,2-difluoroacetic acid (5.00 mmol, 1.00 equiv.) in DCM (10.0 mL, 0.50 M) was slowly added oxalyl chloride (5.50 mmol, 1.10 equiv.) and DMF (0.01 mL) at room temperature. The reaction mixture was stirred at room temperature for 2 h then cooled to 0 °C, and then a mixture of ROH (5.50 mmol, 1.1 equiv.) and TEA (5.50 mmol, 1.10 equiv.) dissolved in DCM was added dropwise. The reaction mixture stirred at room temperature for 6 h then quenched with saturated NaHCO₃ solution, extracted with DCM (25 mL x 3), and washed with H₂O followed by saturated NaCl solution. The organic layers were dried over anhydrous Na₂SO₄, filtered, and evaporated to give residue, which was purified by silica gel column chromatography with petroleum ether/EtOAc (100:1, v/v) as eluents furnishing the desired product.

benzyl 2-bromo-2,2-difluoroacetate (11)

Colorless oil. Yield: 72 %. ¹H NMR (300 MHz, CDCl₃) δ 7.41 (s, 5H), 5.37 (s, 2H). ¹⁹F NMR (282 MHz, CDCl₃) δ -60.74. The spectroscopic data of 1l was consistent with previously reported data.⁴ 4-methoxybenzyl 2-bromo-2,2-difluoroacetate (1m)

Colorless oil. Yield: 65 %. ¹H NMR (300 MHz, CDCl₃) δ 7.35 (d, J = 8.8 Hz, 2H), 6.92 (d, J = 8.8 Hz, 2H), 5.30 (s, 2H), 3.82 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 160.5, 159.6 (t, ² $J_{C-F} = 31.5$ Hz), 130.8, 125.6, 114.3, 108.9 (t, ¹ $J_{C-F} = 312.8$ Hz), 69.9, 55.4. ¹⁹F NMR (282 MHz, CDCl₃) δ -60.75. HRMS (ESI) for C₁₀H₁₀BrF₂O₃ [M + H]⁺, calcd: 294.9775, found: 294.9780.

cyclobutyl 2-bromo-2,2-difluoroacetate (1n)

Colorless oil. Yield: 80 %. ¹H NMR (300 MHz, CDCl₃) δ 5.23 – 5.10 (m, 1H), 2.52 – 2.38 (m, 2H), 2.33 – 2.14 (m, 2H), 1.98 – 1.83 (m, 1H), 1.78 – 1.60 (m, 1H). ¹⁹F NMR (282 MHz, CDCl₃) δ -60.99. The spectroscopic data of **1n** was consistent with previously reported data.⁴

cyclohexyl 2-bromo-2,2-difluoroacetate (10)

Colorless oil. Yield: 80 %. ¹H NMR (300 MHz, CDCl₃) δ 5.03 – 4.91 (m, 1H), 1.97 – 1.85 (m, 2H), 1.84 – 1.70 (m, 2H), 1.66 – 1.50 (m, 3H), 1.49 – 1.28 (m, 3H). ¹⁹F NMR (282 MHz, CDCl₃) δ -60.92. The spectroscopic data of **10** was consistent with previously reported data.⁴

2,3-dihydro-1*H*-inden-2-yl 2-bromo-2,2-difluoroacetate (1p)

White solid. Yield: 72 %. ¹**H** NMR (300 MHz, CDCl₃) δ 7.32 – 7.22 (m, 4H), 5.74 (tt, *J* = 6.4, 3.0 Hz, 1H), 3.45 (dd, *J* = 17.3, 6.5 Hz, 2H), 3.17 (dd, *J* = 17.3, 3.0 Hz, 2H). ¹⁹**F** NMR (282 MHz, CDCl₃) δ -61.03. The spectroscopic data of **1p** was consistent with previously reported data.⁵

4-phenylbutyl 2-bromo-2,2-difluoroacetate (1q)

Colorless oil. Yield: 73 %. ¹H NMR (300 MHz, CDCl₃) δ 7.35 – 7.28 (m, 2H), 7.25 – 7.17 (m, 3H), 4.38 (t, J = 6.2 Hz, 2H), 2.69 (t, J = 7.2 Hz, 2H), 1.87 – 1.70 (m, 4H). ¹⁹F NMR (282 MHz, CDCl₃) δ -60.70. The spectroscopic data of **1q** was consistent with previously reported data.⁶

(3s,5s,7s)-adamantan-1-yl 2-bromo-2,2-difluoroacetate (1r)

Colorless oil. Yield: 67 %. ¹H NMR (300 MHz, CDCl₃) δ 2.24 (s, 3H), 2.20 – 2.15 (m, 6H), 1.72 – 1.66 (m, 6H). ¹⁹F NMR (282 MHz, CDCl₃) δ -60.86. The spectroscopic data of 1r was consistent with previously reported data.⁴

2-(trimethylsilyl)ethyl 2-bromo-2,2-difluoroacetate (1s)

Colorless oil. Yield: 58 %. ¹H NMR (300 MHz, CDCl₃) δ 4.49 – 4.39 (m, 2H), 1.18 – 1.08 (m, 2H), 0.08 (s, 9H). ¹⁹F NMR (282 MHz, CDCl₃) δ -60.74. The spectroscopic data of 1s was consistent with previously reported data.⁴

(1R,2S,5R)-2-isopropyl-5-methylcyclohexyl 2-bromo-2,2-difluoroacetate (1t)

Colorless oil. Yield: 73 %. ¹H NMR (300 MHz, CDCl₃) δ 4.90 – 4.78 (m, 1H), 2.11 – 2.01 (m, 1H), 1.98 – 1.86 (m, 1H), 1.79 – 1.66 (m, 2H), 1.61 – 1.44 (m, 2H), 1.20 – 1.00 (m, 2H), 0.98 – 0.87 (m, 7H), 0.78 (d, J = 7.0 Hz, 3H). ¹⁹F NMR (282 MHz, CDCl₃) δ -60.88 (d, J = 5.6 Hz). The spectroscopic data of 1t was consistent with previously reported data.⁴

(1S,2S,4R)-1,3,3-trimethylbicyclo[2.2.1]heptan-2-yl 2-bromo-2,2-difluoroacetate (1u)

Colorless oil. Yield: 70 %. ¹H NMR (300 MHz, CDCl₃) δ 4.50 (d, J = 2.0 Hz, 1H), 1.83 – 1.68 (m, 3H), 1.62 (d, J = 8.3 Hz, 1H), 1.57 – 1.43 (m, 1H), 1.30 – 1.12 (m, 5H), 1.10 (s, 3H), 0.86 (s, 3H). ¹⁹F NMR (282 MHz, CDCl₃) δ -60.19 (d, J = 9.2 Hz). The spectroscopic data of 1u was consistent with previously reported data.⁵

(1R,2R,4R)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl 2-bromo-2,2-difluoroacetate (1v)

Colorless oil. Yield: 65 %. ¹H NMR (300 MHz, CDCl₃) δ 4.83 (t, J = 5.7 Hz, 1H), 1.91 – 1.67 (m, 4H), 1.66 – 1.55 (m, 1H), 1.22 – 1.06 (m, 2H), 0.99 (s, 3H), 0.92 (s, 3H), 0.86 (s, 3H). ¹⁹F NMR (282 MHz, CDCl₃) δ -60.75 (d, J = 3.1 Hz). The spectroscopic data of 1v was consistent with previously reported data.⁷

To a solution of ethyl 2-bromo-2,2-difluoroacetate (1.2 mmol, 1.2 equiv.), and amine (1.0 mmol, 1.0 equiv.) was slowly added La(OTf)₃ (0.05 mmol, 0.05 equiv.). The reaction was stirred at room temperature for 18 h, and was extracted by EtOAc (25 mL x 3) and washed with H₂O followed by saturated NaCl solution. The organic layers were dried over anhydrous Na₂SO₄, filtered, and evaporated to give residue, which was purified by silica gel column chromatography with petroleum ether/EtOAc (50:1, v/v) as eluents furnishing the desired product.

2-bromo-2,2-difluoro-N,N-dimethylacetamide (1w)

Colorless oil. Yield: 75 %. ¹H NMR (300 MHz, CDCl₃) δ 3.17 (s, 3H), 3.04 (s, 3H). ¹⁹F NMR (282 MHz, CDCl₃) δ -54.38. The spectroscopic data of 1w was consistent with previously reported data.⁸ 2-bromo-*N*,*N*-diethyl-2,2-difluoroacetamide (1x)

Colorless oil. Yield: 81 %. ¹H NMR (300 MHz, CDCl₃) δ 3.52 (q, J = 7.1 Hz, 2H), 3.42 (q, J = 7.1 Hz, 2H), 1.28 – 1.14 (m, 6H). ¹⁹F NMR (282 MHz, CDCl₃) δ -54.12. The spectroscopic data of 1x was consistent with previously reported data.⁸

1-(azetidin-1-yl)-2-bromo-2,2-difluoroethan-1-one (1y)

Colorless oil. Yield: 70 %. ¹H NMR (300 MHz, CDCl₃) δ 4.44 – 4.32 (m, 2H), 4.20 – 4.08 (m, 2H), 2.47 – 2.31 (m, 2H). ¹⁹F NMR (282 MHz, CDCl₃) δ -57.88. The spectroscopic data of 1y was consistent with previously reported data.⁸

2-bromo-2,2-difluoro-1-(pyrrolidin-1-yl)ethan-1-one (1z)

Colorless oil. Yield: 80 %. ¹H NMR (300 MHz, CDCl₃) δ 3.58 (dd, J = 25.9, 7.0 Hz, 4H), 1.93 (dd, J = 33.6, 6.8 Hz, 4H). ¹⁹F NMR (282 MHz, CDCl₃) δ -56.85. The spectroscopic data of 1z was

consistent with previously reported data.8

2-bromo-2,2-difluoro-1-(piperidin-1-yl)ethan-1-one (2b)

Colorless oil. Yield: 80 %. ¹H NMR (300 MHz, CDCl₃) δ 3.64 – 3.53 (m, 4H), 1.72 – 1.55 (m, 6H). ¹⁹F NMR (282 MHz, CDCl₃) δ -53.89. The spectroscopic data of **2b** was consistent with previously reported data.⁹

2-bromo-2,2-difluoro-1-morpholinoethan-1-one (2c)

Colorless oil. Yield: 80 %. ¹H NMR (300 MHz, CDCl₃) δ 3.78 – 3.65 (m, 8H). ¹⁹F NMR (282 MHz, CDCl₃) δ -54.52. The spectroscopic data of **2c** was consistent with previously reported data.⁸

2-bromo-2,2-difluoro-1-thiomorpholinoethan-1-one (2d)

Colorless oil. Yield: 77 %. ¹H NMR (300 MHz, CDCl₃) δ 3.97 – 3.87 (m, 4H), 2.75 – 2.64 (m, 4H). ¹⁹F NMR (282 MHz, CDCl₃) δ -54.10. The spectroscopic data of **2d** was consistent with previously reported data.⁸

tert-butyl 4-(2-bromo-2,2-difluoroacetyl)piperazine-1-carboxylate (2e)

White solid. Yield: 74 %. ¹H NMR (300 MHz, CDCl₃) δ 3.71 – 3.62 (m, 4H), 3.56 – 3.47 (m, 4H), 1.47 (s, 9H). ¹⁹F NMR (282 MHz, CDCl₃) δ -54.38. The spectroscopic data of **2e** was consistent with previously reported data.⁹

2-bromo-2,2-difluoro-1-(4-phenylpiperazin-1-yl)ethan-1-one (2f)

White solid. Yield: 74 %. ¹H NMR (300 MHz, CDCl₃) δ 7.34 – 7.27 (m, 2H), 6.98 – 6.91 (m, 3H), 3.90 – 3.82 (m, 4H), 3.29 – 3.21 (m, 4H). ¹⁹F NMR (282 MHz, CDCl₃) δ -54.20. The spectroscopic data of **2f** was consistent with previously reported data.¹⁰

2-bromo-2,2-difluoro-N-phenylacetamide (2g)

White solid. Yield: 60 %. ¹H NMR (300 MHz, CDCl₃) δ 7.86 (s, 1H), 7.61 – 7.54 (m, 2H), 7.44 – 7.36 (m, 2H), 7.28 – 7.20 (m, 1H). ¹⁹F NMR (282 MHz, CDCl₃) δ -60.61. The spectroscopic data of **2g** was consistent with previously reported data.⁸

ethyl (2-bromo-2,2-difluoroacetyl)-L-methioninate (2h)

Colorless oil. Yield: 78 %. ¹H NMR (300 MHz, CDCl₃) δ 7.36 – 7.27 (m, 1H), 4.70 – 4.58 (m, 1H), 4.19 (q, *J* = 7.2 Hz, 2H), 2.53 – 2.44 (m, 2H), 2.27 – 2.13 (m, 1H), 2.12 – 1.98 (m, 4H), 1.25 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 170.5, 159.7 (t, ²*J*_{C-*F*} = 32.3 Hz), 111.2 (t, ¹*J*_{C-*F*} = 313.5 Hz), 62.2, 52.1, 30.7, 29.7, 15.3, 14.0. ¹⁹F NMR (282 MHz, CDCl₃) δ -61.01. HRMS (ESI) for C₉H₁₅BrF₂NO₃S [M + H]⁺, calcd: 333.9916, found: 333.9924.

ethyl (2-bromo-2,2-difluoroacetyl)-L-phenylalaninate (2i)

$$\begin{array}{c} O \\ Br \\ F \\ F \\ H \end{array} \begin{array}{c} CO_2Et \\ \hline \vdots \\ Ph \\ H \end{array} \begin{array}{c} Ph \\ H \\ \end{array}$$

White solid. Yield: 75 %. ¹H NMR (300 MHz, CDCl₃) δ 7.34 – 7.27 (m, 3H), 7.15 – 7.07 (m, 2H), 6.77 – 6.63 (m, 1H), 4.89 – 4.78 (m, 1H), 4.23 (q, *J* = 7.1 Hz, 2H), 3.30 – 3.13 (m, 2H), 1.29 (t, *J* = 7.1 Hz, 3H). ¹⁹F NMR (282 MHz, CDCl₃) δ -60.82. The spectroscopic data of **2i** was consistent with previously reported data.⁷

2-bromo-1-(4-(8-chloro-5,6-dihydro-11*H*-benzo[5,6]cyclohepta[1,2-*b*]pyridin-11-ylidene) piperidin-1-yl)-2,2-difluoroethan-1-one (2j)

White solid. Yield: 70 %. ¹H NMR (300 MHz, CDCl₃) δ 8.46 – 8.39 (m, 1H), 7.55 – 7.44 (m, 1H), 7.22 – 7.10 (m, 4H), 4.15 – 3.86 (m, 2H), 3.55 – 3.26 (m, 4H), 2.96 – 2.37 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 157.9 (t, ²*J*_{*C-F*} = 26.3 Hz), 156.5, 146.7, 139.6, 137.9, 137.4, 135.5, 135.4, 133.4, 133.3, 130.3, 129.1, 126.3, 122.5, 110.7 (t, ¹*J*_{*C-F*} = 316.6 Hz), 47.2, 45.0, 31.6, 31.5, 30.7, 29.9. ¹⁹F NMR (282 MHz, CDCl₃) δ -54.11. HRMS (ESI) for C₂₁H₁₉BrClF₂N₂O [M + H]⁺, calcd: 467.0331, found: 467.0341.

2.4 Preparation of 2-bromo-2,2-difluoroketones

To a solution of ethyl 2-bromo-2,2-difluoroacetate (1.0 mmol, 1.0 equiv.) in anhydrous THF (10 mL) was dropwise added phenyl magnesium bromide (1.0 mol/l in THF, 1.2 mL, 1.2 equiv.) at -78 °C under nitrogen atmosphere. The reaction was stirred at -78 °C for 3 h and quenched with saturated NH₄Cl solution, extracted with EtOAc (25 mL x 3), and washed with H₂O followed by saturated NaCl solution. The organic layers were dried over anhydrous Na₂SO₄, filtered, and evaporated to give residue, which was purified by silica gel column chromatography with petroleum ether/EtOAc (100:1, v/v) as eluents furnishing the desired product.

2-bromo-2,2-difluoro-1-phenylethan-1-one (2k)

Colorless oil. Yield: 60 %. ¹H NMR (300 MHz, CDCl₃) δ 8.15 (d, J = 7.4 Hz, 2H), 7.68 (d, J = 7.5 Hz, 1H), 7.58 – 7.49 (m, 2H). ¹⁹F NMR (282 MHz, CDCl₃) δ -57.80. The spectroscopic data of **2k**

was consistent with previously reported data.¹¹

To a solution of 1-methyl-1*H*-indole (1.0 mmol, 1.0 equiv.) in 1,2-dichloroethane (30 mL) was added 2-bromo-2,2-difluoroacetic acid (3.0 mmol, 3.0 equiv.). The reaction was stirred at 100 °C for 10 h and cooled to room temperature. The reaction mixture was quenched with saturated NaHCO₃ solution, extracted with DCM (25 mL x 3), and washed with H₂O followed by saturated NaCl solution. The organic layers were dried over anhydrous Na₂SO₄, filtered, and evaporated to give residue, which was purified by silica gel column chromatography with petroleum ether/EtOAc (50:1, v/v) as eluents furnishing the desired product.

2-bromo-2,2-difluoro-1-(1-methyl-1*H*-indol-3-yl)ethan-1-one (2l)

Brown solid. Yield: 66 %. ¹H NMR (300 MHz, CDCl₃) δ 8.46 – 8.37 (m, 1H), 7.97 (s, 1H), 7.40 (d, J = 3.1 Hz, 3H), 3.92 (s, 3H). ¹⁹F NMR (282 MHz, CDCl₃) δ -56.79. The spectroscopic data of **21** was consistent with previously reported data.¹²

2.5 Preparation of bromodifluoromethyl substituted heterocycles

To a solution of 2-aminophenol (1.0 mmol, 1.0 equiv.), TEA (1.1 mmol, 1.1 equiv.) in EtOAc (10 mL) was added ethyl 2-bromo-2,2-difluoroacetate (1.5 mmol, 1.5 equiv.). The reaction was refluxed for 1 h and cooled to room temperature. The reaction mixture was extracted with EtOAc (25 mL x 3), and washed with H₂O followed by saturated NaCl solution. The organic layers were

dried over anhydrous Na₂SO₄, filtered, and evaporated to give residue, which was purified by silica gel column chromatography with petroleum ether/EtOAc (10:1, v/v) as eluents furnishing the intermediate 2-bromo-2,2-difluoro-*N*-(2-hydroxyphenyl)acetamidet. Then placed the intermediate (2.08 g) and PPA (8.04 g) in a dry round-bottom flask. The reaction was stirred at 150 °C for 1 h and cooled to room temperature, then added moderate amount of ice and concentrated ammonia (6 mL, 30% NH₃·H₂O). The mixture was extracted with EtOAc (25 mL x 3), and washed with H₂O followed by saturated NaCl solution. The organic layers were dried over anhydrous Na₂SO₄, filtered, and evaporated to give residue, which was purified by silica gel column chromatography with petroleum ether/EtOAc (50:1, v/v) as eluents furnishing the desired product.

2-(bromodifluoromethyl)benzo[d]oxazole (2m)

Colorless oil. Yield: 70%. ¹H NMR (300 MHz, DMSO- d_6) δ 8.01 – 7.91 (m, 2H), 7.68 – 7.61 (m, 1H), 7.60 – 7.52 (m, 1H). ¹⁹F NMR (282 MHz, CDCl₃) δ -51.42. The spectroscopic data of **2m** was consistent with previously reported data.¹¹

To the solution of 2-aminobenzenethiol (1.0 mmol, 1.0 equiv.) in chlorobenzene (10 mL) was added 2-bromo-2,2-difluoroacetic acid (5.0 mmol, 5.0 equiv.). The reaction mixture was stirred at 100 °C for 18 h, then cooled to room temperature and concentrated under reduced pressure. The mixture was extracted with EtOAc (25 mL x 3), and washed with H₂O followed by saturated NaCl solution. The organic layers were dried over anhydrous Na₂SO₄, filtered, and evaporated to give residue, which was purified by silica gel column chromatography with petroleum ether/EtOAc (50:1, v/v) as eluents furnishing the desired product.

2-(bromodifluoromethyl)benzo[d]thiazole (2n)

Yellow oil. Yield: 75%. ¹H NMR (300 MHz, DMSO-*d*₆) δ 8.31 (dd, *J* = 7.3, 2.1 Hz, 1H), 8.23 (dd,

J = 7.5, 2.1 Hz, 1H), 7.74 – 7.62 (m, 2H). ¹⁹F NMR (282 MHz, CDCl₃) δ -43.34. The spectroscopic data of **2n** was consistent with previously reported data.¹¹

2.6 General procedure A for the synthesis of 3a

A 10 mL oven-dried reaction vessel was equipped with a magnetic stirrer bar and charged with **1a** (0.2 mmol, 1.0 equiv.), Na₂CO₃ (0.4 mmol, 2.0 equiv.) and *fac*-[Ir(ppy)₃] (0.004 mmol, 0.02 equiv.). The reaction vessel was sealed and degassed via vacuum evacuation and back-filled with nitrogen for three times, then added the **2a** (0.3 mmol, 1.5 equiv.) and anhydrous acetone (2.0 mL). The reaction vessel was exposed to blue LEDs (450 nm, 25 W) irradiation and stirred at room temperature for 12 h. Upon completion of the reaction, the mixture was concentrated under vacuum and then extracted by ethyl acetate (10 mL) and washed with H₂O. The organic layers were concentrated and purified by silica gel column chromatography with petroleum ether/EtOAc (20:1, v/v) as eluents furnishing the product **3a**.

2.7 General procedure B for the synthesis of 4a

A 10 mL oven-dried reaction vessel was equipped with a magnetic stirrer bar and charged with **1a** (0.2 mmol, 1.0 equiv.), Na₂CO₃ (0.4 mmol, 2.0 equiv.) and *fac*-[Ir(ppy)₃] (0.004 mmol, 0.02 equiv.). The reaction vessel was sealed and degassed via vacuum evacuation and back-filled with nitrogen for three times, then added the **2a** (0.3 mmol, 1.5 equiv.) and anhydrous EtOH (2.0 mL). The reaction vessel was exposed to blue LEDs (450 nm, 25 W) irradiation and stirred at room temperature for 12 h. Upon completion of the reaction, the mixture was concentrated under vacuum and then extracted by ethyl acetate (10 mL) and washed with H₂O. The organic layers were concentrated and purified by silica gel column chromatography with petroleum ether/EtOAc (7:1, v/v) as eluents furnishing the product **4a**.

2.8 Gram-scale synthesis

A 100 mL oven-dried reaction vessel was equipped with a magnetic stirrer bar and charged with **1a** (970 mg, 5 mmol, 1.0 equiv.), Na₂CO₃ (1.06 g, 10 mmol, 2.0 equiv.) and *fac*-[Ir(ppy)₃] (65 mg, 0.1 mmol, 0.02 equiv.). The reaction vessel was sealed and degassed via vacuum evacuation and back-filled with nitrogen for three times, then added the **2a** (1.52 g, 7.5 mmol, 1.5 equiv.) and anhydrous acetone (50 mL). The reaction vessel was exposed to blue LEDs (450 nm, 25 W) irradiation and stirred at room temperature for 12 h. Upon completion of the reaction, the mixture was concentrated under vacuum and then extracted by ethyl acetate (25 mL) and washed with H₂O. The organic layers were concentrated and purified by silica gel column chromatography with petroleum ether/EtOAc (20:1, v/v) as eluents furnishing the product **3a** (1.17 g, 59 % yield).

A 100 mL oven-dried reaction vessel was equipped with a magnetic stirrer bar and charged with **1a** (970 mg, 5 mmol, 1.0 equiv.), Na₂CO₃ (1.06 g, 10 mmol, 2.0 equiv.) and *fac*-[Ir(ppy)₃] (65 mg, 0.1 mmol, 0.02 equiv.). The reaction vessel was sealed and degassed via vacuum evacuation and back-filled with nitrogen for three times, then added the **2a** (1.52 g, 7.5 mmol, 1.5 equiv.) and anhydrous EtOH (50 mL). The reaction vessel was exposed to blue LEDs (450 nm, 25 W) irradiation and stirred at room temperature for 12 h. Upon completion of the reaction, the mixture was concentrated under vacuum and then extracted by ethyl acetate (25 mL) and washed with H₂O. The organic layers were concentrated and purified by silica gel column chromatography with petroleum ether/EtOAc (7:1, v/v) as eluents furnishing the product **4a** (1.07 g, 67 % yield).

2.9 Late-stage functionalization

2-(3-bromo-3-(phenylsulfonyl)cyclobutyl)-2,2-difluoroacetamide (5a)

To a solution of compound **3a** (80 mg, 0.20 mmol, 1.0 equiv.) in MeOH (2.0 mL, 0.1 M) was added NH₃ (7.0 M in MeOH, 0.29 mL, 2.0 mmol, 10.0 equiv.). The reaction was stirred at room temperature for 12 h and quenched with saturated NH₄Cl solution. The reaction mixture was extracted with DCM (10 mL x 3), and washed with H₂O followed by saturated NaCl solution. The organic layers were dried over anhydrous Na₂SO₄, filtered, and evaporated to give residue, which was purified by silica gel column chromatography with petroleum ether/EtOAc (5:1, v/v) as eluents furnishing the desired product as a white solid (58 mg, 78 % yield).

ethyl 2,2-difluoro-2-(3-(phenylsulfonyl)cyclobutyl)acetate (4a)

To a solution of compound **3a** (80 mg, 0.20 mmol, 1.0 equiv.) in MeOH (2.0 mL, 0.1 M) was added 10 % Pd/C (5 mg). The reaction was stirred at room temperature for 12 h under a hydrogen atmosphere. The desired product **4a** was obtained as a light-yellow solid by filtering mixture and evaporating the filtrate (58 mg, 90 % yield).

2,2-difluoro-2-(3-(phenylsulfonyl)cyclobutyl)acetic acid (5b)

To a solution of compound **4a** (63.6 mg, 0.20 mmol, 1.0 equiv.) in MeOH (1.0 mL) was added NaOH solution (1.0 M, 1.0 mL) at room temperature. The reaction was stirred at room temperature for 12 h and concentrated *in vacuo*, then neutralized to pH 6-7 with 1N HCl solution. The reaction mixture was extracted with DCM (10 mL x 3), and washed with H₂O followed by saturated NaCl solution. The organic layers were dried over anhydrous Na₂SO₄, filtered, and evaporated to give residue, which was purified by silica gel column chromatography with DCM/MeOH/AcOH (30:1:0.1, v/v) as eluents furnishing the desired product as a white solid (38 mg, 66 % yield).

2.10 Applications in ATR inhibitors

Scheme S2. Synthesis of compound 5n^{*a*}

^a Reagents and conditions: (a) benzimidazole, K₂CO₃, DMF, 110 °C, 12 h; (b) benzophenone imine, Pd₂(dba)₃, Xantphos, Cs₂CO₃, 1,4-dioxane, 105 °C, 12 h; (c) hydroxylamine hydrochloride, AcONa, rt, 24 h; (d) 2-bromo-*N*,*N*-diethyl-2,2-difluoroacetamide (1x), *fac*-[Ir(ppy)₃], Na₂CO₃, EtOH, Blue LEDs, rt, 12 h; (e) Pd₂(dba)₃, Xantphos, Cs₂CO₃, 1,4-dioxane, 105 °C, 12 h.

(*R*)-4-(2-(1*H*-benzo[*d*]imidazol-1-yl)-7-iodothieno[3,2-*d*]pyrimidin-4-yl)-3-methylmorpholine (5j)

A mixture of benzimidazole (224 mg, 1.90 mmol) and K₂CO₃ (524 mg, 3.79 mmol) in DMF (15 mL) was added **5i** (500 mg, 1.26 mmol). The reaction mixture was stirred at 110 °C for 12 h and cooled to room temperature. Then extracted by EtOAc and washed with H₂O and brine. The combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by silica gel chromatography to give **5j** as a white solid (yield, 74 %). ¹**H** NMR (300 MHz, CDCl₃) δ 9.07 (s, 1H), 8.93 (d, *J* = 7.9 Hz, 1H), 7.99 (s, 1H), 7.85 (d, *J* = 8.2 Hz, 1H), 7.47 (t, *J* = 7.7 Hz, 1H), 7.38 (t, *J* = 7.6 Hz, 1H), 4.86 – 4.73 (m, 1H), 4.58 – 4.45 (m, 1H), 4.21 – 4.10 (m, 1H), 3.96 – 3.82 (m, 2H), 3.79 – 3.59 (m, 2H), 1.51 (d, *J* = 6.8 Hz, 3H).

(*R*)-N-(2-(1*H*-benzo[*d*]imidazol-1-yl)-4-(3-methylmorpholino)thieno[3,2-*d*]pyrimidin-7-yl)-1,1-diphenylmethanimine (5k)

A mixture of **5j** (300 mg, 0.63 mmol), $Pd_2(dba)_3$ (29 mg, 0.031 mmol), Xantphos (36 mg, 0.062 mmol) and Cs_2CO_3 (614 mg, 1.89 mmol) in anhydrous 1,4-dioxane (15 mL) was added benzophenone imine (171 mg, 0.94 mmol). The reaction mixture was refluxed for 12 h under a nitrogen atmosphere then cooled to room temperature and concentrated under reduced pressure. Then extracted by EtOAc and washed with H₂O and brine. The combined organic layers were dried

over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by silica gel chromatography to give **5k** as a yellow solid (yield, 62 %). ¹**H NMR** (400 MHz, CDCl₃) δ 9.50 (s, 1H), 9.08 (d, *J* = 7.9 Hz, 1H), 8.33 (d, *J* = 7.1 Hz, 2H), 8.26 (d, *J* = 7.9 Hz, 1H), 7.98 (t, *J* = 7.3 Hz, 1H), 7.90 (t, *J* = 7.6 Hz, 2H), 7.74 (t, *J* = 7.6 Hz, 1H), 7.70 – 7.60 (m, 7H), 5.25 – 5.15 (m, 1H), 4.92 – 4.84 (m, 1H), 4.56 – 4.52 (m, 1H), 4.33 – 4.22 (m, 2H), 4.17 – 3.98 (m, 2H), 1.89 (d, *J* = 6.8 Hz, 3H).

(R)-2-(1H-benzo[d]imidazol-1-yl)-4-(3-methylmorpholino)thieno[3,2-d]pyrimidin-7-amine (51)

A mixture of **5k** (250 mg, 0.47 mmol) and AcONa (97 mg, 1.18 mmol) in MeOH (15 mL) was added hydroxylamine hydrochloride (66 mg, 0.94 mmol). The reaction mixture was stirred at room temperature for 12 h. Then extracted by EtOAc and washed with H₂O and brine. The combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by silica gel chromatography to give **5l** as a white solid (yield, 80 %). ¹H **NMR** (300 MHz, DMSO-*d*₆) δ 9.29 (s, 1H), 8.69 (d, *J* = 8.1 Hz, 1H), 7.76 (d, *J* = 7.2 Hz, 1H), 7.46 – 7.39 (m, 1H), 7.38 – 7.30 (m, 1H), 6.68 (s, 1H), 5.41 (s, 2H), 4.89 – 4.73 (m, 1H), 4.59 – 4.44 (m, 1H), 4.14 – 3.99 (m, 1H), 3.88 – 3.72 (m, 2H), 3.67 – 3.51 (m, 2H), 1.40 (d, *J* = 6.8 Hz, 3H).

2-(3-((4-bromophenyl)sulfonyl)cyclobutyl)-*N*,*N*-diethyl-2,2-difluoroacetamide (5m)

Compound **5m** was synthesized from **1g** and **1x** by general procedure B for the synthesis of **5m** as a white solid (yield, 71 %). ¹**H NMR** (300 MHz, CDCl₃) δ 7.83 – 7.50 (m, 4H), 3.78 – 3.63 (m, 1H), 3.51 (q, *J* = 7.1 Hz, 2H), 3.33 (q, *J* = 7.1 Hz, 2H), 3.23 – 3.01 (m, 1H), 2.72 – 2.56 (m, 2H), 2.38 – 2.25 (m, 2H), 1.19 (t, *J* = 7.0 Hz, 3H), 1.12 (t, *J* = 7.1 Hz, 3H). ¹⁹**F NMR** (282 MHz, CDCl₃) δ -108.64.

(*R*)-2-(3-((4-((2-(1*H*-benzo[*d*]imidazol-1-yl)-4-(3-methylmorpholino)thieno[3,2-*d*]pyrimidin-7-yl)amino)phenyl)sulfonyl)cyclobutyl)-*N*,*N*-diethyl-2,2-difluoroacetamide (5n)

Compound **5n** was synthesized from **5l** and **5m** by a synthetic procedure similar to that of **5n** as a beige solid (yield, 65 %). ¹**H** NMR (300 MHz, CDCl₃) δ 9.11 (s, 1H), 8.43 (d, *J* = 9.0 Hz, 1H), 7.88 – 7.77 (m, 3H), 7.46 – 7.29 (m, 5H), 7.27 (s, 1H), 4.92 – 4.75 (m, 1H), 4.63 – 4.47 (m, 1H), 4.22 – 4.10 (m, 1H), 3.99 – 3.81 (m, 2H), 3.79 – 3.60 (m, 3H), 3.51 (q, *J* = 7.1 Hz, 2H), 3.33 (q, *J* = 7.1 Hz, 2H), 3.21 – 2.99 (m, 1H), 2.75 – 2.57 (m, 2H), 2.40 – 2.23 (m, 2H), 1.53 (d, *J* = 6.8 Hz, 3H), 1.23 – 1.15 (m, 3H), 1.12 (t, *J* = 7.1 Hz, 3H). ¹³**C** NMR (75 MHz, CDCl₃) δ 162.1 (t, ²*J*_{C-F} =

29.3 Hz), 158.4, 154.5, 152.7, 147.0, 144.8, 142.4, 132.9, 132.0, 130.6, 128.4, 124.5, 123.7, 120.5, 117.9 (t, ${}^{1}J_{C-F}$ = 255.0 Hz), 115.6, 114.9, 110.1, 107.7, 71.0, 66.9, 52.9, 49.7, 41.6, 41.2, 33.1 (t, ${}^{2}J_{C-F}$ $_{F}$ = 27.0 Hz), 23.6 (t, ${}^{3}J_{C-F}$ = 5.3 Hz), 15.5, 14.3, 12.4. ¹⁹F NMR (282 MHz, CDCl₃) δ -108.48. HRMS (ESI) for C₃₄H₃₇F₂N₇NaO₄S₂ [M + Na]⁺, calcd: 732.2188, found: 732.2209.

3. Reaction optimization

3.1 Optimization of reaction conditions for the preparation of 3a:

Entry	Base	Yield (%) ^b
1	DBU	0
2	pyridine	0
3	DIPEA	0
4	Na ₂ CO ₃	62
5	NaHCO ₃	60
6	K ₂ CO ₃	55
7	K ₃ PO ₄	53
8	Cs_2CO_3	trace
9	t-BuONa	0
10	AcONa	52

Table S1. Screening of base^{*a*}

^{*a*} Reactions were carried out with **1a** (0.2 mmol), **2a** (0.3 mmol), photocatalyst (0.004 mmol) and base (0.4 mmol) in acetone (2.0 mL) at room temperature under nitrogen atmosphere for 12 h. ^{*b*} All yields are of isolated products.

Table S2. Screening of photocatalyst^a

Entry	Base	Yield (%) ^b
1	fac-[Ir(ppy)3]	62
2	[Ir(ppy) ₂ (dtbbpy)](PF ₆)	0
3	[Ir(dF(CF ₃)ppy) ₂ (dtbbpy)](PF ₆)	0
4	4CzIPN	0
5	TBADT	0
6	thioxanthen-9-one	N.R. ^{<i>c</i>}
7	Mes-Acr-Me	N.R.
8	[Ru(bpy) ₃](PF ₆) ₂	trace

^{*a*} Reactions were carried out with **1a** (0.2 mmol), **2a** (0.3 mmol), photocatalyst (0.004 mmol) and base (0.4 mmol) in acetone (2.0 mL) at room temperature under nitrogen atmosphere for 12 h.

^b All yields are of isolated products.

^cN.R. = No Reaction.

Entry	Solvent	Yield of 3a/4a (%) ^b
1	Acetone	62/0
2	DCM	trace/0
3	EtOAc	10/0
4	THF	20/50
5	2-MeTHF	20/47
6	MeCN	58/0
7	toluene	43/22
8	MeOH	0/trace
9	EtOH	0/72
10	1,4-dioxane	trace/56
11	DMF	0/46
12	DMSO	0/0

Table S3. Screening of solvent^a

^{*a*} Reactions were carried out with **1a** (0.2 mmol), **2a** (0.3 mmol), *fac*-[Ir(ppy)₃] (0.004 mmol) and base (0.4 mmol) in solvent (2.0 mL) at room temperature under nitrogen atmosphere for 12 h. ^{*b*} All yields are of isolated products.

Table S4. Control experiments^a

Entry	Deviation	Yield (%) ^b
1	without base	trace
2	without light	N.R. ^{<i>c</i>}
3	390 nm purple LEDs	26
4	without photocatalyst	N.R.
5	under air	0
6	with a drop of H_2O	34

^{*a*} Reactions were carried out with **1a** (0.2 mmol), **2a** (0.3 mmol), *fac*-[Ir(ppy)₃] (0.004 mmol) and base (0.4 mmol) in solvent (2.0 mL) at room temperature under nitrogen atmosphere for 12 h.

^b All yields are of isolated products.

^cN.R. = No Reaction.

3.2 Optimization of reaction conditions for the preparation of 4a:

Entry	Solvent	Yield of 7a (%) ^b
1	EtOH	72
2	<i>i</i> -PrOH	55
3	<i>n</i> -PrOH	56
4	<i>n</i> -BuOH	50
5	s-BuOH	67
6	<i>t</i> -BuOH	18

Table S5. Screening of solvent^a

^a Reactions were carried out with 1a (0.2 mmol), 2a (0.3 mmol), fac-[Ir(ppy)₃] (0.004 mmol) and base (0.4 mmol) in solvent (2.0 mL) at room temperature under nitrogen atmosphere for 12 h.
^b All yields are of isolated products.

4. Mechanistic Studies

4.1 Radical trapping experiments

A 10 mL oven-dried reaction vessel was equipped with a magnetic stirrer bar and charged with **1a** (0.2 mmol, 1.0 equiv.), TEMPO (0.4 mmol, 2.0 equiv.), Na₂CO₃ (0.4 mmol, 2.0 equiv.) and *fac*-[Ir(ppy)₃] (0.004 mmol, 0.02 equiv.). The reaction vessel was sealed and degassed via vacuum evacuation and back-filled with nitrogen for three times, then added the **2a** (0.3 mmol, 1.5 equiv.) and anhydrous acetone (2 mL). The reaction vessel was exposed to blue LEDs (450 nm, 25 W) irradiation and stirred at room temperature for 12 h. The reaction mixture was concentrated under vacuum then taken and monitored by ¹⁹F NMR. (PhCF₃ was used as an internal standard.)¹³

0 -10 -20 -30 -40

-50 -60 -70

-80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (pom)

A 10 mL oven-dried reaction vessel was equipped with a magnetic stirrer bar and charged with **1a** (0.2 mmol, 1.0 equiv.), TEMPO (0.4 mmol, 2.0 equiv.), Na₂CO₃ (0.4 mmol, 2.0 equiv.) and *fac*-[Ir(ppy)₃] (0.004 mmol, 0.02 equiv.). The reaction vessel was sealed and degassed via vacuum evacuation and back-filled with nitrogen for three times, then added the **2a** (0.3 mmol, 1.5 equiv.) and anhydrous EtOH (2 mL). The reaction vessel was exposed to blue LEDs (450 nm, 25 W) irradiation and stirred at room temperature for 12 h. The reaction mixture was concentrated under vacuum then taken and monitored by ¹⁹F NMR. (PhCF₃ was used as an internal standard.)¹³

Results and Conclusion: TEMPO-adduct product was detected by ¹⁹F NMR spectrum, no desired product was obtained in the presence of a radical scavenger. This experiment indicates that the reaction likely proceeds through a radical mechanism.

A 10 mL oven-dried reaction vessel was equipped with a magnetic stirrer bar and charged with **1a** (0.2 mmol, 1.0 equiv.), Na₂CO₃ (0.4 mmol, 2.0 equiv.) and *fac*-[Ir(ppy)₃] (0.004 mmol, 0.02 equiv.). The reaction vessel was sealed and degassed via vacuum evacuation and back-filled with nitrogen for three times, then added the **2a** (0.3 mmol, 1.5 equiv.) and anhydrous acetone (2 mL). The reaction vessel was exposed to blue LEDs (450 nm, 25 W) irradiation and stirred at room temperature for 0.5 h. The light was then removed for 0.5 h. Repeat those lights on and off operation for 3 h. The rection was tracked with LC-MS at each 0.5 hours.

Light condition		on	off	on	off	on	off
Time (h)	0	0.5	1.0	1.5	2.0	2.5	3.0
Yield	0	32	34	44	44	51	53

Fig. S2. Light on/off experiment.

Results and Conclusion: The light on/off experiment indicated that the reaction shows photoirradiation dependence and may not follow a radical chain mechanism.

A 10 mL oven-dried reaction vessel was equipped with a magnetic stirrer bar and charged with **1a** (0.2 mmol, 1.0 equiv.), Na₂CO₃ (0.4 mmol, 2.0 equiv.) and *fac*-[Ir(ppy)₃] (0.004 mmol, 0.02 equiv.). The reaction vessel was sealed and degassed via vacuum evacuation and back-filled with nitrogen for three times, then added the **2a** (0.3 mmol, 1.5 equiv.) and anhydrous EtOH (2 mL). The reaction vessel was exposed to blue LEDs (450 nm, 25 W) irradiation and stirred at room temperature for 0.5 h. The light was then removed for 0.5 h. Repeat those lights on and off operation for 3 h. The rection was tracked with LC-MS at each 0.5 hours.

Light condition		on	off	on	off	on	off
Time (h)	0	0.5	1.0	1.5	2.0	2.5	3.0
Yield	0	37	37	47	47	59	59

Fig. S3. Light on/off experiment.

Results and Conclusion: The light on/off experiment indicated that the reaction shows photo-irradiation dependence and may not follow a radical chain mechanism.

Results and Conclusion: When EtOD was used as solvent, no deuterated product **4a**' was tracked. While the deuterated product **4a**' and its transesterification product **4a**" were recorded with full deuterated EtOH- d_6 . In the screening process, solvents bearing C-H bond adjacent to heteroatom were conductive to the formation of difluoromethylation product **4a**. The deuterated product **4a**' was produced in 47% yield using the THF- d_8 , which further confirmed the

borrowed hydrogen coming from solvents.

4.4 DFT calculations

All density functional theory (DFT) calculations were performed with the Gaussian 16 program package. ¹⁴

Full geometry optimizations were operated to locate all of the stationary points, using (U)M06-2X density functional theory method ¹⁵⁻¹⁶ with def2SVP ¹⁷ basis for all atoms, and a polarized continuum model based on solute electron density (PCM) ¹⁸⁻¹⁹ was employed to simulate the solvent effect of acetone or ethanol solvent in optimization. The spin-restricted DFT method was used for closed-shell species and the spin-unrestricted DFT method for radical species and open-shell singlet species (TS1-Br, TS1-H_a, TS1-H_b) with the "guess (mix, always)" keyword. In the meantime, the stability of the density function theory (DFT) wave-function of the auxiliary Kohn–Sham determinant was examined.²⁰ Harmonic vibrational frequency calculations were conducted to characterize all stationary point. Herein, minima have zero imaginary frequencies, and transition states have only one imaginary vibrational frequency. Intrinsic reaction coordinate (IRC) calculations ²¹⁻²² were implemented to track minimum energy paths connecting each transition state structure to two corresponding minima. The single point energy calculations of all stationary points were performed at the (U)M06-2X/def2TZVP,SDD level using the PCM-SMD model with acetone or ethanol as solvent. This theoretical level is denoted as PCM-SMD (acetone/ethanol)-(U)M06-

2X/def2TZVP.

Unless mentioned otherwise, the Gibbs free energy of formation (ΔG) is obtained at the PCM-SMD (acetone/ethanol)-(U)M06-2X/def2TZVP level.

Scheme S3. DFT calculations

Table S6. Thermal correction to Gibbs free energy (G_0 , hartree), single point energies (SP-E, hartree), sum of electronic and thermal free enaergies (G_c , hartree) with the addition of SP-E as well as thermal corrections, and relative Gibbs free energies (ΔG , kcal mol⁻¹) of various species with respect to TS1-Br for radical coupling and radical addition reactions at the PCM-SMD (acetone/ethanol)-(U)M06-2X/def2TZVP . IF represents imaginary frequencies (cm⁻¹).

Species	G_0	SP-E	$G_c(G_0+SP-E)$	ΔG	IF
		Solvent: Et	НС		
Br	-0.01683	-2574.154372	-2574.171202		
EtOH	0.05507	-155.036443	-154.981373		
Int I	0.222813	-1441.228673	-1441.00586		
P1	0.224901	-4015.486781	-4015.26188		
TS1-Br	0.219643	-4015.387473	-4015.16783	5.79308	-86.59
TS1-H _b	0.291753	-1596.237465	-1595.945712	26.0544275	-1759.19
TS1-Ha	0.293404	-1596.252483	-1595.959079	17.666635	-1372.19
TS2	0.046353	-2729.191868	-2729.145515	4.43015	-175.25
		Solvent: acet	tone		
Br	-0.01683	-2574.153976	-2574.170806		
Int I	0.22279	-1441.228974	-1441.006184		
P1	0.224895	-4015.487142	-4015.262247		
TS1-Br	0.219401	-4015.388964	-4015.169563	4.6604425	-87.73
		Solvent: 1-pro	panol		
1-propanol	0.081307	-194.338495	-194.257188		
Int I	0.222818	-1441.228062	-1441.005244		
TS1-H _a	0.320068	-1635.542199	-1635.222131	25.268727	-1388.91
TS2	0.073001	-2768.499527	-2768.426526	1.17	-162.89
		Solvent: 1-bu	tanol		

1-butanol	0.10751	-233.645252	-233.537742		
Int I	0.222845	-1441.227246	-1441.004401		
TS1-H _a	0.318263	-1635.568792	-1674.502717	24.720102	-1384.55
TS2	0.099024	-2807.807042	-2807.708018	0.43	-158.92
	S	olvent: 2-methyl-1	l-propanol		
2-methyl-1-Propanol	0.10756	-233.647572	-233.540012		
Int I	0.222848	-1441.227801	-1441.004953		
TS1-H _a	0.347655	-1674.850447	-1674.502792	26.442471	-1414.60
TS2	0.100245	-2807.808915	-2807.70867	1.649	-111.62

Table S7. Structure and Cartesian Coordinates of Optimized Geometries

Structure Ethanol	
Solvent: Ethanol	
cartesian coordinates	C -2.75902300 0.01808400 0.00395400
of stationary point	C -1.24528500 0.01421100 -0.00269600
structure [Å]	Н -3.13670600 1.05033700 0.01082800
	Н -3.15589600 -0.49364900 -0.88315300
	Н -3.13685200 -0.49253000 0.90103000
	Н -0.87451500 -1.02645500 -0.02808400
	Н -0.87453600 0.51226500 -0.91680800
	O -0.79673900 0.68369400 1.15640200
	H 0.16699100 0.68184700 1.15266800
Structure Int I	
Solvent: Ethanol	
	0.0105100 0.00010100 0.00050000
cartesian coordinates	C -0.68165100 -0.29219100 2.28978200
of stationary point	C = 0.7255800 + 0.79188000 + 0.84954500
structure [A]	C = -0.07233800 = 1.07108300 = 2.38994000
	H = -1.49039300 -0.41208800 -1.33203000 $H = -1.01788400 -0.70501600 -2.25172800$
	H = -1.01/86400 - 0.70391000 - 5.231/3800 $H = -1.5080800 - 1.60824600 - 2.44254600$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	H = 1.99507900 + 0.65354800 + 2.98848800
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	S -0.80221500 2.61615800 2.04821900
	O 0.15673000 3.65196500 2.43145800
	O -2.14974200 2.60254900 2.61700600
	C -0.94799000 2.62332500 0.27626700
	C 0.11736200 3.10368400 -0.48487800
	C -2.09424600 2.08307400 -0.30634900
	C 0.03116100 3.02779700 -1.87338400

	Н	0.98857300 3.53637400 0.00918900
	С	-2.16573700 2.01412900 -1.69594000
	Н	-2.91338100 1.73407600 0.32420400
	С	-1 10422500 2 48035100 -2 47443300
	н	0.85075900 3.40049600 -2.48869200
	11	2.0526075700 = 1.50821000 = 2.17225200
	п	-5.05309700 1.59651900 -2.17525200
	H	-1.16492200 2.42154400 -3.56199300
	C	0.75269300 - 1.17988500 0.39482000
	C	2.16817700 -1.49205300 -0.12468000
	F	0.24898700 -0.17426500 -0.37090100
	F	-0.03740500 -2.25502400 0.18174400
	0	3 15947600 -1 30278300 0 52560500
	Ő	2 12455000 -1 96585300 -1 35006800
	C	2.12+35000 -1.5000000000000000000000000000000000000
	C	3.38813900 -2.28043300 -1.90040800
	C	3.10807700 -2.79305100 -3.35663200
	Н	3.89760000 -3.02668300 -1.34077000
	Н	4.00241100 -1.36912300 -1.97292800
	Н	4.05448600 -3.04267000 -3.85316700
	Н	2.48494600 -3.69622900 -3.31844800
	н	2 59089700 -2 03047700 -3 95372000
Structure Int I		2.59009100 2.02011100 5.92512000
Solvent: acetone		
contosion acordinatas	6	0.68166000 0.20222200 2.20050200
cartesian coordinates	С	-0.68166900 -0.29233300 2.29050200
cartesian coordinates of stationary point	C C	-0.68166900 -0.29233300 2.29050200 0.72476200 -0.79216000 1.85037800
cartesian coordinates of stationary point structure [Å]	C C C	-0.68166900 -0.29233300 2.29050200 0.72476200 -0.79216000 1.85037800 -0.07251000 1.07154100 2.39013800
cartesian coordinates of stationary point structure [Å]	C C C H	-0.68166900 -0.29233300 2.29050200 0.72476200 -0.79216000 1.85037800 -0.07251000 1.07154100 2.39013800 -1.49073200 -0.41309600 1.55295100
cartesian coordinates of stationary point structure [Å]	C C C H H	-0.68166900 -0.29233300 2.29050200 0.72476200 -0.79216000 1.85037800 -0.07251000 1.07154100 2.39013800 -1.49073200 -0.41309600 1.55295100 -1.01763100 -0.70575800 3.25267200
cartesian coordinates of stationary point structure [Å]	С С С Н Н Н	-0.68166900 -0.29233300 2.29050200 0.72476200 -0.79216000 1.85037800 -0.07251000 1.07154100 2.39013800 -1.49073200 -0.41309600 1.55295100 -1.01763100 -0.70575800 3.25267200 1.15061800 -1.60846900 2.44453400
cartesian coordinates of stationary point structure [Å]	C C C H H H C	-0.68166900 -0.29233300 2.29050200 0.72476200 -0.79216000 1.85037800 -0.07251000 1.07154100 2.39013800 -1.49073200 -0.41309600 1.55295100 -1.01763100 -0.70575800 3.25267200 1.15061800 -1.60846900 2.44453400 1.32734500 0.61647900 2.11621900
cartesian coordinates of stationary point structure [Å]	C C C H H H C	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
cartesian coordinates of stationary point structure [Å]	С С С Н Н Н Н С Н	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
cartesian coordinates of stationary point structure [Å]	C C C H H H C H H	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
cartesian coordinates of stationary point structure [Å]	C C C H H H C H H S	-0.68166900 -0.29233300 2.29050200 0.72476200 -0.79216000 1.85037800 -0.07251000 1.07154100 2.39013800 -1.49073200 -0.41309600 1.55295100 -1.01763100 -0.70575800 3.25267200 1.15061800 -1.60846900 2.44453400 1.32734500 0.61647900 2.11621900 1.99474300 0.65321500 2.98951800 1.83753500 1.09648900 1.26618900 -0.80190100 2.61581200 2.04748000
cartesian coordinates of stationary point structure [Å]	C C C H H H C H H S O	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
cartesian coordinates of stationary point structure [Å]	C C C H H H C H H S O O	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
cartesian coordinates of stationary point structure [Å]	C C C H H H C H H S O O C	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
cartesian coordinates of stationary point structure [Å]	C C C H H H C H H S O O C C	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
cartesian coordinates of stationary point structure [Å]	C C C H H H C H H S O O C C C C	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
cartesian coordinates of stationary point structure [Å]	C C C H H H C H H S O O C C C C C	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
cartesian coordinates of stationary point structure [Å]	C C C H H H C H H S O O C C C C C	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
cartesian coordinates of stationary point structure [Å]	C C C H H H C H H S O O C C C C H H H S O C C H H H H C H H H S O C C H H H H C H H H C H H H C H H H C H H H H C H H H H C C C H H H H C H H H H C H H H H C H H H H C C H H H H H C H H H H C C H H H H H C C H H H H H C H H H H C C H H H H H C C H H H H H H H H H H H H H C C H	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
cartesian coordinates of stationary point structure [Å]	C C C H H H C H H S O O C C C C H C H H C H H C H H C H H C H H C H H C H H C H H C H C H H H C C C H H H C C H H H C C C H H H C C C H H H C C C C H H H C C C C H H H C C C C C H H H C C C C C C H H H C	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
cartesian coordinates of stationary point structure [Å]	C C C H H H C H H S O O C C C C H C H H H S O O C C H H H H C H H H C H H H C H H H C H H H C H H H C H H H C H H H H C C C H H H H C H H H H C H C H H H H C H H H H C H H H H C H H H H H C H H H H H C H	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
cartesian coordinates of stationary point structure [Å]	C C C H H H C H H S O O C C C C H H C H H C H H C H H C H H C H H C H H C C C C H H H C C C C H H H C C C C H H H C C C C C C H H H C	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
cartesian coordinates of stationary point structure [Å]	C C C H H H C H H S O O C C C C H H C H H C H H C H H H C C C H H H C H H C H H H C H H H C H H H C H H H C H H H C H H H C C C C C H H H H C H C H H H C H C H H H C H H H H C H H H H C H H H H C H H H H C H H H H C H H H H H C H H H H H C H H H H H C H H H H H H C H H H H H C H	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
cartesian coordinates of stationary point structure [Å]	C C C H H H C H H S O O C C C C H H H C H H H C H H H C H H H C C C C H H H H C H H H C H H H C H H H C H H H C H C C C C C H H H H C H C H C H H H H C H C H H H H C H H H H H C H H H H H H H H H H C C C C C H	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
cartesian coordinates of stationary point structure [Å]	C C C H H H C H H S O O C C C C H C H H H S O O C C C H H H H C H H H C H H H C H H H C H H H C H H H C H H H H C H H H H C C C C C H H H H C H C H H H H H C H C H H H H H H C H H H H H H H H H C C C C C H	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

<u> </u>		
C	0.75273000 -1.18017600 0.39569800	
С	2.16818400 -1.49205600 -0.12406200	
F	0.24872500 -0.17461600 -0.37003700	
F	-0.03725300 -2.25540200 0.18250100	
	2 15056100 1 2020200 0 52620000	
0	3.13930100 -1.30302200 0.32020900	
0	2.12433000 -1.96528400 -1.34961000	
C	3.38784400 -2.27962400 -1.96650200	
С	3.10737300 -2.79148000 -3.35690200	
Н	3.89734900 -3.02624300 -1.34140300	
н	4 00200500 -1 36824700 -1 97278700	
и 11	4.05270000 2.04076500 2.95274100	
п	4.05570000 -5.04070500 -5.85574100	
Н	2.48436000 -3.69475900 -3.31904700	
Н	2.59009900 -2.02856300 -3.95348400	
C	-0.70958500 -0.23619100 2.08558300	
С	0.69093700 -0.68802900 1.61067700	
С	-0.06314000 1.03920800 2.65146300	
С н	-0.06314000 1.03920800 2.65146300 -1.38787500 -0.02612200 1.24716100	
C H	-0.06314000 1.03920800 2.65146300 -1.38787500 -0.02612200 1.24716100 1.21004600 0.87087800 2.81661200	
C H H	-0.06314000 1.03920800 2.65146300 -1.38787500 -0.02612200 1.24716100 -1.21994600 -0.87087800 2.81661300	
C H H H	-0.063140001.039208002.65146300-1.38787500-0.026122001.24716100-1.21994600-0.870878002.816613001.12212100-1.489799002.22270600	
C H H H C	-0.063140001.039208002.65146300-1.38787500-0.026122001.24716100-1.21994600-0.870878002.816613001.12212100-1.489799002.222706001.260464000.708365001.94190400	
С Н Н С Н	-0.063140001.039208002.65146300-1.38787500-0.026122001.24716100-1.21994600-0.870878002.816613001.12212100-1.489799002.222706001.260464000.708365001.941904002.158295000.744976002.56611200	
С Н Н С Н Н	-0.063140001.039208002.65146300-1.38787500-0.026122001.24716100-1.21994600-0.870878002.816613001.12212100-1.489799002.222706001.260464000.708365001.941904002.158295000.744976002.566112001.417866001.318916001.04253200	
C H H C H H S	-0.063140001.039208002.65146300-1.38787500-0.026122001.24716100-1.21994600-0.870878002.816613001.12212100-1.489799002.222706001.260464000.708365001.941904002.158295000.744976002.566112001.417866001.318916001.042532000.860255002.629907002.22911600	
C H H C H H S	-0.063140001.039208002.65146300-1.38787500-0.026122001.24716100-1.21994600-0.870878002.816613001.12212100-1.489799002.222706001.260464000.708365001.941904002.158295000.744976002.566112001.417866001.318916001.04253200-0.860255002.629907002.229116000.066402002.655200002.6552000	
C H H C H H S O	-0.063140001.039208002.65146300-1.38787500-0.026122001.24716100-1.21994600-0.870878002.816613001.12212100-1.489799002.222706001.260464000.708365001.941904002.158295000.744976002.566112001.417866001.318916001.04253200-0.860255002.629907002.229116000.066403003.685309002.62819400	
C H H C H H S O O	-0.063140001.039208002.65146300-1.38787500-0.026122001.24716100-1.21994600-0.870878002.816613001.12212100-1.489799002.222706001.260464000.708365001.941904002.158295000.744976002.566112001.417866001.318916001.04253200-0.860255002.629907002.229116000.066403003.685309002.62819400-2.213221002.581529002.77620700	
C H H C H H S O O C	-0.063140001.039208002.65146300-1.38787500-0.026122001.24716100-1.21994600-0.870878002.816613001.12212100-1.489799002.222706001.260464000.708365001.941904002.158295000.744976002.566112001.417866001.318916001.04253200-0.860255002.629907002.229116000.066403003.685309002.62819400-2.213221002.581529000.77620700-0.971659002.622300000.45556000	
C H H C H H S O O C C	-0.063140001.039208002.65146300-1.38787500-0.026122001.24716100-1.21994600-0.870878002.816613001.12212100-1.489799002.222706001.260464000.708365001.941904002.158295000.744976002.566112001.417866001.318916001.04253200-0.860255002.629907002.229116000.066403003.685309002.62819400-2.213221002.581529002.77620700-0.971659002.622300000.455560000.080025003.15782900-0.28778700	
C H H C H H S O O C C C C	-0.06314000 1.03920800 2.65146300 -1.38787500 -0.02612200 1.24716100 -1.21994600 -0.87087800 2.81661300 1.12212100 -1.48979900 2.22270600 1.26046400 0.70836500 1.94190400 2.15829500 0.74497600 2.56611200 1.41786600 1.31891600 1.04253200 -0.86025500 2.62990700 2.22911600 0.06640300 3.68530900 2.62819400 -2.21322100 2.58152900 2.77620700 -0.97165900 2.62230000 0.45556000 0.08002500 3.15782900 -0.28778700 -2.11546400 2.09731900 -0.14546800	
C H H C H H S O O C C C C C	-0.06314000 1.03920800 2.65146300 -1.38787500 -0.02612200 1.24716100 -1.21994600 -0.87087800 2.81661300 1.12212100 -1.48979900 2.22270600 1.26046400 0.70836500 1.94190400 2.15829500 0.74497600 2.56611200 1.41786600 1.31891600 1.04253200 -0.86025500 2.62990700 2.22911600 0.06640300 3.68530900 2.62819400 -2.21322100 2.58152900 2.77620700 -0.97165900 2.62230000 0.45556000 0.08002500 3.15782900 -0.28778700 -2.11546400 2.09731900 -0.14546800 -0.09505800 3.12828600 -1.67772500	
C H H C H H S O O C C C C C	-0.06314000 1.03920800 2.65146300 -1.38787500 -0.02612200 1.24716100 -1.21994600 -0.87087800 2.81661300 1.12212100 -1.48979900 2.22270600 1.26046400 0.70836500 1.94190400 2.15829500 0.74497600 2.56611200 1.41786600 1.31891600 1.04253200 -0.86025500 2.62990700 2.22911600 0.06640300 3.68530900 2.62819400 -2.21322100 2.58152900 2.77620700 -0.97165900 2.62230000 0.45556000 0.08002500 3.15782900 -0.28778700 -2.11546400 2.09731900 -0.14546800 -0.00505800 3.12828600 -1.67772500 0.04014100 2.59732400 0.21063000	
C H H C H H S O O C C C C C H	-0.06314000 1.03920800 2.65146300 -1.38787500 -0.02612200 1.24716100 -1.21994600 -0.87087800 2.81661300 1.12212100 -1.48979900 2.22270600 1.26046400 0.70836500 1.94190400 2.15829500 0.74497600 2.56611200 1.41786600 1.31891600 1.04253200 -0.86025500 2.62990700 2.22911600 0.06640300 3.68530900 2.62819400 -2.21322100 2.58152900 2.77620700 -0.97165900 2.62230000 0.45556000 0.08002500 3.15782900 -0.28778700 -2.11546400 2.09731900 -0.14546800 -0.00505800 3.12828600 -1.67772500 0.94014100 3.59733400 0.21963000	
C H H C H H S O O C C C C C H C C	-0.06314000 1.03920800 2.65146300 -1.38787500 -0.02612200 1.24716100 -1.21994600 -0.87087800 2.81661300 1.12212100 -1.48979900 2.22270600 1.26046400 0.70836500 1.94190400 2.15829500 0.74497600 2.56611200 1.41786600 1.31891600 1.04253200 -0.86025500 2.62990700 2.22911600 0.06640300 3.68530900 2.62819400 -2.21322100 2.58152900 2.77620700 -0.97165900 2.62230000 0.45556000 0.08002500 3.15782900 -0.28778700 -2.11546400 2.09731900 -0.14546800 -0.00505800 3.12828600 -1.67772500 0.94014100 3.59733400 0.21963000 -2.18585100 2.07518900 -1.53639800	
C H H C H H S O O C C C C C H C H	-0.06314000 1.03920800 2.65146300 -1.38787500 -0.02612200 1.24716100 -1.21994600 -0.87087800 2.81661300 1.12212100 -1.48979900 2.22270600 1.26046400 0.70836500 1.94190400 2.15829500 0.74497600 2.56611200 1.41786600 1.31891600 1.04253200 -0.86025500 2.62990700 2.22911600 0.06640300 3.68530900 2.62819400 -2.21322100 2.58152900 2.77620700 -0.97165900 2.62230000 0.45556000 0.08002500 3.15782900 -0.28778700 -2.11546400 2.09731900 -0.14546800 -0.00505800 3.12828600 -1.67772500 0.94014100 3.59733400 0.21963000 -2.18585100 2.07518900 -1.53639800 -2.93519900 1.72495800 0.47077600	
C H H C H H S O O C C C C C H C H C H C H C H H C H H C H H C H H C H C H H C H C H C H C H C H C H C H C H C H C C H C C H C C H C	-0.06314000 1.03920800 2.65146300 -1.38787500 -0.02612200 1.24716100 -1.21994600 -0.87087800 2.81661300 1.12212100 -1.48979900 2.22270600 1.26046400 0.70836500 1.94190400 2.15829500 0.74497600 2.56611200 1.41786600 1.31891600 1.04253200 -0.86025500 2.62990700 2.22911600 0.06640300 3.68530900 2.62819400 -2.21322100 2.58152900 2.77620700 -0.97165900 2.62230000 0.45556000 0.08002500 3.15782900 -0.28778700 -2.11546400 2.09731900 -0.14546800 -0.00505800 3.12828600 -1.67772500 0.94014100 3.59733400 0.21963000 -2.18585100 2.07518900 -1.53639800 -2.93519900 1.72495800 0.47077600 -1.13053600 2.58161900 -2.29716400	
C H H C H H S O O C C C C C H C H C H C H H H S O O C C C C H H H C H H H C H H H C H H H C H H H C H H H C H H S O O C H H H C H H H C H H H C H H H C H H H C H H S O O C H H H C H H H C H H H C H H H C H H H S O C H H H S O C H H H H S O C H H H H C H H H S O C H H H H S O C H H H H S S O C H H H S S O C C H H H S S O C C H H H S S O C C H H H S S S O C C H H S S S S S S S S S S S S S S S S	-0.06314000 1.03920800 2.65146300 -1.38787500 -0.02612200 1.24716100 -1.21994600 -0.87087800 2.81661300 1.12212100 -1.48979900 2.22270600 1.26046400 0.70836500 1.94190400 2.15829500 0.74497600 2.56611200 1.41786600 1.31891600 1.04253200 -0.86025500 2.62990700 2.22911600 0.06640300 3.68530900 2.62819400 -2.21322100 2.58152900 2.77620700 -0.97165900 2.62230000 0.45556000 0.08002500 3.15782900 -0.28778700 -2.11546400 2.09731900 -0.14546800 -0.0505800 3.12828600 -1.67772500 0.94014100 3.59733400 0.21963000 -2.93519900 1.72495800 0.47077600 -1.13053600 2.58161900 -2.29716400 0.80665700 3.53923800 -2.27857400	
C H H C H H S O O C C C C C C H C H H C H H H H S O O C C C C H H H H H H H H H H C H H H H	-0.06314000 1.03920800 2.65146300 -1.38787500 -0.02612200 1.24716100 -1.21994600 -0.87087800 2.81661300 1.12212100 -1.48979900 2.22270600 1.26046400 0.70836500 1.94190400 2.15829500 0.74497600 2.56611200 1.41786600 1.31891600 1.04253200 -0.86025500 2.62990700 2.22911600 0.06640300 3.68530900 2.62819400 -2.21322100 2.58152900 2.77620700 -0.97165900 2.62230000 0.45556000 0.08002500 3.15782900 -0.28778700 -2.11546400 2.09731900 -0.14546800 -0.00505800 3.12828600 -1.67772500 0.94014100 3.59733400 0.21963000 -2.93519900 1.72495800 0.47077600 -1.13053600 2.58161900 -2.29716400 0.80665700 3.53923800 -2.7857400 -3.06976700 1.66703300 -2.02714600	
C H H C H H S O O C C C C C C H C H H C H H H H S O O C C C C H H H H H H S O C H H H H H H H C H H H H S O C H H H H S O C H H H H H H H C H H H H S O O C H H H H S O O C H H H H H H H H H S O O C H H H H S O O C H H H H H S O O C H H H H H H H H H H H H H H H H H	-0.06314000 1.03920800 2.65146300 -1.38787500 -0.02612200 1.24716100 -1.21994600 -0.87087800 2.81661300 1.12212100 -1.48979900 2.22270600 1.26046400 0.70836500 1.94190400 2.15829500 0.74497600 2.56611200 1.41786600 1.31891600 1.04253200 -0.86025500 2.62990700 2.22911600 0.06640300 3.68530900 2.62819400 -2.21322100 2.58152900 2.77620700 -0.97165900 2.62230000 0.45556000 0.08002500 3.15782900 -0.28778700 -2.11546400 2.09731900 -0.14546800 -0.00505800 3.12828600 -1.67772500 0.94014100 3.59733400 0.21963000 -2.18585100 2.07518900 -1.53639800 -2.93519900 1.72495800 0.47077600 -1.13053600 2.58161900 -2.29716400 0.80665700 3.53923800 -2.02714600 -3.06976700 1.66703300 -2.02714600	
C H H C H H S O O C C C C C C C C H C H H H S O O C C C C C H H H H S O O C H H H H S O C H H H S O C H H H S O C H H H S O C H H H S O C H H H S O C H H H S O C H H H S O C H H H S O C H H H S S O C C H H H S S O C C H H H S S O C C H H H S S O C C C H H S S O C C C C C C C C C C C C C C C C C	-0.06314000 1.03920800 2.65146300 -1.38787500 -0.02612200 1.24716100 -1.21994600 -0.87087800 2.81661300 1.12212100 -1.48979900 2.22270600 1.26046400 0.70836500 1.94190400 2.15829500 0.74497600 2.56611200 1.41786600 1.31891600 1.04253200 -0.86025500 2.62990700 2.22911600 0.06640300 3.68530900 2.62819400 -2.21322100 2.58152900 2.77620700 -0.97165900 2.62230000 0.45556000 0.08002500 3.15782900 -0.28778700 -2.11546400 2.09731900 -0.14546800 -0.00505800 3.12828600 -1.67772500 0.94014100 3.59733400 0.21963000 -2.93519900 1.72495800 0.47077600 -1.13053600 2.58161900 -2.29716400 0.80665700 3.53923800 -2.27857400 -3.06976700 1.66703300 -2.02714600 -1.19055800 2.55982600 -3.38607500	
C H H C H H S O O C C C C C C C H C H H C H H H S O O C C C C C H H H C H H H S O C H H H S O C H H H S O C H H H S O C C H H H S O C H H H S O C H H H S O C C H H H S C C H H H S C C H H H S C C H H H S C C H H H S C C H H H S C C C H H H S C C C C	-0.06314000 1.03920800 2.65146300 -1.38787500 -0.02612200 1.24716100 -1.21994600 -0.87087800 2.81661300 1.12212100 -1.48979900 2.22270600 1.26046400 0.70836500 1.94190400 2.15829500 0.74497600 2.56611200 1.41786600 1.31891600 1.04253200 -0.86025500 2.62990700 2.22911600 0.06640300 3.68530900 2.62819400 -2.21322100 2.58152900 2.77620700 -0.97165900 2.62230000 0.45556000 0.08002500 3.15782900 -0.28778700 -2.11546400 2.09731900 -0.14546800 -0.00505800 3.12828600 -1.67772500 0.94014100 3.59733400 0.21963000 -2.18585100 2.58161900 -2.29716400 0.80665700 3.53923800 -2.27857400 -3.06976700 1.66703300 -2.02714600 -1.19055800 2.55982600 -3.38607500 0.75074500 -1.09364600 0.16115500	
C H H C H H S O O C C C C C H C H H C H H H C H H H C H H H C H H H C H H H C H H H C H H H C H H H C C H H H C C H H H C C C H H H C C C C H H H C	-0.06314000 1.03920800 2.65146300 -1.38787500 -0.02612200 1.24716100 -1.21994600 -0.87087800 2.81661300 1.12212100 -1.48979900 2.22270600 1.26046400 0.70836500 1.94190400 2.15829500 0.74497600 2.56611200 1.41786600 1.31891600 1.04253200 -0.86025500 2.62990700 2.22911600 0.06640300 3.68530900 2.62819400 -2.21322100 2.58152900 2.77620700 -0.97165900 2.62230000 0.45556000 0.08002500 3.15782900 -0.28778700 -2.11546400 2.09731900 -0.14546800 -0.00505800 3.12828600 -1.67772500 0.94014100 3.59733400 0.21963000 -2.18585100 2.07518900 -1.53639800 -2.93519900 1.72495800 0.47077600 -1.13053600 2.55982600 -3.38607500 3.06976700 1.66703300 -2.02714600 -1.19055800 2.55982600 -3.38607500 0.75074500 -1.09364600 0.16115500 2.18284900 -1.35805200 -0.33391600	
C H H H C H H S O O C C C C C H C H H C H H H S O O C C C C H H H C F F	-0.06314000 1.03920800 2.65146300 -1.38787500 -0.02612200 1.24716100 -1.21994600 -0.87087800 2.81661300 1.12212100 -1.48979900 2.22270600 1.26046400 0.70836500 1.94190400 2.15829500 0.74497600 2.56611200 1.41786600 1.31891600 1.04253200 -0.86025500 2.62990700 2.22911600 0.06640300 3.68530900 2.62819400 -2.21322100 2.58152900 2.77620700 -0.97165900 2.62230000 0.45556000 0.08002500 3.15782900 -0.28778700 -2.11546400 2.09731900 -0.14546800 -0.00505800 3.12828600 -1.67772500 0.94014100 3.59733400 0.21963000 -2.18585100 2.07518900 -1.53639800 -2.93519900 1.72495800 0.47077600 -1.13053600 2.55982600 -3.38607500 3.06976700 1.66703300 -2.02714600 -1.19055800 2.55982600 -3.3391600 0.75074500 -1.09364600 0.16115500 2.18284900 -1.35805200 -0.33391600 0.24160100 -0.10398200 -0.62419700	
C H H H C H H S O O C C C C C H C H H H C H H H C H H H C H H H C H H H C H H H C H H H C C H H H C C H H H C C H H H C	-0.06314000 1.03920800 2.65146300 -1.38787500 -0.02612200 1.24716100 -1.21994600 -0.87087800 2.81661300 1.12212100 -1.48979900 2.22270600 1.26046400 0.70836500 1.94190400 2.15829500 0.74497600 2.56611200 1.41786600 1.31891600 1.04253200 -0.86025500 2.62990700 2.22911600 0.06640300 3.68530900 2.62819400 -2.21322100 2.58152900 2.77620700 -0.97165900 2.62230000 0.45556000 0.08002500 3.15782900 -0.28778700 -2.11546400 2.09731900 -0.14546800 -0.00505800 3.12828600 -1.67772500 0.94014100 3.59733400 0.21963000 -2.18585100 2.07518900 -1.53639800 -2.93519900 1.72495800 0.47077600 -1.13053600 2.55982600 -3.38607500 0.75074500 -1.09364600 0.16115500 2.18284900 -1.35805200 -0.33391600 0.24160100 -0.10398200 -0.2419700	
C H H H C H H S O O C C C C C H C H H H C H H H S O O C C C C C H H H C H H H S O C C F F F O C F F F	-0.06314000 1.03920800 2.65146300 -1.38787500 -0.02612200 1.24716100 -1.21994600 -0.87087800 2.81661300 1.12212100 -1.48979900 2.22270600 1.26046400 0.70836500 1.94190400 2.15829500 0.74497600 2.56611200 1.41786600 1.31891600 1.04253200 -0.86025500 2.62990700 2.22911600 0.06640300 3.68530900 2.62819400 -2.21322100 2.58152900 2.77620700 -0.97165900 2.62230000 0.45556000 0.08002500 3.15782900 -0.28778700 -2.11546400 2.09731900 -0.14546800 -0.00505800 3.12828600 -1.67772500 0.94014100 3.59733400 0.21963000 -2.18585100 2.07518900 -1.53639800 -2.93519900 1.72495800 0.47077600 -1.13053600 2.55982600 -3.38607500 0.75074500 -1.09364600 0.16115500 2.18284900 -1.35805200 -0.33391600 0.24160100 -0.10398200 -0.62419700 -0.01891500 -2.18122900 0.04652100	
C H H H C H H S O O C C C C C H C H H H C H H H S O O C C C C C H H H C H H H S O C C C C F F F O C C F F F O O C C F F O O C C C C	-0.06314000 1.03920800 2.65146300 -1.38787500 -0.02612200 1.24716100 -1.21994600 -0.87087800 2.81661300 1.12212100 -1.48979900 2.22270600 1.26046400 0.70836500 1.94190400 2.15829500 0.74497600 2.56611200 1.41786600 1.31891600 1.04253200 -0.86025500 2.62990700 2.22911600 0.06640300 3.68530900 2.62819400 -2.21322100 2.58152900 2.77620700 -0.97165900 2.62230000 0.45556000 0.08002500 3.15782900 -0.28778700 -2.11546400 2.09731900 -0.14546800 -0.00505800 3.12828600 -1.67772500 0.94014100 3.59733400 0.21963000 -2.18585100 2.07518900 -1.53639800 -2.93519900 1.72495800 0.47077600 -1.13053600 2.58161900 -2.29716400 0.80665700 3.53923800 -2.27857400 -3.06976700 1.66703300 -2.02714600 -1.19055800 2.55982600 -3.38607500 0.75074500 -1.09364600 0.16115500 2.18284900 -1.35805200 -0.33391600 0.24160100 -0.10398200 -0.62419700 -0.01891500 -2.18122900 -0.04652100 3.14545300 -0.88701500 0.20870000	
C H H H C H H S O O C C C C C H C H C H H H C H H H S O O C C C C C C H H H C F F F O O O C	-0.06314000 1.03920800 2.65146300 -1.38787500 -0.02612200 1.24716100 -1.21994600 -0.87087800 2.81661300 1.12212100 -1.48979900 2.22270600 1.26046400 0.70836500 1.94190400 2.15829500 0.74497600 2.56611200 1.41786600 1.31891600 1.04253200 -0.86025500 2.62990700 2.22911600 0.06640300 3.68530900 2.62819400 -2.21322100 2.58152900 2.77620700 -0.97165900 2.62230000 0.45556000 0.08002500 3.15782900 -0.28778700 -2.11546400 2.09731900 -0.14546800 -0.00505800 3.12828600 -1.67772500 0.94014100 3.59733400 0.21963000 -2.18585100 2.07518900 -1.53639800 -2.93519900 1.72495800 0.47077600 -1.13053600 2.55982600 -3.38607500 0.75074500 -1.09364600 0.16115500 2.18284900 -1.35805200 -0.33391600 0.24160100 -0.10398200 -0.62419700 -0.01891500 -2.18122900 -0.04652100 3.14545300 -2.10657000 -1.41327400	
C H H H C H H S O O C C C C C H C H C H H H C F F O O C C C C F F F O O C C C C C C	-0.06314000 1.03920800 2.65146300 -1.38787500 -0.02612200 1.24716100 -1.21994600 -0.87087800 2.81661300 1.12212100 -1.48979900 2.22270600 1.26046400 0.70836500 1.94190400 2.15829500 0.74497600 2.56611200 1.41786600 1.31891600 1.04253200 -0.86025500 2.62990700 2.22911600 0.06640300 3.68530900 2.62819400 -2.21322100 2.58152900 2.77620700 -0.97165900 2.62230000 0.45556000 0.08002500 3.15782900 -0.28778700 -2.11546400 2.09731900 -0.14546800 -0.00505800 3.12828600 -1.67772500 0.94014100 3.59733400 0.21963000 -2.18585100 2.07518900 -1.53639800 -2.93519900 1.72495800 0.47077600 -1.13053600 2.55982600 -3.38607500 0.75074500 -1.09364600 0.16115500 2.18284900 -1.35805200 -0.33391600 0.24160100 -0.1898200 -0.62419700 -0.01891500 -2.18122900 -0.04652100 3.14545300 -2.37380600 -2.00334000	
C H H H C H H S O O C C C C C H C H C H H H C F F O O C C C C F F F O O C C C C C C	-0.06314000 1.03920800 2.65146300 -1.38787500 -0.02612200 1.24716100 -1.21994600 -0.87087800 2.81661300 1.12212100 -1.48979900 2.22270600 1.26046400 0.70836500 1.94190400 2.15829500 0.74497600 2.56611200 1.41786600 1.31891600 1.04253200 -0.86025500 2.62990700 2.22911600 0.06640300 3.68530900 2.62819400 -2.21322100 2.58152900 2.77620700 -0.97165900 2.62230000 0.45556000 0.08002500 3.15782900 -0.28778700 -2.11546400 2.09731900 -0.14546800 -0.00505800 3.12828600 -1.67772500 0.94014100 3.59733400 0.21963000 -2.18585100 2.07518900 -1.53639800 -2.93519900 1.72495800 0.47077600 -1.13053600 2.55982600 -3.38607500 0.75074500 -1.09364600 0.16115500 2.18284900 -1.35805200 -0.33391600 0.24160100 -0.10398200 -0.62419700 -0.01891500 -2.18122900 -0.04652100 3.14545300 -2.37380600 -2.00334000 3.25816000 -3.24305100 -3.21563300	
	C F F O O C C H H H H H H C C	
	Н	3.94474000 -1.41156100 -2.25773000
-----------------------	----------	---
	Н	4.22350500 -3.46442600 -3.68855800
	Н	2.78301400 -4.19113000 -2.93127200
	Н	2.61951900 -2.73200100 -3.94804500
	Br	0.07655800 1.04062000 4.58760100
Structure P1	DI	0.07022000 1.01002000 1.20700100
Solvent: acetone		
Solvent. accione		
cartesian coordinates	С	-0.70955300 -0.23628700 -2.08706900
of stationary point	C	0.69087800 -0.68824700 -1.61196700
structure [Å]	C C	-0.06311900 - 1.03960200 - 2.65185500
subclure [A]	с н	-1.38834800 -0.02691100 1.24887500
	и П	1 21038300 0 87064600 2 81874600
		-1.21938300 -0.87004000 -2.81874000 1 12210100 - 1 48076200 - 2.22410000
	п	1.12219100 - 1.46970500 2.22419900 1.26047400 0.70820600 1.04247600
	U U	1.2004/400 0.70829000 1.94247000
	H	2.1581/300 0.74504200 2.56687000
	H	1.41813500 1.31845800 1.04288200
	S	-0.86053700 2.62972300 2.22823100
	0	0.06521400 3.68593700 2.62775000
	0	-2.21371900 2.58141700 2.77514300
	С	-0.97120800 2.62172100 0.45481700
	С	0.08084400 3.15711900 -0.28816000
	С	-2.11465800 2.09628800 -0.14653800
	С	-0.00363800 3.12723000 -1.67812500
	Н	0.94087500 3.59667800 0.21934000
	С	-2.18442500 2.07390200 -1.53750200
	Н	-2.93458300 1.72363000 0.46926600
	С	-1.12883800 2.58033900 -2.29791600
	Н	0.80836100 3.53800200 -2.27870100
	Н	-3.06804900 1.66546700 -2.02853100
	Н	-1.18837300 2.55831000 -3.38684500
	С	0.75041100 -1.09429700 0.16258700
	С	2.18242400 -1.35808600 -0.33310000
	F	0.24042200 -0.10512900 -0.62292700
	F	-0.01880900 -2.18232100 -0.04457900
	0	3.14509800 -0.88688600 0.20931300
	Ő	2 19062200 -2 10619500 -1 41265500
	č	3.47773900 -2.37291800 -2.00361100
	Č	3 25661200 -3 24059500 -3 21688800
	н	4 10583700 -2 86405000 -1 24742400
	н	3 94379400 -1 41041700 -2 25704100
	H	4.22177800 -3.46150800 -3.60037600
	и И	778147400 -4 18808400 -2 02252600
	и П	2.701 + 7400 - 4.10070 + 00 - 2.733330000 2.61709600 - 2.72977000 - 2.07976000
	П Д.,	2.01700000 - 2.72044900 - 3.94040900 - 0.07661600 - 1.04202400 - 4.59910200
	DI	0.07001000 1.04302400 4.38810300

Structure TS2	
Solvent: Ethanol	
	2154
cartesian coordinates	O -2.33403900 -0.35429400 -0.03946300
of stationary point	Н -2.73059600 0.49053000 0.20531000
structure [Å]	C -0.95085700 -0.22540500 -0.04821200
	C -0.31002700 -1.58550200 -0.18070500
	Н -0.57234600 0.32027800 0.83390300
	Н -0.62297400 0.41632400 -0.93128900
	H 0.78247100 -1.49369300 -0.23732400
	H -0.57183600 -2.20730000 0.68691400
	H -0.67015500 -2.08567200 -1.09053400
a	Br 0.46454200 0.79603900 -2.75136800
Structure TS1-Br	
Solvent: Ethanol	
	3,565
cartesian coordinates	C -0.79757400 -0.16070200 0.16742100
cartesian coordinates of stationary point	C -0.79757400 -0.16070200 0.16742100 C 0.73828700 -0.59994400 0.33250400
cartesian coordinates of stationary point structure [Å]	C -0.79757400 -0.16070200 0.16742100 C 0.73828700 -0.59994400 0.33250400 C -0.05295500 0.99228800 0.57019400
cartesian coordinates of stationary point structure [Å]	C -0.79757400 -0.16070200 0.16742100 C 0.73828700 -0.59994400 0.33250400 C -0.05295500 0.99228800 0.57019400 H -1.03549500 -0.27684900 -0.89793200
cartesian coordinates of stationary point structure [Å]	C -0.79757400 -0.16070200 0.16742100 C 0.73828700 -0.59994400 0.33250400 C -0.05295500 0.99228800 0.57019400 H -1.03549500 -0.27684900 -0.89793200 H -1.56309100 -0.51479100 0.86469200
cartesian coordinates of stationary point structure [Å]	C -0.79757400 -0.16070200 0.16742100 C 0.73828700 -0.59994400 0.33250400 C -0.05295500 0.99228800 0.57019400 H -1.03549500 -0.27684900 -0.89793200 H -1.56309100 -0.51479100 0.86469200 H 1.00355100 -0.95578400 1.33976500
cartesian coordinates of stationary point structure [Å]	C -0.79757400 -0.16070200 0.16742100 C 0.73828700 -0.59994400 0.33250400 C -0.05295500 0.99228800 0.57019400 H -1.03549500 -0.27684900 -0.89793200 H -1.56309100 -0.51479100 0.86469200 H 1.00355100 -0.95578400 1.33976500 C 1.27045500 0.87953400 0.03316000
cartesian coordinates of stationary point structure [Å]	C -0.79757400 -0.16070200 0.16742100 C 0.73828700 -0.59994400 0.33250400 C -0.05295500 0.99228800 0.57019400 H -1.03549500 -0.27684900 -0.89793200 H -1.56309100 -0.51479100 0.86469200 H 1.00355100 -0.95578400 1.33976500 C 1.27045500 0.87953400 0.03316000 H 2.07091300 1.30506400 0.64605000
cartesian coordinates of stationary point structure [Å]	C -0.79757400 -0.16070200 0.16742100 C 0.73828700 -0.59994400 0.33250400 C -0.05295500 0.99228800 0.57019400 H -1.03549500 -0.27684900 -0.89793200 H -1.56309100 -0.51479100 0.86469200 H 1.00355100 -0.95578400 1.33976500 C 1.27045500 0.87953400 0.03316000 H 2.07091300 1.30506400 0.64605000 H 1.40124600 0.95992600 -1.05262800
cartesian coordinates of stationary point structure [Å]	C -0.79757400 -0.16070200 0.16742100 C 0.73828700 -0.59994400 0.33250400 C -0.05295500 0.99228800 0.57019400 H -1.03549500 -0.27684900 -0.89793200 H -1.56309100 -0.51479100 0.86469200 H 1.00355100 -0.95578400 1.33976500 C 1.27045500 0.87953400 0.03316000 H 2.07091300 1.30506400 0.64605000 H 1.40124600 0.95992600 -1.05262800 S -0.53150800 2.07954000 1.97502900
cartesian coordinates of stationary point structure [Å]	C -0.79757400 -0.16070200 0.16742100 C 0.73828700 -0.59994400 0.33250400 C -0.05295500 0.99228800 0.57019400 H -1.03549500 -0.27684900 -0.89793200 H -1.56309100 -0.51479100 0.86469200 H 1.00355100 -0.95578400 1.33976500 C 1.27045500 0.87953400 0.03316000 H 2.07091300 1.30506400 0.64605000 H 1.40124600 0.95992600 -1.05262800 S -0.53150800 2.07954000 1.97502900 O 0.64414300 2.77443700 2.45318800
cartesian coordinates of stationary point structure [Å]	C -0.79757400 -0.16070200 0.16742100 C 0.73828700 -0.59994400 0.33250400 C -0.05295500 0.99228800 0.57019400 H -1.03549500 -0.27684900 -0.89793200 H -1.56309100 -0.51479100 0.86469200 H 1.00355100 -0.95578400 1.33976500 C 1.27045500 0.87953400 0.03316000 H 2.07091300 1.30506400 0.64605000 H 1.40124600 0.95992600 -1.05262800 S -0.53150800 2.07954000 1.97502900 O 0.64414300 2.77443700 2.45318800 O -1.47917200 1.38050700 2.81790900
cartesian coordinates of stationary point structure [Å]	C -0.79757400 -0.16070200 0.16742100 C 0.73828700 -0.59994400 0.33250400 C -0.05295500 0.99228800 0.57019400 H -1.03549500 -0.27684900 -0.89793200 H -1.56309100 -0.51479100 0.86469200 H 1.00355100 -0.95578400 1.33976500 C 1.27045500 0.87953400 0.03316000 H 2.07091300 1.30506400 0.64605000 H 1.40124600 0.95992600 -1.05262800 S -0.53150800 2.07954000 1.97502900 O 0.64414300 2.77443700 2.45318800 O -1.47917200 1.38050700 2.81790900 C -1.41531100 3.15087600 0.87113000
cartesian coordinates of stationary point structure [Å]	C -0.79757400 -0.16070200 0.16742100 C 0.73828700 -0.59994400 0.33250400 C -0.05295500 0.99228800 0.57019400 H -1.03549500 -0.27684900 -0.89793200 H -1.56309100 -0.51479100 0.86469200 H 1.00355100 -0.95578400 1.33976500 C 1.27045500 0.87953400 0.03316000 H 2.07091300 1.30506400 0.64605000 H 1.40124600 0.95992600 -1.05262800 S -0.53150800 2.07954000 1.97502900 O 0.64414300 2.77443700 2.45318800 O -1.41531100 3.15087600 0.87113000 C -0.72031500 4.19592500 0.25495400
cartesian coordinates of stationary point structure [Å]	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
cartesian coordinates of stationary point structure [Å]	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
cartesian coordinates of stationary point structure [Å]	C -0.79757400 -0.16070200 0.16742100 C 0.73828700 -0.59994400 0.33250400 C -0.05295500 0.99228800 0.57019400 H -1.03549500 -0.27684900 -0.89793200 H -1.56309100 -0.51479100 0.86469200 H 1.00355100 -0.95578400 1.33976500 C 1.27045500 0.87953400 0.03316000 H 2.07091300 1.30506400 0.64605000 H 1.40124600 0.95992600 -1.05262800 S -0.53150800 2.07954000 1.97502900 O 0.64414300 2.77443700 2.45318800 O -1.47917200 1.38050700 2.81790900 C -1.41531100 3.15087600 0.87113000 C -0.72031500 4.19592500 0.25495400 C -2.77787800 2.92161800 0.65803700 C -1.42081900 5.03343200 -0.60784200 H 0.33929100 4.3506
cartesian coordinates of stationary point structure [Å]	C -0.79757400 -0.16070200 0.16742100 C 0.73828700 -0.59994400 0.33250400 C -0.05295500 0.99228800 0.57019400 H -1.03549500 -0.27684900 -0.89793200 H -1.56309100 -0.51479100 0.86469200 H 1.00355100 -0.95578400 1.33976500 C 1.27045500 0.87953400 0.03316000 H 2.07091300 1.30506400 0.64605000 H 1.40124600 0.95992600 -1.05262800 S -0.53150800 2.07954000 1.97502900 O 0.64414300 2.77443700 2.45318800 O -1.47917200 1.38050700 2.81790900 C -0.72031500 4.19592500 0.25495400 C -0.72031500 4.19592500 0.25495400 C -2.77787800 2.92161800 0.65803700 C -1.42081900 5.03343200 -0.60784200 H 0.33929100 4.3506
cartesian coordinates of stationary point structure [Å]	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
cartesian coordinates of stationary point structure [Å]	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
cartesian coordinates of stationary point structure [Å]	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
cartesian coordinates of stationary point structure [Å]	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
cartesian coordinates of stationary point structure [Å]	C -0.79757400 -0.16070200 0.16742100 C 0.73828700 -0.59994400 0.33250400 C -0.05295500 0.99228800 0.57019400 H -1.03549500 -0.27684900 -0.89793200 H -1.56309100 -0.51479100 0.86469200 H 1.00355100 -0.95578400 1.33976500 C 1.27045500 0.87953400 0.03316000 H 2.07091300 1.30506400 0.64605000 H 1.40124600 0.95992600 -1.05262800 S -0.53150800 2.07954000 1.97502900 O 0.64414300 2.77443700 2.45318800 O -1.47917200 1.38050700 2.81790900 C -1.41531100 3.15087600 0.87113000 C -2.77787800 2.92161800 0.65803700 C -1.42081900 5.03343200 -0.60784200 H 0.33929100 4.35069500 0.46244800 C -2.78204400 4.8188
cartesian coordinates of stationary point structure [Å]	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
cartesian coordinates of stationary point structure [Å]	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

	F	0.40225000 -2.68898800 -0.64334600
	0	3.42623100 -0.99272700 -0.50094200
	0	2.89681000 -3.10394000 -1.05315400
	С	4.29255800 -3.47883600 -1.09933600
	С	4.36330200 -4.93783200 -1.47028000
	Н	4.72809400 -3.27398900 -0.11186300
	Н	4.79153600 -2.83257000 -1.83429500
	H	5 41416100 -5 25118800 -1 51354400
	H	3 84572000 -5 55345400 -0 72315700
	H	3 90648000 -5 11089800 -2 45340100
	Br	1 43448800 -0 28546900 3 54715800
Structure TS1-Br		
Solvent: acetone		
		3,561
	a	
cartesian coordinates	C	-0.79772300 -0.16296700 0.18509000
of stationary point	C	0.73762000 -0.60253700 0.34931400
structure [A]	С	-0.05494200 0.99308500 0.58351600
	Н	-1.03623700 -0.28075000 -0.88008700
	Н	-1.56390000 -0.51550400 0.88243700
	Н	1.00309200 - 0.95510500 1.35722800
	С	1.26843200 0.87588400 0.04643300
	Η	2.06995700 1.30415800 0.65594100
	Η	1.39720300 0.95452800 -1.03990200
	S	-0.53532400 2.08958400 1.97989400
	0	0.64003100 2.78584100 2.45728400
	0	-1.48478100 1.39661900 2.82598200
	С	-1.41537200 3.15452200 0.86754100
	С	-0.71848600 4.19679200 0.24863500
	С	-2.77698800 2.92305700 0.65022700
	С	-1.41616800 5.02930000 -0.62117900
	Н	0.34033200 4.35303000 0.45900300
	С	-3.45602900 3.76807100 -0.22156200
	Н	-3.28833500 2.11073300 1.16827900
	С	-2.77634800 4.81249200 -0.85471300
	Н	-0.89893300 5.85260500 -1.11378500
	Н	-4.51984400 3.61588200 -0.40384300
	Н	-3.31629800 5.46972700 -1.53746300
	С	1.11832400 -1.57848600 -0.76342700
	C	2.63584300 -1.86641100 -0.72837000
	F	0.82410500 -1.06625800 -1.97656900
	F	0.40310000 -2.69618000 -0.61733500
	0	3 42540800 -1 00594900 -0 45544100
	ŏ	2 89696600 -3 10343500 -1 05840100
	Č	4 29268100 -3 47818000 -1 10797600
	Č	4 36370300 -4 92997500 -1 50605300
	н	4.72587800 -3.29217000 -0.11576300
	н	4.72367600 - 3.22217000 - 0.11370300
	н	-2.010+0700 -1.027+7200 5 $41449500 -5 24327000 -1 55117000$
	11	$J_{+} + + + + + + + + + + + + + + + + + + $

	Н	3.84287700	-5.55907700	-0.77251900
	Н	3.91053800	-5.08419300	-2.49398700
	Br	1.42426000	-0.26839400	3.56736900
Structure TS1-H _b				
Solvent: Ethanol				
		1		
		1.2	55	
		- 1	249 0	
		YN		
		0		
cartesian coordinates	С	-0.38268200	-0.93818300	2.26957200
of stationary point	С	1.01554500	-1.21545500	1.66119500
structure [A]	С	0.17075600	0.37167400	2.82254300
	Н	-1.17488300	-0.80944900	1.51695900
	Н	-0.72227300	-1.65097500	3.03038600
	Н	1.55181000	-2.04913000	2.12976400
	С	1.50946900	0.18055300	2.11222200
	Н	2.38845200	0.18474200	2.76744400
	Н	1.68272300	0.87877100	1.28010200
	S	-0.75245500	1.88170800	2.64755200
	0	0.09190000	2.96198300	3.16350600
	0	-2.07587400	1.64266900	3.22776900
	С	-0.94946600	2.11374400	0.89763300
	С	0.03206300	2.81210300	0.19460900
	С	-2.06775900	1.56702300	0.26895500
	С	-0.10357900	2.94244300	-1.18570100
	Н	0.87617800	3.25248600	0.72753200
	С	-2.18982400	1.70645600	-1.11181100
	Н	-2.82919900	1.05457400	0.85882100
	С	-1.20742300	2.38556700	-1.83477500
	Н	0.65139300	3.48496200	-1.75553300
	Н	-3.05652500	1.28775100	-1.62413300
	Н	-1.30728700	2.48950000	-2.91604100
	С	0.99685700	-1.43240600	0.17190700
	С	2.40399700	-1.52352800	-0.44482400
	F	0.35416900	-0.40576600	-0.44828900
	F	0.30373400	-2.55234500	-0.12747500
	0	3.39698000	-1.20506600	0.15071000
	0	2.35135600	-1.95841800	-1.68419000
	C	3.60388700	-2.05061100	-2.38980500
	C	3.31376300	-2.55805800	-3.77987900
	H	4.26424600	-2.72596700	-1.82807900
	H	4.06729400	-1.05406100	-2.39692800
	H	4.25177500	-2.63958100	-4.34385300
	Н	2.84289800	-3.54912100	-3.74016500
	Н	2.64495900	-1.86886900	-4.31209000
	0	0.49387600	0.23011600	5.30203400
	Н	0.34280100	0.30421100	4.05793200
	С	-0.48367200	1.01638700	5.91955800

	C -0.22127500 0.92739700 7.42084800
	Н -1.49851000 0.64894100 5.69206900
	Н -0.41397000 2.06743500 5.59086300
	Н -0.96627300 1.53129900 7.95587700
	Н -0.29641500 -0.11348200 7.76193100
	H = 0.78143500 + 1.30677600 + 7.65734800
	11 0.70115500 1.50077000 7.05751000
Structure TS1-H _a	
Solvent: Ethanol	
	1.428
cartasian coordinatas	C 0.24618500 0.61492800 2.41209000
of stationary point	C = 1 13153300 -0.07188400 -1.79599000
structure [Å]	C = 0.32921900 + 0.57100400 + 1.7555000
structure [71]	H = -1.07423700 = 0.59644300 = 1.68662500
	H = -0.53115100 -1.23146800 -3.27550100
	H = 1.66815800 - 1.77006300 - 2.3273000
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	H = 253077600 - 0.50065800 - 2.74070700
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	S 0 55216200 2 22280800 2 52000600
	O = 0.33510200 - 2.23287800 - 2.83099000
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	C = -0.88008000 - 2.32034000 - 0.78438400
	C = 0.00000000 2.92287800 -0.04841000 C = 2.04305600 1.74173700 0.28348600
	C = -2.04303000 - 1.74175700 - 0.28348000
	H = 0.95142600 - 3.39297700 - 0.38362800
	C = 225140400 + 174274300 + 0.0424800
	H = -2.77220000 + 1.30802000 + 0.09424000
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	H = 0.57140500 - 3.37926400 - 2.09263600
	H = -3.15579900 + 1.29346600 + 1.50604800
	H $-1.47456000 - 2.31863900 - 3.02167500$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	C = 2.44467100 -1.49744500 -0.31697600
	F 0.41862100 -0.33183100 -0.35328600
	F = 0.33835400 -2.44268200 -0.14992700
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	O 2.33293500 -1.96258900 -1.54224300
	$\begin{array}{c} C \\ C \\ 3 55783000 \\ -2 15199300 \\ -2 27548500 \\ \end{array}$
	C 3.20077300 -2.68611600 -3.63983400
	H $4 19325400 -2.84664300 -1.70846900$
	H $4.07865300 - 1.18555400 - 2.32859300$
	H 4.11647300 -2.84097200 -4.22471600
	H $2.67440200 - 3.64590700 - 3.554544000$
	H 2.55858800 -1.97636000 -4.17778300
	C = -0.61755400 - 0.40219900 - 6.02337300
	H $-1.33762000 -0.22137800 -5.47353000$

	Н	-0 98845000 1 43509000 6 02409000	
	C	0.73449200 0.33813100 5.37253200	
	H	0.53896600 0.77010100 4.18325000	
	Н	1.48210200 1.03061900 5.78918600	
	Н	-0.56627800 0.03746500 7.06116900	
	0	1.18712700 -0.96009800 5.23964100	
Structure 1 proposal	Н	2.14251400 -0.95932700 5.10164200	
Structure 1-propanor			
Solvent:1-propanol			
cartesian coordinates	C	-3 50516200 1 37845200 0 01071100	
of stationers point		2 16010100 0 22124000 0 02600600	
of stationary point	п	-3.16919100 0.33124900 -0.02609600	
structure [A]	H	-3.16830600 1.86990200 -0.91443300	
	Н	-4.60342500 1.37808300 0.00894900	
	С	-2.95429100 2.08832800 1.24061600	
	Н	-3.31183500 3.12964600 1.27776800	
	Н	-3.31181700 1.59986300 2.16100300	
	С	-1.43839900 2.10519300 1.27017600	
	Н	-1.06002200 2.60550100 0.35845400	
	Н	-1.06019300 1.06540400 1.24800100	
	0	-1.01807800 2.77816000 2.43548300	
	Н	-0.05479400 2.78736200 2.45131800	
Structure TS1-Ha			
Solvent:1-propanol			
1 1		128	
cartesian coordinates	С	-0.25366500 -0.62366900 2.40854800	
of stationary point	С	1.12326500 -0.98217500 1.79167900	
structure [Å]	С	0.32428400 0.73380300 2.76974900	
	Н	-1.08133800 -0.60194900 1.68274700	
	Н	-0.54069200 -1.24060600 3.27098600	
	Н	1.65924900 -1.78086800 2.31830100	
	С	1.65229700 0.44339800 2.09080700	
	Н	2.53448300 0.48782000 2.74451900	
	Н	1.85367800 1.04387600 1.18991400	
	S	-0.55677100 2.22417500 2.53427000	

0	0.34188800	3.32470000	2.89594100
0	-1.84590800	2.08136800	3.21939200
С	-0.87554500	2.32715200	0.78682300
С	0.07491200	2.92811800	-0.03857200
С	-2.03627400	1.74525700	0.27726200
С	-0.14038500	2.92853100	-1.41523900
Н	0.95757000	3.39593700	0.40018000
С	-2.23836700	1.75382500	-1.10137000
Н	-2.76852800	1.30798300	0.95763300
С	-1.29023100	2.33814100	-1.94337600
Н	0.58889700	3.39576700	-2.07796900
Н	-3.14089300	1.30686200	-1.51973700
Н	-1.45280300	2.34021300	-3.02206100
С	1.05254200	-1.32449000	0.32892400
С	2.43543000	-1.50805400	-0.32170700
F	0.41032300	-0.34063100	-0.35701500
F	0.32857500	-2.45175800	0.14509200
0	3.46296700	-1.24047900	0.23918500
0	2.32283300	-1.96795300	-1.54893000
С	3.54742300	-2.15757200	-2.28244700
С	3.18941100	-2.68401900	-3.64954200
Н	4.18054400	-2.85682800	-1.71849500
Н	4.07129900	-1.19251100	-2.33063200
Н	4.10487300	-2.83884600	-4.23481600
Н	2.66002500	-3.64256700	-3.56913000
Н	2.54957700	-1.96974700	-4.18429900
С	-0.59752400	0.40947600	6.04113400
Н	-1.31551600	-0.19198100	5.45949600
Н	-0.94773600	1.45084000	5.98406000
С	0.74685000	0.33135900	5.36684000
Н	0.53936300	0.75913100	4.17525300
Н	1.50526000	1.01849100	5.77597300
0	1.18736600	-0.97129700	5.23552700
Н	2.14487200	-0.98383900	5.11510100
С	-0.55348600	-0.07752500	7.48858600
Н	-1.55053400	-0.04036300	7.94817600
Н	-0.19096200	-1.11367600	7.53001300
Н	0.12424200	0.54492200	8.09108200

Structure TS2				
Solvent:1-propanol				
		•	O ₁₁	
	0	0.06500.400	0.20065600	0.12050700
cartesian coordinates	0	-2.36533400	-0.39065600	-0.13050700
of stationary point	H	-2.79943100	0.43264200	0.12290200
structure [A]	C ~	-0.98791200	-0.22339000	-0.07181000
	C	-0.29722000	-1.56875700	-0.14061700
	Н	-0.67093800	0.34681300	0.82057300
	Н	-0.63127300	0.40756100	-0.95126800
	Н	0.78830900	-1.39502100	-0.19359600
	Н	-0.58861000	-2.05675700	-1.08450600
	Br	0.51217000	0.80508800	-2.72698200
	С	-0.64781200	-2.45886300	1.04661400
	Н	-1.73248400	-2.62466400	1.09290500
	Н	-0.15128200	-3.43543200	0.96861600
	Н	-0.33453900	-1.99236300	1.99265800
Structure 1-butanol				
Solvent:1-butanol				
		6		
		0		
cartesian coordinates	С	-3.50516200	1.37845200	0.01071100
of stationary point	Н	-3.16919100	0.33124900	-0.02609600
structure [Å]	Н	-3.16830600	1.86990200	-0.91443300
	Н	-4.60342500	1.37808300	0.00894900
	С	-2.95429100	2.08832800	1.24061600
	Н	-3.31183500	3.12964600	1.27776800
			1 5000 (200	0.16100200
1	Н	-3.31181700	1.59986300	2.16100300
	H C	-3.31181700 -1.43839900	1.599863002.10519300	2.16100300 1.27017600
	Н С Н	-3.31181700 -1.43839900 -1.06002200	1.599863002.105193002.60550100	2.16100300 1.27017600 0.35845400
	н С Н Н	-3.31181700 -1.43839900 -1.06002200 -1.06019300	1.39986300 2.10519300 2.60550100 1.06540400	2.16100300 1.27017600 0.35845400 1.24800100
	н С Н Н О	-3.31181700 -1.43839900 -1.06002200 -1.06019300 -1.01807800	1.59986300 2.10519300 2.60550100 1.06540400 2.77816000	2.16100300 1.27017600 0.35845400 1.24800100 2.43548300
	н С Н Н О Н	-3.31181700 -1.43839900 -1.06002200 -1.06019300 -1.01807800 -0.05479400	1.59986300 2.10519300 2.60550100 1.06540400 2.77816000 2.78736200	2.16100300 1.27017600 0.35845400 1.24800100 2.43548300 2.45131800

Structure TS1-Ha					
Solvent:1-butanol					
cartesian coordinates	С	-0.24330700 -0.58285900 2.43118400			
of stationary point	С	1.12527500 -0.96252400 1.80829800			
structure [Å]	С	0.35079800 0.77304800 2.77094500			
	Н	-1.07636000 -0.56225400 1.71152900			
	Н	-0.52954800 -1.18586400 3.30370600			
	Н	1.65739800 -1.76073000 2.33953000			
	С	1.67102000 0.46101700 2.08670900			
	Н	2.55815700 0.50432200 2.73385200			
	Н	1.87251500 1.04880500 1.17748000			
	S	-0.51602200 2.27000300 2.52493700			
	0	0.39744200 3.36447800 2.86695900			
	0	-1.80156100 2.14895400 3.22074100			
	С	-0.84643800 2.35594500 0.77867500			
	С	0.10388600 2.93749200 -0.06064600			
	С	-2.01665800 1.77989000 0.28445800			
	С	-0.12152300 2.92377000 -1.43562900			
	Н	0.99425600 3.40164700 0.36627900			
	С	-2.22879100 1.77415300 -1.09266100			
	Н	-2.74819900 1.35819000 0.97534800			
	С	-1.28103300 2.33877600 -1.94839000			
	Н	0.60745700 3.37585400 -2.10912400			
	Н	-3.13881800 1.33144300 -1.49913000			
	Н	-1.45144700 2.32968200 -3.02582900			
	С	1.03998700 -1.32037400 0.35004000			
	С	2.41614600 -1.52391500 -0.30889800			
	F	0.40085400 -0.33874800 -0.34167300			
	F	0.30527900 -2.44357800 0.18425300			
	0	3.45080900 -1.26804600 0.24426200			
	0	2.28943400 -1.98745100 -1.53342800			
	С	3.50660300 -2.19762000 -2.27347800			
	С	3.13272100 -2.72408100 -3.63633400			

	Н	4.13297300	-2.90379100	-1.71057200
	Н	4.04424900	-1.24052800	-2.32860000
	Н	4.04221700	-2.89448700	-4.22657100
	Н	2.58989800	-3.67447000	-3.54896500
	Н	2.50003400	-2.00267000	-4.17000400
	С	-0.54683800	0.50458700	6.05545000
	Н	-1.27923400	-0.10607100	5.49936600
	Н	-0.89304000	1.54752900	5.98057600
	С	0.78884700	0.39870800	5.37041800
	Н	0.57655400	0.81275900	4.17595200
	Н	1.56008800	1.08120400	5.76266200
	0	1.21112800	-0.91161700	5.25285300
	Н	2.16723100	-0.93824600	5.12408800
	С	-0.50478000	0.05532400	7.51737500
	Н	-0.11749900	-0.97446800	7.55464900
	Н	0.21932800	0.68151200	8.06398400
	С	-1.87033500	0.13061700	8.18926400
	Н	-1.82052000	-0.19348700	9.23809000
	Н	-2.26161800	1.15886800	8.17132900
	Н	-2.59830200	-0.51160200	7.67130300
Structure TS2				
Solvent:1-butanol				
			•	
			U	
cartesian coordinates	0	-2.37030700	-0.49963200	-0.20293200
of stationary point	Н	-2.88352000	0.29291300	-0.00562300
structure [Å]	С	-1.01582200	-0.21410600	-0.08434900
	С	-0.21335100	-1.49675500	-0.07225700
	Н	-0.79315600	0.40836600	0.80149100
	Н	-0.66905900	0.41672900	-0.96689800
	Н	0.85785200	-1.23864500	-0.08774300
	Н	-0.42230300	-2.04679300	-1.00535600
	H Br	-0.42230300 0.49303600	-2.04679300 0.85240100	-1.00535600 -2.72799000
	H Br C	-0.42230300 0.49303600 -0.52937800	-2.04679300 0.85240100 -2.37995400	-1.00535600 -2.72799000 1.13215600
	H Br C H	-0.42230300 0.49303600 -0.52937800 -1.60985800	-2.04679300 0.85240100 -2.37995400 -2.58855900	-1.00535600 -2.72799000 1.13215600 1.13986000

	С	0.25876600 -3.68416400 1.12113500
	Н	1.34202300 -3.49081700 1.13296700
	Н	0.01792500 -4.30711100 1.99371600
	Н	0.03526200 -4.26952900 0.21660000
Structure 2-methyl-		
1-propanol		
Solvent:2-methyl-1-		
propanol		
		•
cartesian coordinates	C	-3.45930900 -0.04623800 0.00651800
of stationary point	Н	-3.07334700 -1.07382900 -0.01074400
structure [Å]	Н	-3.12839100 0.45944200 -0.91547000
	Н	-4.55835300 -0.08345600 -0.00391700
	C	-2.94646400 0.70330400 1.23315500
	Н	-3.30726200 0.18203300 2.13702500
	С	-3.45191500 2.14270400 1.26340600
	Н	-3.09164500 2.69781200 0.38243100
	Н	-4.55075400 2.17251000 1.25060200
	Н	-3.10763600 2.67396700 2.16303000
	С	-1.42603700 0.67833000 1.29159300
	Н	-1.08559900 1.25049000 2.17492100
	Н	-1.02627300 1.19136200 0.39448300
	0	-0.98715800 -0.65966400 1.35275900
	Н	-0.02409800 -0.66670500 1.32934900
Structure TS1-Ha		
Solvent:		
2-methyl-1-propanol		
		-
cartesian coordinates	С	-0.27693900 -0.65426600 2.38933200
of stationary point	C	1.11305200 -0.96132000 1.77462100
structure [Å]	C	0.25101100 0.72268300 2.75488900
	Н	-1.09957000 -0.65405900 1.65730600
	Н	-0.54993100 -1.28289700 3.24730200

Н	1.68328700	-1.72669900	2.31482100
С	1.57963300	0.49020000	2.05135700
Н	2.47398300	0.58705800	2.68153400
Н	1.72703300	1.08794500	1.13844600
S	-0.71406900	2.16155200	2.50646100
0	0.09269600	3.31672900	2.91717700
0	-2.01960000	1.92575200	3.13273500
С	-0.96613900	2.27097300	0.74817400
С	-0.01937300	2.93712500	-0.03032600
С	-2.07227700	1.63529500	0.18456100
С	-0.17981400	2.94716700	-1.41438900
Н	0.81795100	3.44635100	0.44922600
С	-2.22041400	1.65506900	-1.20080400
Н	-2.80560700	1.14813100	0.82885300
С	-1.27366100	2.30310900	-1.99617000
Н	0.54808900	3.46426500	-2.04058900
Н	-3.08001100	1.16642000	-1.66082600
Н	-1.39363300	2.31331400	-3.08037700
С	1.06026400	-1.33461400	0.31855000
С	2.45145800	-1.47202000	-0.32563800
F	0.37986900	-0.39221900	-0.38826700
F	0.38439900	-2.49447800	0.15640300
0	3.46410600	-1.14134600	0.22868500
0	2.36326400	-1.97001300	-1.53991100
С	3.59709100	-2.12293500	-2.26634800
С	3.26704700	-2.70084600	-3.61964200
Н	4.25964700	-2.77772900	-1.68314100
Н	4.07701900	-1.13679800	-2.33906300
Н	4.19026100	-2.83030200	-4.19888300
Н	2.78035700	-3.67944100	-3.51475600
Н	2.59774000	-2.03018000	-4.17439700
С	-0.59087500	0.56507300	6.07882500
Н	-1.40637900	0.19477300	5.43178600
С	0.71204100	0.29893400	5.35607600
Н	0.50477200	0.74208700	4.16578100
Н	1.56268800	0.89181500	5.73319200
0	0.98996300	-1.04553600	5.21991600
Н	1.93857700	-1.17524900	5.09883000

	С	-0.64186700 -0.18609000 7.41047400
	Н	-1.60266000 -0.00833100 7.91476500
	Н	-0.51876100 -1.26592700 7.25738700
	Н	0.16304200 0.16160700 8.07732400
	С	-0.77130000 2.06851900 6.27437900
	Н	-0.70215600 2.61396700 5.32334000
	Н	-1.75394200 2.28373000 6.71701700
	Н	0.00058000 2.45969500 6.95598200
Structure TS2		
Solvent:2-methyl-1-		
propanol		
cartesian coordinates	0	-2.41393700 -0.39536500 -0.07817300
of stationary point	Н	-2.82351200 0.43215700 0.20028500
structure [Å]	С	-1.03253300 -0.24374600 -0.09737600
	С	-0.35239000 -1.59939800 -0.20737900
	Н	-0.65929200 0.31893500 0.77671600
	Н	-0.72240100 0.37751500 -0.99953700
	Н	0.72809100 -1.39258300 -0.28828700
	Br	0.64154700 1.06860700 -2.54484500
	С	-0.60625300 -2.42567200 1.05377000
	Н	-1.68405400 -2.60571200 1.17627900
	Н	-0.09857400 -3.39851600 0.98923200
	Н	-0.24083300 -1.90681300 1.95207000
	С	-0.80692900 -2.34089900 -1.46280800
	Н	-0.60074900 -1.74953000 -2.36791500
	Н	-0.28573800 -3.30400100 -1.55651100
	Н	-1.88807700 -2.53578800 -1.41869500

5 **Product characterization**

ethyl 2-(3-bromo-3-(phenylsulfonyl)cyclobutyl)-2,2-difluoroacetate (3a)

Prepared according to General Procedure A, compound 3a was obtained as colorless oil (49

mg, 62 % yield, dr = 3.5:1). Mixture of isomer 1 and isomer 2: ¹H NMR (300 MHz, CDCl₃) δ 8.07 - 7.93 (m, 2H), 7.77 - 7.68 (m, 1H), 7.65 - 7.56 (m, 2H), 4.40 - 4.28 (m, 2H), 3.55 - 3.26 (m, 3H), 3.05 - 2.42 (m, 2H), 1.40 - 1.32 (m, 3H). Isomer 1: ¹³C NMR (75 MHz, CDCl₃) δ 163.1 (t, ²*J*_{*C*-*F*} = 33.0 Hz), 135.0, 133.6, 131.3, 129.1, 114.1 (t, ¹*J*_{*C*-*F*} = 250.5 Hz), 65.4, 63.4, 35.7 (t, ³*J*_{*C*-*F*} = 5.3 Hz), 34.3 (t, ²*J*_{*C*-*F*} = 26.3 Hz), 14.1. ¹⁹F NMR (282 MHz, CDCl₃) δ -114.52. HRMS (ESI) for C₁₄H₁₅BrF₂NaO₄S [M + Na]⁺, calcd: 418.9735, found: 418.9733. Isomer 2: ¹³C NMR (75 MHz, CDCl₃) δ 163.1 (t, ²*J*_{*C*-*F*} = 33.0 Hz), 134.8, 134.0, 130.7, 129.2, 114.1 (t, ¹*J*_{*C*-*F*} = 250.5 Hz), 67.7, 63.5, 34.7 (t, ³*J*_{*C*-*F*} = 5.3 Hz), 31.9 (t, ²*J*_{*C*-*F*} = 26.3 Hz), 14.1. ¹⁹F NMR (282 MHz, CDCl₃) δ -113.40. HRMS (ESI) for C₁₄H₁₅BrF₂NaO₄S [M + Na]⁺, calcd: [M + Na]⁺, calcd: 418.9735, found: 418.9735, found: 418.9733.

ethyl 2-(3-bromo-3-tosylcyclobutyl)-2,2-difluoroacetate (3b)

Prepared according to General Procedure A, compound **3b** was obtained as colorless oil (53 mg, 65 % yield, dr = 3.5:1). Mixture of isomer 1 and isomer 2: ¹H NMR (300 MHz, CDCl₃) δ 7.93 – 7.81 (m, 2H), 7.42 – 7.35 (m, 2H), 4.39 – 4.28 (m, 2H), 3.53 – 3.26 (m, 3H), 3.04 – 2.40 (m, 5H), 1.39 – 1.32 (m, 3H). Isomer 1: ¹³C NMR (101 MHz, CDCl₃) δ 163.1 (t, ²*J*_{C-F} = 33.3 Hz), 146.3, 130.9, 130.5, 129.8, 113.8 (t, ¹*J*_{C-F} = 252.5 Hz), 65.6, 63.4, 35.7 (t, ³*J*_{C-F} = 5.1 Hz), 34.3 (t, ²*J*_{C-F} = 26.3 Hz), 21.9, 14.0. ¹⁹F NMR (282 MHz, CDCl₃) δ -114.53. HRMS (ESI) for C₁₅H₁₇BrF₂NaO₄S [M + Na]⁺, calcd: 432.9891, found: 432.9888. Isomer 2: ¹³C NMR (101 MHz, CDCl₃) δ 163.1 (t, ²*J*_{C-F} = 5.1 Hz), 34.3 (t, ³*J*_{C-F} = 5.1 Hz), 31.8 (t, ²*J*_{C-F} = 33.3 Hz), 146.1, 131.2, 130.6, 129.9, 114.2 (t, ¹*J*_{C-F} = 252.5 Hz), 67.9, 63.4, 34.7 (t, ³*J*_{C-F} = 5.1 Hz), 31.8 (t, ²*J*_{C-F} = 26.3 Hz), 21.9, 14.0. ¹⁹F NMR (282 MHz, CDCl₃) δ -113.38. HRMS (ESI) for C₁₅H₁₇BrF₂NaO₄S [M + Na]⁺, calcd: 432.9891, found: 432.9891, found: 432.9888.

ethyl 2-(3-bromo-3-((4-methoxyphenyl)sulfonyl)cyclobutyl)-2,2-difluoroacetate (3c)

Prepared according to General Procedure A, compound **3c** was obtained as colorless oil (60 mg, 70 % yield, dr = 3.3:1). Mixture of isomer 1 and isomer 2: ¹H NMR (300 MHz, CDCl₃) δ 7.98 – 7.83 (m, 2H), 7.08 – 6.99 (m, 2H), 4.33 (q, J = 7.1 Hz, 2H), 3.90 (d, J = 1.8 Hz, 3H), 3.51 – 3.26

(m, 3H), 3.05 - 2.38 (m, 2H), 1.35 (t, J = 7.2 Hz, 3H). Isomer 1: ¹³C NMR (101 MHz, CDCl₃) δ 164.8, 163.2 (t, ²*J*_{C-*F*} = 33.3 Hz), 133.5, 124.7, 114.4, 113.9 (t, ¹*J*_{C-*F*} = 252.5 Hz), 65.9, 63.4, 55.9, 35.7 (t, ³*J*_{C-*F*} = 5.1 Hz), 34.3 (t, ²*J*_{C-*F*} = 26.3 Hz), 14.1. ¹⁹F NMR (282 MHz, CDCl₃) δ -114.51. HRMS (ESI) for C₁₅H₁₇BrF₂NaO₅S [M + Na]⁺, calcd: 448.9840, found: 448.9833. Isomer 2: ¹³C NMR (101 MHz, CDCl₃) δ 164.7, 163.2 (t, ²*J*_{C-*F*} = 33.3 Hz), 132.9, 125.1, 114.5, 114.2 (t, ¹*J*_{C-*F*} = 252.5 Hz), 68.3, 63.4, 55.9, 34.8 (t, ³*J*_{C-*F*} = 5.1 Hz), 31.8 (t, ²*J*_{C-*F*} = 26.3 Hz), 14.1. ¹⁹F NMR (282 MHz, CDCl₃) δ -113.39. HRMS (ESI) for C₁₅H₁₇BrF₂NaO₅S [M + Na]⁺, calcd: 448.9840, found: 448.9833.

Prepared according to General Procedure A, compound **3d** was obtained as a beige solid (35 mg, 37 % yield, dr = 2.7:1). Mixture of isomer 1 and isomer 2: ¹H NMR (400 MHz, CDCl₃) δ 8.12 – 7.99 (m, 2H), 7.82 – 7.76 (m, 2H), 7.68 – 7.59 (m, 2H), 7.54 – 7.42 (m, 3H), 4.40 – 4.28 (m, 2H), 3.58 – 3.30 (m, 3H), 3.07 – 2.47 (m, 2H), 1.37 (t, J = 7.2 Hz, 3H). Isomer 1: ¹³C NMR (75 MHz, CDCl₃) δ 163.1 (t, ² $J_{C-F} = 33.0$ Hz), 147.8, 138.9, 132.4, 132.0, 131.2, 129.3, 129.1, 127.6, 127.6, 113.8 (¹ $J_{C-F} = 251.3$ Hz), 65.5, 63.4, 35.7 (t, ³ $J_{C-F} = 5.1$ Hz), 34.3 (t, ² $J_{C-F} = 26.3$ Hz), 14.1. ¹⁹F NMR (282 MHz, CDCl₃) δ -114.50. HRMS (ESI) for C₂₀H₁₉BrF₂NaO₄S [M + Na]⁺, calcd: 495.0048, found: 495.0043. Isomer 2: ¹³C NMR (75 MHz, CDCl₃) δ 163.1 (t, ² $J_{C-F} = 33.0$ Hz), 127.7, 127.6, 114.1 (t, ¹ $J_{C-F} = 250.5$ Hz), 67.9, 63.5, 34.8 (t, ³ $J_{C-F} = 5.3$ Hz), 31.9 (t, ² $J_{C-F} = 26.3$ Hz), 14.1. ¹⁹F NMR (282 MHz, CDCl₃) δ -113.37. HRMS (ESI) for C₂₀H₁₉BrF₂NaO₄S [M + Na]⁺, calcd: ESI) for C₂₀H₁₉BrF₂NaO₄S [M + Na]⁺, 68.5, 54.5, 54.5, 54.5, 54.5, 54.5, 54.5, 54.5, 54.5, 54.5, 54.5, 54.5, 54.5, 54.5, 54.5, 54.5, 55.5, 54.5, 55.5, 5

ethyl 2-(3-bromo-3-((4-chlorophenyl)sulfonyl)cyclobutyl)-2,2-difluoroacetate (3e)

Prepared according to General Procedure A, compound **3e** was obtained as colorless oil (51 mg, 59 % yield, dr = 2.6:1). Mixture of isomer 1 and isomer 2: ¹H NMR (300 MHz, CDCl₃) δ 8.00 – 7.87 (m, 2H), 7.61 – 7.54 (m, 2H), 4.34 (qd, J = 7.2, 3.7 Hz, 2H), 3.54 – 3.27 (m, 3H), 3.05 – 2.43

(m, 2H), 1.36 (td, J = 7.2, 1.7 Hz, 3H). Isomer 1: ¹³C NMR (75 MHz, CDCl₃) δ 163.1 (t, ² $J_{C-F} = 33.0$ Hz), 142.1, 132.4, 132.1, 129.5, 114.1 (t, ¹ $J_{C-F} = 224.3$ Hz), 65.3, 63.5, 35.7 (t, ³ $J_{C-F} = 5.3$ Hz), 34.3 (t, ² $J_{C-F} = 25.5$ Hz), 14.1. ¹⁹F NMR (282 MHz, CDCl₃) δ -114.53. HRMS (ESI) for C₁₄H₁₄BrClF₂NaO₄S [M + Na]⁺, calcd: 452.9345, found: 452.9346. Isomer 2: ¹³C NMR (75 MHz, CDCl₃) δ 163.1 (t, ² $J_{C-F} = 33.0$ Hz), 141.9, 132.6, 132.1, 129.7, 114.1 (t, ¹ $J_{C-F} = 224.3$ Hz), 67.6, 63.5, 34.7 (t, ³ $J_{C-F} = 5.3$ Hz), 31.8 (t, ² $J_{C-F} = 26.3$ Hz), 141.1 ¹⁹F NMR (282 MHz, CDCl₃) δ -113.45. HRMS (ESI) for C₁₄H₁₄BrClF₂NaO₄S [M + Na]⁺, calcd: 452.9345, found: 452.9345, found: 452.9346. ethyl 2-(3-bromo-3-((4-bromophenyl)sulfonyl)cyclobutyl)-2,2-difluoroacetate (3f)

Prepared according to General Procedure A, compound **3f** was obtained as colorless oil (50 mg, 52 % yield, dr = 2.2:1). Mixture of isomer 1 and isomer 2: ¹H NMR (300 MHz, CDCl₃) δ 7.91 – 7.78 (m, 2H), 7.77 – 7.69 (m, 2H), 4.38 – 4.27 (m, 2H), 3.53 – 3.26 (m, 3H), 3.07 – 2.41 (m, 2H), 1.39 – 1.31 (m, 3H). Isomer 1: ¹³C NMR (101 MHz, CDCl₃) δ 163.1 (t, ²*J*_{C-*F*} = 33.3 Hz), 133.1, 132.6, 132.1, 130.7, 113.7 (t, ¹*J*_{C-*F*} = 251.5 Hz), 65.3, 63.4, 35.7 (t, ³*J*_{C-*F*} = 5.1 Hz), 34.3 (t, ²*J*_{C-*F*} = 26.3 Hz), 14.1. ¹⁹F NMR (282 MHz, CDCl₃) δ -114.51. HRMS (ESI) for C₁₄H₁₄Br₂F₂NaO₄S [M + Na]⁺, calcd: 496.8840, found: 496.8847. Isomer 2: ¹³C NMR (101 MHz, CDCl₃) δ 163.1 (t, ²*J*_{C-*F*} = 5.1 Hz), 31.9 (t, ²*J*_{C-*F*} = 26.3 Hz), 14.1. ¹⁹F NMR (282 MHz, CDCl₃) δ -114.51. HRMS (ESI) for C₁₄H₁₄Br₂F₂NaO₄S [M + Na]⁺, calcd: 496.8840, found: 496.8847. Isomer 2: ¹³C NMR (101 MHz, CDCl₃) δ 163.1 (t, ²*J*_{C-*F*} = 5.1 Hz), 31.9 (t, ²*J*_{C-*F*} = 26.3 Hz), 14.1. ¹⁹F NMR (282 MHz, CDCl₃) δ -113.45. HRMS (ESI) for C₁₄H₁₄Br₂F₂NaO₄S [M + Na]⁺, calcd: 496.8840, found: 496.8840, found: 496.8847.

ethyl 2-(3-bromo-3-((4-fluorophenyl)sulfonyl)cyclobutyl)-2,2-difluoroacetate (3g)

Prepared according to General Procedure A, compound **3g** was obtained as colorless oil (62 mg, 75 % yield, dr = 2.8:1). Mixture of isomer 1 and isomer 2: ¹H NMR (300 MHz, CDCl₃) δ 8.09 – 7.93 (m, 2H), 7.32 – 7.22 (m, 2H), 4.40 – 4.26 (m, 2H), 3.54 – 3.25 (m, 3H), 3.04 – 2.41 (m, 2H), 1.39 – 1.30 (m, 3H). Isomer 1: ¹³C NMR (101 MHz, CDCl₃) δ 168.0 (d, ¹*J*_{C-F} = 259.6 Hz), 163.1 (t, ²*J*_{C-F} = 33.3 Hz), 134.2 (d, ³*J*_{C-F} = 9.1 Hz), 129.6 (d, ⁴*J*_{C-F} = 3.0 Hz), 116.7 (d, ²*J*_{C-F} = 22.2 Hz), 113.8

(t, ${}^{1}J_{C-F} = 252.5 \text{ Hz}$), 65.5, 63.4, 35.7 (t, ${}^{3}J_{C-F} = 5.1 \text{ Hz}$), 34.3 (t, ${}^{2}J_{C-F} = 26.3 \text{ Hz}$), 14.1. ¹⁹F NMR (282 MHz, CDCl₃) δ -101.20, -114.52. **HRMS** (ESI) for C₁₄H₁₄BrF₃NaO₄S [M + Na]⁺, calcd: 436.9641, found: 436.9635. Isomer 2: ¹³C NMR (101 MHz, CDCl₃) δ 167.9 (d, ${}^{1}J_{C-F} = 259.6 \text{ Hz}$), 163.1 (t, ${}^{2}J_{C-F} = 33.3 \text{ Hz}$), 133.6 (d, ${}^{3}J_{C-F} = 10.1 \text{ Hz}$), 130.0 (d, ${}^{4}J_{C-F} = 3.0 \text{ Hz}$), 116.8 (d, ${}^{2}J_{C-F} = 23.2 \text{ Hz}$), 114.1 (t, ${}^{1}J_{C-F} = 252.5 \text{ Hz}$), 67.8, 63.5, 34.7 (t, ${}^{3}J_{C-F} = 5.1 \text{ Hz}$), 31.8 (t, ${}^{2}J_{C-F} = 26.3 \text{ Hz}$), 14.1. ¹⁹F NMR (282 MHz, CDCl₃) δ -101.48, -113.48. HRMS (ESI) for C₁₄H₁₄BrF₃NaO₄S [M + Na]⁺, calcd: 436.9641, found: 436.9635.

ethyl 2-(3-bromo-3-((4-(trifluoromethyl)phenyl)sulfonyl)cyclobutyl)-2,2-difluoroacetate (3h)

Prepared according to General Procedure A, compound **3h** was obtained as colorless oil (56 mg, 60 % yield, dr = 7:1). Mixture of isomer 1 and isomer 2: ¹H NMR (300 MHz, CDCl₃) δ 8.21 – 8.07 (m, 2H), 7.91 – 7.82 (m, 2H), 4.34 (q, J = 7.2 Hz, 2H), 3.58 – 3.29 (m, 3H), 3.08 – 2.42 (m, 2H), 1.36 (t, J = 7.2 Hz, 3H). Isomer 1: ¹³C NMR (101 MHz, CDCl₃) δ 163.1 (t, ² $J_{C-F} = 33.3$ Hz), 137.9, 136.9 (q, ² $J_{C-F} = 33.3$ Hz), 131.9, 126.4 (q, ³ $J_{C-F} = 4.0$ Hz), 124.5 (q, ¹ $J_{C-F} = 274.7$ Hz), 114.0 (t, ¹ $J_{C-F} = 252.5$ Hz), 65.1, 63.5, 35.7 (t, ³ $J_{C-F} = 5.1$ Hz), 34.4 (t, ² $J_{C-F} = 28.3$ Hz), 14.1. ¹⁹F NMR (282 MHz, CDCl₃) δ -63.30, -114.54. HRMS (ESI) for C₁₅H₁₄BrF₅NaO₄S [M + Na]⁺, calcd: 486.9609, found: 486.9619. Isomer 2: ¹³C NMR (101 MHz, CDCl₃) δ 163.1 (t, ² $J_{C-F} = 33.3$ Hz), 137.9, 136.9 (q, ² $J_{C-F} = 33.3$ Hz), 131.3, 126.4 (q, ³ $J_{C-F} = 4.0$ Hz), 124.5 (q, ¹ $J_{C-F} = 274.7$ Hz), 114.0 (t, ¹ $J_{C-F} = 252.5$ Hz), 67.3, 63.5, 34.7 (t, ³ $J_{C-F} = 5.1$ Hz), 32.0 (t, ² $J_{C-F} = 274.7$ Hz), 114.0 (t, ¹ $J_{C-F} = 252.5$ Hz), 67.3, 63.5, 34.7 (t, ³ $J_{C-F} = 5.1$ Hz), 32.0 (t, ² $J_{C-F} = 27.3$ Hz), 14.1. ¹⁹F NMR (282 MHz, CDCl₃) δ -63.28, -113.52. HRMS (ESI) for C₁₅H₁₄BrF₅NaO₄S [M + Na]⁺, calcd: 486.9609, found: 486.9619.

ethyl 2-(3-bromo-3-((4-(trifluoromethoxy)phenyl)sulfonyl)cyclobutyl)-2,2-difluoroacetate (3i)

Prepared according to General Procedure A, compound **3i** was obtained as colorless oil (61 mg, 63 % yield, dr = 2.2:1). Mixture of isomer 1 and isomer 2: ¹H NMR (400 MHz, CDCl₃) δ 8.12 – 8.00 (m, 2H), 7.44 – 7.38 (m, 2H), 4.38 – 4.28 (m, 2H), 3.53 – 3.30 (m, 3H), 3.07 – 2.45 (m, 2H),

1.36 (t, J = 7.1 Hz, 3H). Isomer 1: ¹³C NMR (101 MHz, CDCl₃) δ 163.1 (t, ² $J_{C-F} = 33.3$ Hz), 154.0, 133.6, 131.7, 121.6 (q, ¹ $J_{C-F} = 261.6$ Hz), 120.6, 114.1 (t, ¹ $J_{C-F} = 252.5$ Hz), 65.3, 63.5, 35.7 (t, ³ $J_{C-F} = 5.1$ Hz), 34.3 (t, ² $J_{C-F} = 26.3$ Hz), 14.1. ¹⁹F NMR (282 MHz, CDCl₃) δ -57.59, -114.54. HRMS (ESI) for C₁₅H₁₄BrF₅NaO₅S [M + Na]⁺, calcd: 502.9558, found: 502.9558. Isomer 2: ¹³C NMR (101 MHz, CDCl₃) δ 163.1 (t, ² $J_{C-F} = 33.3$ Hz), 153.9, 133.0, 132.2, 121.6 (q, ¹ $J_{C-F} = 261.6$ Hz), 120.7, 114.1 (t, ¹ $J_{C-F} = 252.5$ Hz), 67.6, 63.5, 34.7 (t, ³ $J_{C-F} = 5.1$ Hz), 31.9 (t, ² $J_{C-F} = 27.3$ Hz), 14.1. ¹⁹F NMR (282 MHz, CDCl₃) δ -57.61, -113.49. HRMS (ESI) for C₁₅H₁₄BrF₅NaO₅S [M + Na]⁺, calcd: 502.9558, found: 502.9558.

ethyl 2-(3-bromo-3-((3-fluorophenyl)sulfonyl)cyclobutyl)-2,2-difluoroacetate (3j)

Prepared according to General Procedure A, compound **3j** was obtained as colorless oil (46 mg, 55 % yield, dr = 2.4:1). Mixture of isomer 1 and isomer 2: ¹H NMR (400 MHz, CDCl₃) δ 7.85 – 7.66 (m, 2H), 7.64 – 7.56 (m, 1H), 7.47 – 7.39 (m, 1H), 4.34 (qd, J = 7.1, 4.6 Hz, 2H), 3.55 – 3.30 (m, 3H), 3.06 – 2.46 (m, 2H), 1.36 (td, J = 7.1, 2.4 Hz, 3H). Isomer 1: ¹³C NMR (101 MHz, CDCl₃) δ 163.6 (d, ¹ $J_{CF} = 253.5$ Hz), 163.1 (t, ² $J_{CF} = 33.3$ Hz), 135.7 (d, ³J = 7.1 Hz), 130.9 (d, ³ $J_{CF} = 7.1$ Hz), 127.1 (d, ⁴ $J_{CF} = 3.0$ Hz), 122.4 (d, ² $J_{CF} = 21.2$ Hz), 118.7 (d, ² $J_{CF} = 25.3$ Hz), 113.7 (t, ¹ $J_{CF} = 252.5$ Hz), 65.2, 63.5, 35.7 (t, ³ $J_{CF} = 5.1$ Hz), 34.3 (t, ² $J_{CF} = 26.3$ Hz), 14.1. ¹⁹F NMR (282 MHz, CDCl₃) δ -109.07, -114.53. HRMS (ESI) for C₁₄H₁₄BrF₃NaO₄S [M + Na]⁺, calcd: 436.9641, found: 436.9638. Isomer 2: ¹³C NMR (101 MHz, CDCl₃) δ 163.7 (d, ¹ $J_{CF} = 253.5$ Hz), 163.1 (t, ² $J_{CF} = 21.2$ Hz), 118.1 (d, ³J = 6.1 Hz), 131.1 (d, ³ $J_{CF} = 7.1$ Hz), 126.5 (d, ⁴ $J_{CF} = 3.0$ Hz), 122.3 (d, ² $J_{CF} = 21.2$ Hz), 118.1 (d, ² $J_{CF} = 24.2$ Hz), 114.1 (t, ¹ $J_{CF} = 252.5$ Hz), 67.4, 63.5, 34.7 (t, ³ $J_{CF} = 5.1$ Hz), 31.9 (t, ² $J_{CF} = 26.3$ Hz), 14.1. ¹⁹F NMR (282 MHz, CDCl₃) δ -108.97, -113.46. HRMS (ESI) for C₁₄H₁₄BrF₃NaO₄S [M + Na]⁺, calcd: HRMS (ESI) for C₁₄H₁₄BrF₃NaO₄S [M + Na]⁺, calcd. HRMS (ESI) for C₁₄H₁₄BrF₃NaO₄S [M + Na]⁺, 63.5, 34.7 (t, ³ $J_{CF} = 5.1$ Hz), 31.9 (t, ² $J_{CF} = 26.3$ Hz), 14.1. ¹⁹F NMR (282 MHz, CDCl₃) δ -108.97, -113.46. HRMS (ESI) for C₁₄H₁₄BrF₃NaO₄S [M + Na]⁺, calcd: 436.9641, found: 436.9638.

ethyl 2-(3-bromo-3-((2-fluorophenyl)sulfonyl)cyclobutyl)-2,2-difluoroacetate (3k)

Prepared according to General Procedure A, compound 3k was obtained as colorless oil (34

mg, 41 % yield, dr = 2.1:1). Mixture of isomer 1 and isomer 2: ¹H NMR (300 MHz, CDCl₃) δ 8.05 - 7.94 (m, 1H), 7.76 - 7.64 (m, 1H), 7.41 - 7.33 (m, 1H), 7.31 - 7.21 (m, 1H), 4.33 (qd, J = 7.2, 3.9Hz, 2H), 3.65 - 3.22 (m, 3H), 3.14 - 2.52 (m, 2H), 1.35 (td, J = 7.2, 2.5 Hz, 3H). Isomer 1: ¹³C NMR (101 MHz, CDCl₃) δ 163.1 (t, ² $J_{C-F} = 33.3$ Hz), 161.1 (d, ¹ $J_{C-F} = 259.6$ Hz), 137.4 (d, ³ $J_{C-F} =$ 9.1 Hz), 134.0, 124.7 (d, ³ $J_{C-F} = 4.0$ Hz), 122.9 (d, ² $J_{C-F} = 15.2$ Hz), 117.8 (d, ² $J_{C-F} = 22.2$ Hz), 113.9 (t, ¹ $J_{C-F} = 252.5$ Hz), 66.2, 63.4, 35.5 (q, ³ $J_{C-F} = 5.1$ Hz), 34.2 (t, ² $J_{C-F} = 26.3$ Hz), 14.1. ¹⁹F NMR (282 MHz, CDCl₃) δ -103.55, -114.52. HRMS (ESI) for C₁₄H₁₄BrF₃NaO₄S [M + Na]⁺, calcd: 436.9641, found: 436.9636. Isomer 2: ¹³C NMR (101 MHz, CDCl₃) δ 163.1 (t, ² $J_{C-F} = 33.3$ Hz), 160.9 (d, ¹ $J_{C-F} = 258.6$ Hz), 137.2 (d, ³ $J_{C-F} = 8.1$ Hz), 133.0, 124.8 (d, ³ $J_{C-F} = 4.0$ Hz), 123.3 (d, ² $J_{C-F} = 5.1$ Hz), 32.1 (t, ² $J_{C-F} = 26.3$ Hz), 14.1. ¹⁹F NMR (282 MHz, CDCl₃) δ -105.35, -113.37. HRMS (ESI) for C₁₄H₁₄BrF₃NaO₄S [M + Na]⁺, calcd: 436.9641, found: 436.9636.

methyl 2-(3-bromo-3-(phenylsulfonyl)cyclobutyl)-2,2-difluoroacetate (31)

Prepared according to General Procedure A, compound **31** was obtained as colorless oil (45 mg, 59 % yield, dr = 3:1). Mixture of isomer 1 and isomer 2: ¹H NMR (300 MHz, CDCl₃) δ 8.06 – 7.92 (m, 2H), 7.76 – 7.67 (m, 1H), 7.64 – 7.55 (m, 2H), 3.88 (d, J = 3.7 Hz, 3H), 3.54 – 3.26 (m, 3H), 3.06 – 2.41 (m, 2H). Isomer 1: ¹³C NMR (101 MHz, CDCl₃) δ 163.6 (t, ² $J_{C-F} = 33.3$ Hz), 135.0, 133.6, 131.3, 129.1, 113.8 (t, ¹ $J_{C-F} = 251.5$ Hz), 65.3, 53.7, 35.7 (t, ³ $J_{C-F} = 5.1$ Hz), 34.3 (t, ² $J_{C-F} = 26.3$ Hz). ¹⁹F NMR (282 MHz, CDCl₃) δ -114.29. HRMS (ESI) for C₁₃H₁₃BrF₂NaO₄S [M + Na]⁺, calcd: 404.9578, found: 404.9573. Isomer 2: ¹³C NMR (101 MHz, CDCl₃) δ 163.6 (t, ² $J_{C-F} = 33.3$ Hz), 131.8 (t, ² $J_{C-F} = 26.3$ Hz). ¹⁹F NMR (282 MHz, CDCl₃) δ -113.15. HRMS (ESI) for C₁₃H₁₃BrF₂NaO₄S [M + Na]⁺, calcd: 404.9578, found: 282 MHz, CDCl₃) δ -113.15. HRMS (ESI) for C₁₃H₁₃BrF₂NaO₄S [M + Na]⁺, calcd: 404.9578, found: 404.9573.

benzyl 2-(3-bromo-3-(phenylsulfonyl)cyclobutyl)-2,2-difluoroacetate (3m)

Prepared according to General Procedure A, compound **3m** was obtained as colorless oil (49 mg, 53 % yield, dr = 3.1:1). Mixture of isomer 1 and isomer 2: ¹H NMR (300 MHz, CDCl₃) δ 8.04 – 7.90 (m, 2H), 7.77 – 7.67 (m, 1H), 7.63 – 7.53 (m, 2H), 7.44 – 7.33 (m, 5H), 5.28 (d, J = 4.2 Hz, 2H), 3.54 – 3.24 (m, 3H), 3.04 – 2.37 (m, 2H). Isomer 1: ¹³C NMR (101 MHz, CDCl₃) δ 162.9 (t, ² $J_{C-F} = 33.3$ Hz), 134.9, 133.9, 131.2, 130.6, 129.2, 129.1, 128.9, 128.6, 113.8 (t, ¹ $J_{C-F} = 252.5$ Hz), 68.7, 65.3, 35.6 (t, ³ $J_{C-F} = 5.1$ Hz), 34.3 (t, ² $J_{C-F} = 26.3$ Hz). ¹⁹F NMR (282 MHz, CDCl₃) δ -114.36. HRMS (ESI) for C₁₉H₁₇BrF₂NaO4S [M + Na]⁺, calcd: 480.9891, found: 480.9889. Isomer 2: ¹³C NMR (101 MHz, CDCl₃) δ 162.9 (t, ² $J_{C-F} = 33.3$ Hz), 134.8, 134.0, 131.2, 130.6, 129.2, 129.1, 128.9, 128.6, 114.2 (t, ¹ $J_{C-F} = 252.5$ Hz), 68.8, 67.6, 34.7 (t, ³ $J_{C-F} = 5.1$ Hz), 31.8 (t, ² $J_{C-F} = 26.3$ Hz). ¹⁹F NMR (282 MHz, CDCl₃) δ -113.22. HRMS (ESI) for C₁₉H₁₇BrF₂NaO₄S [M + Na]⁺, calcd: 480.9891, found: 480.9889.

4-methoxybenzyl 2-(3-bromo-3-(phenylsulfonyl)cyclobutyl)-2,2-difluoroacetate (3n)

Prepared according to General Procedure A, compound **3n** was obtained as colorless oil (47 mg, 48 % yield, dr = 2.9:1). Mixture of isomer 1 and isomer 2: ¹H NMR (300 MHz, CDCl₃) δ 8.02 – 7.90 (m, 2H), 7.76 – 7.67 (m, 1H), 7.63 – 7.54 (m, 2H), 7.31 (dd, J = 8.8, 2.4 Hz, 2H), 6.91 (dd, J = 8.9, 2.4 Hz, 2H), 5.22 (d, J = 3.9 Hz, 2H), 3.82 (d, J = 2.9 Hz, 3H), 3.54 – 3.21 (m, 3H), 3.01 – 2.35 (m, 2H). Isomer 1: ¹³C NMR (101 MHz, CDCl₃) δ 163.0 (t, ² $_{JCF} = 32.3$ Hz), 160.4, 134.9, 133.6, 131.3, 130.7, 129.1, 126.2, 114.3, 114.2 (t, ¹ $_{JC-F} = 252.5$ Hz), 68.7, 65.4, 55.5, 35.7 (t, ³ $_{JC-F} = 5.1$ Hz), 34.4 (t, ² $_{JC-F} = 26.3$ Hz). ¹⁹F NMR (282 MHz, CDCl₃) δ -114.54. HRMS (ESI) for C₂₀H₁₉BrF₂NaO₅S [M + Na]⁺, calcd: 510.9997, found: 510.9974. Isomer 2: ¹³C NMR (101 MHz, CDCl₃) δ 163.0 (t, ² $_{JC-F} = 32.3$ Hz), 14.3, 114.0 (t, CDCl₃) δ 163.0 (t, ² $_{JC-F} = 32.3$ Hz), 14.3, 114.0 (t, CDCl₃) δ 163.0 (t, ² $_{JC-F} = 32.3$ Hz).

 ${}^{1}J_{C-F} = 252.5 \text{ Hz}$), 68.8, 67.7, 55.5, 34.7 (t, ${}^{3}J_{C-F} = 5.1 \text{ Hz}$), 31.9 (t, ${}^{2}J_{C-F} = 26.3 \text{ Hz}$). ¹⁹F NMR (282 MHz, CDCl₃) δ -113.28. HRMS (ESI) for C₂₀H₁₉BrF₂NaO₅S [M + Na]⁺, calcd: 510.9997, found: 510.9974.

cyclobutyl 2-(3-bromo-3-(phenylsulfonyl)cyclobutyl)-2,2-difluoroacetate (30)

Prepared according to General Procedure A, compound **30** was obtained as colorless oil (56 mg, 66 % yield, dr = 2.4:1). Mixture of isomer 1 and isomer 2: ¹H NMR (300 MHz, CDCl₃) δ 8.07 – 7.93 (m, 2H), 7.77 – 7.68 (m, 1H), 7.65 – 7.55 (m, 2H), 5.18 – 5.04 (m, 1H), 3.56 – 3.23 (m, 3H), 3.05 – 2.35 (m, 4H), 2.26 – 2.06 (m, 2H), 1.94 – 1.81 (m, 1H), 1.75 – 1.62 (m, 1H). Isomer 1: ¹³C NMR (101 MHz, CDCl₃) δ 162.3 (t, ²*J*_{*C-F*} = 33.3 Hz), 134.9, 133.6, 131.3, 129.1, 113.7 (t, ¹*J*_{*C-F*} = 252.5 Hz), 71.6, 65.4, 35.7 (t, ³*J*_{*C-F*} = 5.1 Hz), 34.3 (t, ²*J*_{*C-F*} = 26.3 Hz), 30.2, 13.5. ¹⁹F NMR (282 MHz, CDCl₃) δ -114.59. HRMS (ESI) for C₁₆H₁₇BrF₂NaO₄S [M + Na]⁺, calcd: 444.9891, found: 444.9882. Isomer 2: ¹³C NMR (101 MHz, CDCl₃) δ 162.4 (t, ²*J*_{*C-F*} = 32.3 Hz), 134.8, 134.0, 130.7, 129.2, 114.0 (t, ¹*J*_{*C-F*} = 252.5 Hz), 71.7, 67.8, 34.7 (t, ³*J*_{*C-F*} = 5.1 Hz), 31.9 (t, ²*J*_{*C-F*} = 26.3 Hz), 30.2, 13.5. ¹⁹F NMR (282 MHz, CDCl₃) δ -113.55. HRMS (ESI) for C₁₆H₁₇BrF₂NaO₄S [M + Na]⁺, calcd: 444.9891, 60.2, 13.5. ¹⁹F NMR (282 MHz, CDCl₃) δ -113.55. HRMS (ESI) for C₁₆H₁₇BrF₂NaO₄S [M + Na]⁺, calcd: 444.9891, 60.2, 13.5. ¹⁹F NMR (282 MHz, CDCl₃) δ -113.55. HRMS (ESI) for C₁₆H₁₇BrF₂NaO₄S [M + Na]⁺, calcd: 444.9891, 60.2, 144.9891, found: 444.9891, found: 444.9891, found: 444.9891, 60.2, 113.55. HRMS (ESI) for C₁₆H₁₇BrF₂NaO₄S [M + Na]⁺, calcd: 444.9891, 60.2, 144.9891, found: 444.9891, 60.2, 144.9891, 60.2, 144.9891, 60.2, 144.9891, 60.2, 144.9891, 60.2, 144.9891, 60.2, 144.9891, 60.2, 144.9891, 60.2, 144.9891, 60.2, 144.9891, 60.2, 144.9891, 60.2, 144.9891, 60.2, 144.9891, 60.2, 144.9891, 60.2, 144.9891, 60.2, 144.9892.

cyclohexyl 2-(3-bromo-3-(phenylsulfonyl)cyclobutyl)-2,2-difluoroacetate (3p)

Prepared according to General Procedure A, compound **3p** was obtained as colorless oil (52 mg, 58 % yield, dr = 2.6:1). Mixture of isomer 1 and isomer 2: ¹H NMR (300 MHz, CDCl₃) δ 8.06 – 7.92 (m, 2H), 7.76 – 7.67 (m, 1H), 7.64 – 7.54 (m, 2H), 4.97 – 4.84 (m, 1H), 3.54 – 3.23 (m, 3H), 3.05 – 2.40 (m, 2H), 1.94 – 1.81 (m, 2H), 1.78 – 1.70 (m, 2H), 1.58 – 1.30 (m, 6H). Isomer 1: ¹³C NMR (75 MHz, CDCl₃) δ 162.5 (t, ²*J*_{*C*-*F*} = 32.3 Hz), 134.9, 133.6, 131.2, 129.1, 114.1 (t, ¹*J*_{*C*-*F*</sup> = 250.5 Hz), 76.4, 65.4, 35.7 (t, ³*J*_{*C*-*F*} = 5.3 Hz), 34.3 (t, ²*J*_{*C*-*F*</sup> = 26.3 Hz), 31.2, 25.1, 23.5. ¹⁹F NMR (282 MHz, CDCl₃) δ -114.64. HRMS (ESI) for C₁₈H₂₁BrF₂NaO₄S [M + Na]⁺, calcd: 473.0204,}}

found: 473.0194. Isomer 2: ¹³C NMR (75 MHz, CDCl₃) δ 162.5 (t, ²*J*_{C-*F*} = 32.3 Hz), 134.8, 134.0, 130.6, 129.2, 114.1 (¹*J*_{C-*F*} = 250.5 Hz), 76.4, 67.8, 34.8 (t, ³*J*_{C-*F*} = 5.3 Hz), 31.9 (t, ²*J*_{C-*F*} = 26.3 Hz), 31.2, 25.1, 23.5. ¹⁹F NMR (282 MHz, CDCl₃) δ -113.72. HRMS (ESI) for C₁₈H₂₁BrF₂NaO₄S [M + Na]⁺, calcd: 473.0204, found: 473.0194.

2,3-dihydro-1H-inden-2-yl 2-(3-bromo-3-(phenylsulfonyl)cyclobutyl)-2,2-difluoroacetate (3q)

Prepared according to General Procedure A, compound **3q** was obtained as colorless oil (63 mg, 65 % yield, dr = 2.7:1). Mixture of isomer 1 and isomer 2: ¹H NMR (300 MHz, CDCl₃) δ 8.01 – 7.89 (m, 2H), 7.76 – 7.67 (m, 1H), 7.64 – 7.54 (m, 2H), 7.27 – 7.19 (m, 4H), 5.67 (t, J = 6.2, 3.0 Hz, 1H), 3.49 – 3.21 (m, 5H), 3.14 – 3.02 (m, 2H), 3.00 – 2.32 (m, 2H). Isomer 1: ¹³C NMR (75 MHz, CDCl₃) δ 163.1 (t, ²*J*_{C-*F*} = 33.0 Hz), 139.5, 134.9, 133.6, 131.2, 129.1, 127.3, 124.8, 114.1 (t, ¹*J*_{C-*F*} = 249.8 Hz), 78.8, 65.3, 39.5, 35.7 (t, ³*J*_{C-*F*} = 5.3 Hz), 34.3 (t, ²*J*_{C-*F*} = 25.5 Hz). ¹⁹F NMR (282 MHz, CDCl₃) δ 163.1 (t, ²*J*_{C-*F*} = 249.8 Hz), 78.8, 65.3, 39.5, 35.7 (t, ³*J*_{C-*F*} = 5.3 Hz), 34.3 (t, ²*J*_{C-*F*} = 25.5 Hz). ¹⁹F NMR (282 MHz, CDCl₃) δ 163.1 (t, ²*J*_{C-*F*} = 33.0 Hz), 139.5, 134.9, 133.6, 131.2, 129.1, 127.3, 124.8, 114.1 (t, ¹*J*_{C-*F*} = 249.8 Hz), 78.8, 67.7, 39.5, 34.7 (t, ³*J*_{C-*F*} = 5.3 Hz), 31.9 (t, ²*J*_{C-*F*} = 26.3 Hz). ¹⁹F NMR (282 MHz, CDCl₃) δ -113.38. HRMS (ESI) for C₂₁H₁₉BrF₂NaO₄S [M + Na]⁺, calcd: 507.0048, found: [M + Na]⁺, calcd: 507.0048, found: 507.0039.

4-phenylbutyl 2-(3-bromo-3-(phenylsulfonyl)cyclobutyl)-2,2-difluoroacetate (3r)

Prepared according to General Procedure A, compound **3r** was obtained as colorless oil (68 mg, 68 % yield, dr = 2.4:1). Mixture of isomer 1 and isomer 2: ¹H NMR (300 MHz, CDCl₃) δ 8.05 – 7.92 (m, 2H), 7.77 – 7.66 (m, 1H), 7.64 – 7.53 (m, 2H), 7.35 – 7.24 (m, 2H), 7.22 – 7.13 (m, 3H), 4.38 – 4.17 (m, 2H), 3.53 – 3.26 (m, 3H), 3.05 – 2.38 (m, 4H), 1.82 – 1.67 (m, 4H). Isomer 1: ¹³C NMR (75 MHz, CDCl₃) δ 163.2 (t, ²*J*_{C-*F*} = 32.3 Hz), 141.7, 135.0, 133.6, 131.3, 129.1, 128.6, 128.5, 126.1, 114.2, 67.1, 65.4, 35.7 (t, ³*J*_{C-*F*} = 5.3 Hz), 35.4, 34.3 (t, ²*J*_{C-*F*} = 26.3 Hz), 27.9, 27.5. ¹⁹F NMR

(282 MHz, CDCl₃) δ -114.36. **HRMS** (ESI) for C₂₂H₂₃BrF₂NaO₄S [M + Na]⁺, calcd: 523.0361, found: 523.0358. Isomer 2: ¹³C NMR (75 MHz, CDCl₃) δ 163.2 (t, ²*J*_{C-F} = 32.3 Hz), 141.7, 134.8, 134.0, 130.7, 129.2, 128.6, 128.5, 126.1, 114.2, 67.7, 67.2, 35.4, 34.7 (t, ³*J*_{C-F} = 32.3 Hz), 31.86 (t, ²*J*_{C-F} = 26.3 Hz), 27.9, 27.55. ¹⁹F NMR (282 MHz, CDCl₃) δ -113.32. **HRMS** (ESI) for C₂₂H₂₃BrF₂NaO₄S [M + Na]⁺, calcd: 523.0361, found: 523.0358.

2-(trimethylsilyl)ethyl 2-(3-bromo-3-(phenylsulfonyl)cyclobutyl)-2,2-difluoroacetate (3s)

Prepared according to General Procedure A, compound **3s** was obtained as colorless oil (54 mg, 59 % yield, dr = 4.4:1). Mixture of isomer 1 and isomer 2: ¹H NMR (300 MHz, CDCl₃) δ 8.07 – 7.92 (m, 2H), 7.76 – 7.68 (m, 1H), 7.65 – 7.55 (m, 2H), 4.41 – 4.30 (m, 2H), 3.56 – 3.26 (m, 3H), 3.05 – 2.40 (m, 2H), 1.13 – 1.01 (m, 2H), 0.06 (s, 9H). Isomer 1: ¹³C NMR (75 MHz, CDCl₃) δ 163.3 (t, ²*J*_{*C*-*F*} = 32.3 Hz), 135.0, 133.6, 131.3, 129.1, 114.1 (t, ¹*J*_{*C*-*F*} = 250.5 Hz), 67.8, 65.4, 35.7 (t, ³*J*_{*C*-*F*} = 5.3 Hz), 34.3 (t, ²*J*_{*C*-*F*} = 26.3 Hz), 17.5, -1.5. ¹⁹F NMR (282 MHz, CDCl₃) δ -114.56. HRMS (ESI) for C₁₇H₂₃BrF₂NaO₄SSi [M + Na]⁺, calcd: 491.0130, found: 491.0133. Isomer 2: ¹³C NMR (75 MHz, CDCl₃) δ 163.3 (t, ²*J*_{*C*-*F*} = 5.3 Hz), 31.9 (t, ²*J*_{*C*-*F*</sup> = 26.3 Hz), 17.5, -1.5. ¹⁹F NMR (282 MHz, CDCl₃) δ -114.50. HRMS (ESI) for C₁₇H₂₃BrF₂NaO₄SSi [M + Na]⁺, calcd: 491.0130, found: 491.0133. Isomer 2: ¹³C NMR (75 MHz, CDCl₃) δ 163.3 (t, ²*J*_{*C*-*F*} = 5.3 Hz), 31.9 (t, ²*J*_{*C*-*F*</sup> = 26.3 Hz), 17.5, -1.5. ¹⁹F NMR (282 MHz, CDCl₃) δ -113.51. HRMS (ESI) for C₁₇H₂₃BrF₂NaO₄SSi [M + Na]⁺, calcd: 491.0130, found: 491.0133.}}

(3s,5s,7s)-adamantan-1-yl 2-(3-bromo-3-(phenylsulfonyl)cyclobutyl)-2,2-difluoroacetate (3t)

Prepared according to General Procedure A, compound **3t** was obtained as a white solid (51 mg, 51 % yield, dr = 2.8:1). Mixture of isomer 1 and isomer 2: ¹H NMR (300 MHz, CDCl₃) δ 8.06 – 7.92 (m, 2H), 7.76 – 7.67 (m, 1H), 7.64 – 7.54 (m, 2H), 3.52 – 3.18 (m, 3H), 3.02 – 2.38 (m, 2H), 2.21 (s, 3H), 2.13 (s, 6H), 1.66 (s, 6H). Isomer 1: ¹³C NMR (75 MHz, CDCl₃) δ 161.6 (t, ²*J*_{C-F} = 32.3 Hz), 134.9, 133.6, 131.2, 129.1, 113.8 (t, ¹*J*_{C-F} = 250.5 Hz), 85.5, 65.5, 41.1, 35.9, 35.8 (t, ³*J*_C.

 $_{F}$ = 5.3 Hz), 34.4 (t, ${}^{2}J_{C-F}$ = 26.3 Hz), 31.0. ¹⁹F NMR (282 MHz, CDCl₃) δ -114.63. HRMS (ESI) for C₂₂H₂₅BrF₂NaO₄S [M + Na]⁺, calcd: 525.0517, found: 525.0512. Isomer 2: ¹³C NMR (75 MHz, CDCl₃) δ 161.6 (t, ${}^{2}J_{C-F}$ = 32.3 Hz), 134.7, 134.1, 130.6, 129.2, 113.8 (t, ${}^{1}J_{C-F}$ = 250.5 Hz), 85.5, 68.0, 41.1, 35.9, 34.9 (t, ${}^{3}J_{C-F}$ = 5.3 Hz), 32.0 (t, ${}^{2}J_{C-F}$ = 26.3 Hz), 31.0. ¹⁹F NMR (282 MHz, CDCl₃) δ -113.74. HRMS (ESI) for C₂₂H₂₅BrF₂NaO₄S [M + Na]⁺, calcd: 525.0517, found: 525.0512.

2-(3-bromo-3-(phenylsulfonyl)cyclobutyl)-2,2-difluoro-*N*,*N*-dimethylacetamide (3u)

Prepared according to General Procedure A, compound **3u** was obtained as colorless oil (36 mg, 46 % yield, dr = 3.7:1). Mixture of isomer 1 and isomer 2: ¹H NMR (300 MHz, CDCl₃) δ 8.09 – 7.92 (m, 2H), 7.75 – 7.66 (m, 1H), 7.63 – 7.53 (m, 2H), 3.74 – 3.36 (m, 3H), 3.19 (s, 3H), 2.98 (s, 3H), 2.94 – 2.49 (m, 2H). Isomer 1: ¹³C NMR (75 MHz, CDCl₃) δ 162.3 (t, ²*J*_{C-F} = 29.3 Hz), 134.8, 133.8, 131.3, 129.0, 117.8 (t, ¹*J*_{C-F} = 255.0 Hz), 66.3, 36.8, 36.3 (t, ³*J*_{C-F} = 5.3 Hz), 34.7 (t, ²*J*_{C-F} = 25.5 Hz). ¹⁹F NMR (282 MHz, CDCl₃) δ -108.68. HRMS (ESI) for C₁₄H₁₆BrF₂NNaO₃S [M + Na]⁺, calcd: 417.9894, found: 417.9881. Isomer 2: ¹³C NMR (75 MHz, CDCl₃) δ 162.3 (t, ²*J*_{C-F} = 5.3 Hz), 32.3 (t, ²*J*_{C-F} = 26.3 Hz). ¹⁹F NMR (282 MHz, CDCl₃) δ -108.22. HRMS (ESI) for C₁₄H₁₆BrF₂NNaO₃S [M + Na]⁺, calcd: 417.9894, found: 417.9881.

2-(3-bromo-3-(phenylsulfonyl)cyclobutyl)-2,2-difluoro-1-morpholinoethan-1-one (3v)

Prepared according to General Procedure A, compound **3v** was obtained as a white solid (37 mg, 42 % yield, dr = 4.1:1). Mixture of isomer 1 and isomer 2: ¹H NMR (300 MHz, CDCl₃) δ 8.09 – 7.92 (m, 2H), 7.75 – 7.66 (m, 1H), 7.63 – 7.51 (m, 2H), 3.79 – 3.66 (m, 6H), 3.66 – 3.38 (m, 5H), 2.96 – 2.49 (m, 2H). Isomer 1: ¹³C NMR (101 MHz, CDCl₃) δ 161.0 (t, ²*J*_{*C*-*F*} = 29.3 Hz), 134.8, 133.8, 130.6, 129.1, 118.0 (t, ¹*J*_{*C*-*F*} = 257.6 Hz), 66.9, 66.7, 66.2, 46.4 (t, ³*J*_{*C*-*F*} = 6.1 Hz), 43.3, 36.3

(t, ${}^{3}J_{C-F} = 6.1 \text{ Hz}$), 34.6 (t, ${}^{2}J_{C-F} = 26.3 \text{ Hz}$). ¹⁹F NMR (282 MHz, CDCl₃) δ -108.02. HRMS (ESI) for C₁₆H₁₈BrF₂NNaO₄S [M + Na]⁺, calcd: 460.0000, found: 459.9996. Isomer 2: ¹³C NMR (101 MHz, CDCl₃) δ 161.0 (t, ${}^{2}J_{C-F} = 29.3 \text{ Hz}$), 134.7, 134.3, 131.3, 129.0, 118.0 (t, ${}^{1}J_{C-F} = 257.6 \text{ Hz}$), 68.1, 66.9, 66.7, 46.4 (t, ${}^{3}J_{C-F} = 6.1 \text{ Hz}$), 43.3, 35.2 (t, ${}^{3}J_{C-F} = 6.1 \text{ Hz}$), 32.2 (t, J = 26.3 Hz). ¹⁹F NMR (282 MHz, CDCl₃) δ -107.58. HRMS (ESI) for C₁₆H₁₈BrF₂NNaO₄S [M + Na]⁺, calcd: 460.0000, found: 459.9996.

2-(3-bromo-3-(phenylsulfonyl)cyclobutyl)-2,2-difluoro-1-phenylethan-1-one (3w)

Prepared according to General Procedure A, compound **3w** was obtained as colorless oil (43 mg, 50 % yield, dr = 4:1). Mixture of isomer 1 and isomer 2: ¹H NMR (300 MHz, CDCl₃) δ 8.14 – 7.93 (m, 4H), 7.75 – 7.48 (m, 6H), 3.73 – 3.41 (m, 3H), 3.05 – 2.50 (m, 2H). Isomer 1: ¹³C NMR (75 MHz, CDCl₃) δ 188.4 (t, ²J_{C-F} = 32.3 Hz), 134.9, 134.7, 133.7, 131.4 (t, ³J_{C-F} = 3.8 Hz), 131.3, 130.3 (t, ⁴J_{C-F} = 3.0 Hz), 129.1, 128.9, 117.8 (t, ¹J_{C-F} = 254.3 Hz), 66.1, 36.1 (t, ³J_{C-F} = 5.3 Hz), 33.8 (t, ²J_{C-F} = 25.5 Hz). ¹⁹F NMR (282 MHz, CDCl₃) δ -108.09. HRMS (ESI) for C₁₈H₁₅BrF₂NaO₃S [M + Na]⁺, calcd: 450.9786, found: 450.9785. Isomer 2: ¹³C NMR (75 MHz, CDCl₃) δ 188.4 (t, ²J_{C-F} = 32.3 Hz), 134.9, 134.7, 134.2, 131.4 (t, ³J_{C-F} = 3.8 Hz), 130.6, 130.3 (t, ⁴J_{C-F} = 3.0 Hz), 129.2, 128.9, 117.8 (t, ¹J_{C-F} = 254.3 Hz), 68.3, 35.0 (t, ³J_{C-F} = 5.3 Hz), 31.3 (t, ²J_{C-F} = 25.5 Hz). ¹⁹F NMR (282 MHz, CDCl₃) δ -107.30. HRMS (ESI) for C₁₈H₁₅BrF₂NaO₃S [M + Na]⁺, calcd: 450.9785.

ethyl 2,2-difluoro-2-(3-(phenylsulfonyl)cyclobutyl)acetate (4a)

Prepared according to General Procedure B, compound **4a** was obtained as a light-yellow solid. (46 mg, 72 % yield, dr = 8:1). Isomer 1: ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, J = 7.5 Hz, 2H), 7.67 (t, J = 7.5 Hz, 1H), 7.57 (t, J = 7.8 Hz, 2H), 4.30 (q, J = 7.1 Hz, 2H), 3.85 – 3.73 (m, 1H), 3.24 - 3.06 (m, 1H), 2.79 – 2.65 (m, 2H), 2.53 – 2.41 (m, 2H), 1.33 (t, J = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 163.4 (t, ${}^{2}J_{C-F} = 33.0$ Hz), 137.5, 134.1, 129.6, 128.4, 115.4 (t, ${}^{2}J_{C-F} = 249.8$ Hz), 63.2, 54.2, 34.0 (t, ${}^{2}J_{C-F} = 24.8$ Hz), 22.2 (t, ${}^{3}J_{C-F} = 5.3$ Hz), 14.1. ¹⁹F NMR (282 MHz, CDCl₃) δ - 113.77. HRMS (ESI) for C₁₄H₁₆F₂NaO₄S [M + Na]⁺, calcd: 341.0630, found: 341.0616. Isomer 2: ¹H NMR (400 MHz, CDCl₃) δ 7.90 – 7.85 (m, 2H), 7.67 (t, J = 7.5 Hz, 1H), 7.57 (t, J = 7.6 Hz, 2H), 4.31 (q, J = 7.2 Hz, 2H), 3.76 – 3.65 (m, 1H), 2.95 – 2.78 (m, 1H), 2.77 – 2.66 (m, 2H), 2.31 – 2.20 (m, 2H), 1.34 (t, J = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 163.4 (t, ${}^{2}J_{C-F} = 32.3$ Hz), 137.5, 134.1, 129.5, 128.5, 114.2 (t, ${}^{1}J_{C-F} = 249.8$ Hz), 63.2, 52.2, 32.6 (t, ${}^{2}J_{C-F} = 26.3$ Hz), 23.0 (t, ${}^{3}J_{C-F} = 5.3$ Hz), 14.1. ¹⁹F NMR (282 MHz, CDCl₃) δ -115.48. HRMS (ESI) for C₁₄H₁₆F₂NaO₄S [M + Na]⁺, calcd: 341.0630, found: 341.0630, found: 341.0616.

Prepared according to General Procedure B, compound **4b** was obtained as a light-yellow solid. (38 mg, 58 % yield, dr = 9:1). ¹**H NMR** (300 MHz, CDCl₃) δ 7.78 – 7.72 (m, 2H), 7.39 – 7.33 (m, 2H), 4.31 (q, J = 7.1 Hz, 2H), 3.77 – 3.61 (m, 1H), 2.95 – 2.63 (m, 3H), 2.45 (s, 3H), 2.31 – 2.16 (m, 2H), 1.34 (t, J = 7.2 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 163.3 (t, ² $J_{C-F} = 33.3$ Hz), 145.1, 134.5, 130.1, 128.4, 114.3 (t, ¹ $J_{C-F} = 252.5$ Hz), 63.1, 52.2, 32.5 (t, ² $J_{C-F} = 26.3$ Hz), 22.9 (t, ³ $J_{C-F} = 5.1$ Hz), 21.7, 14.0. ¹⁹**F NMR** (282 MHz, CDCl₃) δ -113.72. **HRMS** (ESI) for C₁₅H₁₈F₂NaO₄S [M + Na]⁺, calcd: 355.0786, found: 355.0780.

Prepared according to General Procedure B, compound 4c was obtained as a light-yellow solid. (44 mg, 63 % yield, dr > 20:1). ¹H NMR (300 MHz, CDCl₃) δ 7.84 – 7.76 (m, 2H), 7.06 – 6.98 (m, 2H), 4.31 (q, J = 7.2 Hz, 2H), 3.88 (s, 3H), 3.75 – 3.60 (m, 1H), 2.94 – 2.61 (m, 3H), 2.31 – 2.17 (m, 2H), 1.34 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 164.1, 163.4 (t, ² $_{J_{C-F}} = 32.3$ Hz), 130.7, 128.9, 114.7, 114.3 (t, ${}^{1}J_{C-F} = 252.5 \text{ Hz}$), 63.2, 55.8, 52.5, 32.5 (t, ${}^{2}J_{C-F} = 27.3 \text{ Hz}$), 23.1 (t, ${}^{3}J_{C-F} = 5.1 \text{ Hz}$), 14.1. 19 F NMR (282 MHz, CDCl₃) δ -113.73. HRMS (ESI) for C₁₅H₁₈F₂NaO₅S [M + Na]⁺, calcd: 371.0735, found: 371.0724.

ethyl 2-(3-([1,1'-biphenyl]-4-ylsulfonyl)cyclobutyl)-2,2-difluoroacetate (4d)

Prepared according to General Procedure B, compound **4d** was obtained as a beige solid. (32 mg, 41 % yield, dr > 20:1). ¹H NMR (300 MHz, CDCl₃) δ 7.98 – 7.89 (m, 2H), 7.81 – 7.73 (m, 2H), 7.66 – 7.58 (m, 2H), 7.53 – 7.40 (m, 3H), 4.32 (q, J = 7.2 Hz, 2H), 3.75 (t, J = 8.7 Hz, 1H), 2.98 – 2.68 (m, 3H), 2.36 – 2.22 (m, 2H), 1.35 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 163.4 (t, ² $J_{C-F} = 33.3$ Hz), 147.0, 139.1, 136.1, 129.2, 129.0, 128.9, 128.1, 127.5, 114.3 (t, ¹ $J_{C-F} = 251.5$ Hz), 63.2, 52.4, 32.6 (t, ² $J_{C-F} = 26.3$ Hz), 23.1 (t, ³ $J_{C-F} = 5.1$ Hz), 14.1. ¹⁹F NMR (282 MHz, CDCl₃) δ -113.70. HRMS (ESI) for C₂₀H₂₀F₂NaO₄S [M + Na]⁺, calcd: 417.0943, found: 417.0936. ethyl 2-(3-((4-chlorophenyl)sulfonyl)cyclobutyl)-2,2-difluoroacetate (4e)

Prepared according to General Procedure B, compound **4e** was obtained as a beige solid. (43 mg, 61 % yield, dr > 20:1). ¹H NMR (300 MHz, CDCl₃) δ 7.84 – 7.78 (m, 2H), 7.58 – 7.51 (m, 2H), 4.31 (q, J = 7.2 Hz, 2H), 3.76 – 3.63 (m, 1H), 3.00 – 2.63 (m, 3H), 2.33 – 2.20 (m, 2H), 1.34 (t, J = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 163.3 (t, ² $J_{C-F} = 33.3$ Hz), 140.9, 136.0, 129.9, 129.9, 114.2 (t, ¹ $J_{C-F} = 249.8$ Hz), 63.2, 52.2, 32.5 (t, ² $J_{C-F} = 26.3$ Hz), 22.9 (t, ³ $J_{C-F} = 5.3$ Hz), 14.0. ¹⁹F NMR (282 MHz, CDCl₃) δ -113.81. HRMS (ESI) for C₁₄H₁₅ClF₂NaO₄S [M + Na]⁺, calcd: 375.0240, found: 375.0231.

ethyl 2-(3-((4-bromophenyl)sulfonyl)cyclobutyl)-2,2-difluoroacetate (4f)

Prepared according to General Procedure B, compound **4f** was obtained as a light-yellow solid. (45 mg, 57 % yield, dr > 20:1). ¹**H NMR** (300 MHz, CDCl₃) δ 7.73 (d, J = 1.2 Hz, 4H), 4.32 (q, J = 7.2 Hz, 2H), 3.77 – 3.62 (m, 1H), 3.00 – 2.64 (m, 3H), 2.35 – 2.19 (m, 2H), 1.34 (t, J = 7.2 Hz, 3H). ¹³**C NMR** (75 MHz, CDCl₃) δ 163.3 (t, ² $J_{C-F} = 33.3$ Hz), 136.6, 132.9, 130.0, 129.5, 114.2 (t, ¹ $J_{C-F} = 249.8$ Hz), 63.3, 52.3, 32.6 (t, ² $J_{C-F} = 26.3$ Hz), 23.0 (t, ³ $J_{C-F} = 5.3$ Hz), 14.1. ¹⁹**F NMR** (282 MHz, CDCl₃) δ -113.80. **HRMS** (ESI) for C₁₄H₁₅BrF₂NaO₄S [M + Na]⁺, calcd: 418.9735, found: 418.9727.

ethyl 2,2-difluoro-2-(3-((4-fluorophenyl)sulfonyl)cyclobutyl)acetate (4g)

Prepared according to General Procedure B, compound **4g** was obtained as a yellow solid. (44 mg, 66 % yield, dr > 20:1). ¹H NMR (300 MHz, CDCl₃) δ 7.93 – 7.86 (m, 2H), 7.29 – 7.21 (m, 2H, *overlapping with CDCl₃ signal*), 4.31 (q, J = 7.2 Hz, 2H), 3.78 – 3.62 (m, 1H), 2.99 – 2.62 (m, 3H), 2.33 – 2.20 (m, 2H), 1.34 (t, J = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 167.8 (d, ¹ $J_{C-F} = 255.0$ Hz), 163.3 (t, ² $J_{C-F} = 33.3$ Hz), 133.6 (d, ⁴ $J_{C-F} = 3.8$ Hz), 131.4 (d, ³ $J_{C-F} = 9.0$ Hz), 117.0 (t, ² $J_{C-F} = 22.5$ Hz), 114.2 (t, ¹ $J_{C-F} = 249.8$ Hz), 63.3, 52.4, 32.5 (t, ² $J_{C-F} = 26.3$ Hz), 23.0 (t, ³ $J_{C-F} = 5.3$ Hz), 14.1. ¹⁹F NMR (282 MHz, CDCl₃) δ -102.95, -113.85. HRMS (ESI) for C₁₄H₁₅F₃NaO₄S [M + Na]⁺, calcd: 359.0535, found: 359.0523.

Prepared according to General Procedure B, compound **4h** was obtained as a light-yellow solid. (60 mg, 78 % yield, dr > 20:1). ¹H NMR (300 MHz, CDCl₃) δ 8.06 – 7.99 (m, 2H), 7.88 – 7.81 (m, 2H), 4.32 (q, J = 7.1 Hz, 2H), 3.80 – 3.66 (m, 1H), 3.01 – 2.67 (m, 3H), 2.35 – 2.22 (m, 2H), 1.34 (t, J = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 163.3 (t, ² $J_{C-F} = 33.0$ Hz), 141.2, 136.0 (d, ² $J_{C-F} = 33.0$ Hz), 129.2, 126.7 (q, ³ $J_{C-F} = 3.8$ Hz), 125.0 (q, ¹ $J_{C-F} = 271.5$ Hz), 114.1 (t, ¹ $J_{C-F} = 249.8$ Hz), 63.3, 52.2, 32.6 (t, ² $J_{C-F} = 26.3$ Hz), 22.9 (t, ³ $J_{C-F} = 5.3$ Hz), 14.1. ¹⁹F NMR (282 MHz, CDCl₃) δ - 63.23, -113.85. HRMS (ESI) for C₁₅H₁₅F₅NaO₄S [M + Na]⁺, calcd: 409.0503, found: 409.0500. ethyl 2,2-difluoro-2-(3-((4-(trifluoromethoxy)phenyl)sulfonyl)cyclobutyl)acetate (4i)

Prepared according to General Procedure B, compound **4i** was obtained as a beige solid. (66 mg, 82 % yield, dr > 20:1). ¹H NMR (300 MHz, CDCl₃) δ 7.97 – 7.90 (m, 2H), 7.43 – 7.36 (m, 2H), 4.32 (q, J = 7.1 Hz, 2H), 3.78 – 3.64 (m, 1H), 3.00 – 2.65 (m, 3H), 2.35 – 2.21 (m, 2H), 1.34 (t, J = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 163.3 (t, ² $J_{C-F} = 33.0$ Hz), 153.4, 135.8, 130.8, 122.0 (d, ¹ $J_{C-F} = 258.8$ Hz), 121.3, 114.2 (t, ¹ $J_{C-F} = 249.8$ Hz), 63.3, 52.3, 32.6 (t, ² $J_{C-F} = 26.3$ Hz), 23.0 (t, ³ $J_{C-F} = 5.3$ Hz), 14.1. ¹⁹F NMR (282 MHz, CDCl₃) δ -57.67, -113.85. HRMS (ESI) for C₁₅H₁₅F₅NaO₅S [M + Na]⁺, calcd: 425.0453, found: 425.0450.

Prepared according to General Procedure B, compound **4j** was obtained as a light-yellow solid. (42 mg, 62 % yield, dr > 20:1). ¹H NMR (300 MHz, CDCl₃) δ 7.72 – 7.50 (m, 3H), 7.42 – 7.31 (m, 1H), 4.31 (q, J = 7.2 Hz, 2H), 3.81 – 3.63 (m, 1H), 3.01 – 2.63 (m, 3H), 2.38 – 2.19 (m, 2H), 1.33 (t, J = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 164.3 (d, ¹ $J_{C-F} = 251.3$ Hz), 163.3 (t, ² $J_{C-F} = 33.0$ Hz), 139.7 (d, ³ $J_{C-F} = 6.8$ Hz), 131.5 (d, ³ $J_{C-F} = 7.5$ Hz), 124.4, 121.6 (d, ² $J_{C-F} = 21.0$ Hz), 116.0 (d, ² $J_{C-F} = 24.8$ Hz), 114.2 (t, ¹ $J_{C-F} = 249.8$ Hz), 63.3, 52.2, 32.6 (t, ² $J_{C-F} = 26.3$ Hz), 23.0 (t, ³ $J_{C-F} = 5.3$ Hz), 14.1. ¹⁹F NMR (282 MHz, CDCl₃) δ -108.77, -113.82. HRMS (ESI) for C₁₄H₁₅F₃NaO₄S [M + Na]⁺, calcd: 359.0535, found: 359.0526.

ethyl 2,2-difluoro-2-(3-((2-fluorophenyl)sulfonyl)cyclobutyl)acetate (4k)

Prepared according to General Procedure B, compound **4k** was obtained as a yellow solid. (29 mg, 43 % yield, dr > 20:1). ¹**H NMR** (300 MHz, CDCl₃) δ 7.96 – 7.88 (m, 1H), 7.69 – 7.59 (m, 1H), 7.37 – 7.29 (m, 1H), 7.26 – 7.18 (m, 1H), 4.30 (q, J = 7.2 Hz, 2H), 4.07 – 3.91 (m, 1H), 3.04 – 2.67 (m, 3H), 2.38 – 2.23 (m, 2H), 1.32 (t, J = 7.2 Hz, 3H). ¹³**C NMR** (75 MHz, CDCl₃) δ 163.3 (t, ² $J_{C-F} = 33.0$ Hz), 161.4 (d, ¹ $J_{C-F} = 254.3$ Hz), 136.6 (d, ³ $J_{C-F} = 8.3$ Hz), 131.1, 125.7 (d, ² $J_{C-F} = 15.8$ Hz), 125.0 (d, ³ $J_{C-F} = 3.8$ Hz), 117.5 (d, ² $J_{C-F} = 21.0$ Hz), 114.2 (t, ¹ $J_{C-F} = 249.8$ Hz), 63.2, 51.9, 32.6 (t, ² $J_{C-F} = 26.3$ Hz), 22.6 (t, ³ $J_{C-F} = 5.3$ Hz), 14.0. ¹⁹**F NMR** (282 MHz, CDCl₃) δ -108.38, -113.79. **HRMS** (ESI) for C₁₄H₁₅F₃NaO₄S [M + Na]⁺, calcd: 359.0535, found: 359.0529.

methyl 2,2-difluoro-2-(3-(phenylsulfonyl)cyclobutyl)acetate (41)

Prepared according to General Procedure B (*s*-butanol (0.1M) as solvent instead of EtOH), compound **4I** was obtained as a light-yellow solid. (34 mg, 56 % yield, dr > 20:1). ¹H NMR (300 MHz, CDCl₃) δ 7.91 – 7.84 (m, 2H), 7.71 – 7.63 (m, 1H), 7.57 (ddt, J = 8.3, 6.6, 1.3 Hz, 2H), 3.87 (s, 3H), 3.79 – 3.64 (m, 1H), 2.98 – 2.63 (m, 3H), 2.32 – 2.19 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 163.9 (t, ² $J_{C-F} = 33.3$ Hz), 137.5, 134.1, 129.5, 128.5, 114.3 (t, ¹ $J_{C-F} = 252.5$ Hz), 53.6, 52.2, 32.5 (t, ² $J_{C-F} = 27.3$ Hz), 22.9 (t, ³ $J_{C-F} = 5.1$ Hz). ¹⁹F NMR (282 MHz, CDCl₃) δ -113.48. HRMS (ESI) for C₁₃H₁₄F₂NaO₄S [M + Na]⁺, calcd: 327.0473, found: 327.0462.

Prepared according to General Procedure B (s-butanol (0.1M) as solvent instead of EtOH), compound **4m** was obtained as a brown solid. (42 mg, 55 % yield, dr > 20:1). ¹H NMR (300 MHz,

CDCl₃) δ 7.89 – 7.81 (m, 2H), 7.71 – 7.62 (m, 1H), 7.61 – 7.51 (m, 2H), 7.43 – 7.31 (m, 5H), 5.27 (s, 2H), 3.76 – 3.61 (m, 1H), 2.95 – 2.62 (m, 3H), 2.28 – 2.11 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 163.2 (t, ²*J*_{*C*-*F*} = 33.3 Hz), 137.3, 134.1, 129.5, 129.1, 128.9, 128.6, 128.5, 128.4, 114.3 (t, ¹*J*_{*C*-*F*} = 252.5 Hz), 68.6, 52.2, 32.5 (t, ²*J*_{*C*-*F*} = 26.3 Hz), 22.9 (t, ³*J*_{*C*-*F*} = 5.1 Hz). ¹⁹F NMR (282 MHz, CDCl₃) δ -113.67. HRMS (ESI) for C₁₉H₁₈F₂NaO₄S [M + Na]⁺, calcd: 403.0786, found: 403.0773.

4-methoxybenzyl 2,2-difluoro-2-(3-(phenylsulfonyl)cyclobutyl)acetate (4n)

Prepared according to General Procedure B (*s*-butanol (0.1M) as solvent instead of EtOH), compound **4n** was obtained as a yellow solid. (41 mg, 50 % yield, dr > 20:1). ¹**H NMR** (300 MHz, CDCl₃) δ 7.88 – 7.82 (m, 2H), 7.70 – 7.63 (m, 1H), 7.60 – 7.52 (m, 2H), 7.30 (d, J = 8.8 Hz, 2H), 6.89 (d, J = 8.8 Hz, 2H), 5.20 (s, 2H), 3.82 (s, 3H), 3.76 – 3.57 (m, 1H), 2.93 – 2.60 (m, 3H), 2.26 – 2.10 (m, 2H). ¹³**C NMR** (75 MHz, CDCl₃) δ 163.3 (t, ² $J_{C-F} = 33.0$ Hz), 160.2, 137.4, 134.1, 130.6, 129.5, 128.5, 126.3, 114.2, 114.0 (t, ¹ $J_{C-F} = 249.8$ Hz), 68.5, 55.4, 52.2, 32.5 (t, ² $J_{C-F} = 26.3$ Hz), 22.9 (t, ³ $J_{C-F} = 4.5$ Hz). ¹⁹**F NMR** (282 MHz, CDCl₃) δ -113.77. **HRMS** (ESI) for C₂₀H₂₀F₂NaO₅S [M + Na]⁺, calcd: 433.0892, found: 433.0872.

2,2-difluoro-N,N-dimethyl-2-(3-(phenylsulfonyl)cyclobutyl)acetamide (40)

Prepared according to General Procedure B, compound **40** was obtained as yellow oil. (38 mg, 59 % yield, dr = 13.7:1). ¹H NMR (300 MHz, CDCl₃) δ 7.93 – 7.82 (m, 2H), 7.70 – 7.61 (m, 1H), 7.61 – 7.50 (m, 2H), 3.73 (p, J = 8.5 Hz, 1H), 3.25 – 3.00 (m, 4H), 2.96 (s, 3H), 2.74 – 2.60 (m, 2H), 2.39 – 2.24 (m, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 162.5 (t, ² $J_{C-F} = 29.3$ Hz), 137.8, 133.9, 129.4, 128.4, 117.7 (t, ¹ $J_{C-F} = 255.0$ Hz), 52.6, 36.8 (t, ³ $J_{C-F} = 7.5$ Hz), 36.6, 32.9 (t, ² $J_{C-F} = 26.3$ Hz), 23.4 (t, ³ $J_{C-F} = 5.3$ Hz). ¹⁹F NMR (282 MHz, CDCl₃) δ -108.55. HRMS (ESI) for C₁₄H₁₇F₂NNaO₃S [M + Na]⁺, calcd: 340.0789, found: 340.0781.

N,*N*-diethyl-2,2-difluoro-2-(3-(phenylsulfonyl)cyclobutyl)acetamide (4p)

Prepared according to General Procedure B, compound **4p** was obtained as yellow oil. (40 mg, 58 % yield, dr > 20:1). ¹**H** NMR (300 MHz, CDCl₃) δ 7.91 – 7.84 (m, 2H), 7.69 – 7.61 (m, 1H), 7.60 – 7.51 (m, 2H), 3.80 – 3.65 (m, 1H), 3.57 – 3.45 (m, 2H), 3.33 (q, J = 7.1 Hz, 2H), 3.22 – 3.00 (m, 1H), 2.67 (qd, J = 9.8, 2.6 Hz, 2H), 2.37 – 2.23 (m, 2H), 1.20 (t, J = 7.0 Hz, 3H), 1.12 (t, J = 7.1 Hz, 3H). ¹³**C** NMR (75 MHz, CDCl₃) δ 161.9 (t, ² $J_{C-F} = 29.3$ Hz), 137.8, 133.8, 129.4, 128.3, 117.8 (t, ¹ $J_{C-F} = 255.0$ Hz), 52.6, 41.6 (t, ³ $J_{C-F} = 6.0$ Hz), 41.2, 33.1 (t, ² $J_{C-F} = 26.3$ Hz), 23.4 (t, ³ $J_{C-F} = 5.3$ Hz), 14.2, 12.3. ¹⁹**F** NMR (282 MHz, CDCl₃) δ -108.58. HRMS (ESI) for C₁₆H₂₁F₂NNaO₃S [M + Na]⁺, calcd: 368.1102, found: 368.1095.

1-(azetidin-1-yl)-2,2-difluoro-2-(3-(phenylsulfonyl)cyclobutyl)ethan-1-one (4q)

Prepared according to General Procedure B, compound **4q** was obtained as a light-yellow solid. (38 mg, 58 % yield, dr > 20:1). ¹**H NMR** (300 MHz, CDCl₃) δ 7.91 – 7.84 (m, 2H), 7.69 – 7.62 (m, 1H), 7.61 – 7.51 (m, 2H), 4.45 (t, J = 7.7 Hz, 2H), 4.09 (t, J = 7.8 Hz, 2H), 3.78 – 3.63 (m, 1H), 3.16 – 2.90 (m, 1H), 2.74 – 2.58 (m, 2H), 2.44 – 2.19 (m, 4H). ¹³**C NMR** (101 MHz, CDCl₃) δ 162.1 (t, ² $J_{C-F} = 30.3$ Hz), 137.7, 133.9, 129.4, 128.3, 117.1 (t, ¹ $J_{C-F} = 254.5$ Hz), 52.4, 52.3, 48.9, 32.0 (t, ² $J_{C-F} = 26.3$ Hz), 22.9 (t, ³ $J_{C-F} = 5.1$ Hz), 16.5. ¹⁹**F NMR** (282 MHz, CDCl₃) δ -111.86. **HRMS** (ESI) for C₁₅H₁₇F₂NNaO₃S [M + Na]⁺, calcd: 352.0789, found: 352.0775.

2,2-difluoro-2-(3-(phenylsulfonyl)cyclobutyl)-1-(pyrrolidin-1-yl)ethan-1-one (4r)

Prepared according to General Procedure B, compound 4r was obtained as a light-yellow solid.

(38 mg, 55 % yield, dr > 20:1). ¹H NMR (300 MHz, CDCl₃) δ 7.91 – 7.84 (m, 2H), 7.69 – 7.61 (m, 1H), 7.60 – 7.51 (m, 2H), 3.79 – 3.65 (m, 3H), 3.47 (t, J = 7.0 Hz, 2H), 3.23 – 2.99 (m, 1H), 2.75 – 2.60 (m, 2H), 2.37 – 2.24 (m, 2H), 2.01 – 1.79 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 161.3 (t, ² $J_{C-F} = 30.3$ Hz), 137.8, 133.9, 129.4, 128.4, 117.2 (t, ¹ $J_{C-F} = 256.5$ Hz), 52.6, 47.2, 46.3 (t, ³ $J_{C-F} = 6.1$ Hz), 32.5 (t, ² $J_{C-F} = 26.3$ Hz), 26.5, 23.4, 23.3 (t, ³ $J_{C-F} = 6.1$ Hz). ¹⁹F NMR (282 MHz, CDCl₃) δ -111.82. HRMS (ESI) for C₁₆H₁₉F₂NNaO₃S [M + Na]⁺, calcd: 366.0946, found: 366.0936. **2,2-difluoro-2-(3-(phenylsulfonyl)cyclobutyl)-1-(piperidin-1-yl)ethan-1-one (4s)**

Prepared according to General Procedure B, compound **4s** was obtained as a light-yellow solid. (36 mg, 50 % yield, dr = 20:1). ¹H NMR (300 MHz, CDCl₃) δ 7.91 – 7.84 (m, 2H), 7.69 – 7.61 (m, 1H), 7.60 – 7.51 (m, 2H), 3.80 – 3.67 (m, 1H), 3.67 – 3.58 (m, 2H), 3.55 – 3.46 (m, 2H), 3.20 – 3.00 (m, 1H), 2.74 – 2.60 (m, 2H), 2.38 – 2.25 (m, 2H), 1.66 – 1.57 (m, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 160.9 (t, ²*J*_{C-F} = 28.5 Hz), 137.9, 133.9, 129.4, 128.4, 118.0 (t, ¹*J*_{C-F} = 255.8 Hz), 52.6, 46.7 (t, ³*J*_{C-F} = 6.8 Hz), 44.2, 33.1 (t, ²*J*_{C-F} = 26.3 Hz), 26.5, 25.7, 24.5, 23.4 (t, ³*J*_{C-F} = 6.0 Hz). ¹⁹F NMR (282 MHz, CDCl₃) δ -108.11. HRMS (ESI) for C₁₇H₂₁F₂NNaO₃S [M + Na]⁺, calcd: 380.1102, found: 380.1089.

2,2-difluoro-1-morpholino-2-(3-(phenylsulfonyl)cyclobutyl)ethan-1-one (4t)

Prepared according to General Procedure B, compound **4t** was obtained as a white solid. (47 mg, 66 % yield, dr = 6:1). ¹**H** NMR (400 MHz, CDCl₃) δ 7.92 – 7.85 (m, 2H), 7.68 – 7.62 (m, 1H), 7.59 – 7.52 (m, 2H), 3.78 – 3.66 (m, 7H), 3.62 – 3.56 (m, 2H), 3.33 – 3.03 (m, 1H), 2.82 – 2.63 (m, 2H), 2.45 – 2.27 (m, 2H). ¹³**C** NMR (75 MHz, CDCl₃) δ 161.2 (t, ²*J*_{C-F} = 29.3 Hz), 137.9, 133.9, 129.4, 128.4, 117.8 (t, ¹*J*_{C-F} = 255.0 Hz), 66.9, 66.7, 52.6, 46.4, 43.2, 32.8 (t, ²*J*_{C-F} = 26.3 Hz), 23.3

(t, ${}^{3}J_{C-F} = 5.3$ Hz). 19 F NMR (282 MHz, CDCl₃) δ -107.88, -108.83. HRMS (ESI) for $C_{16}H_{19}F_{2}NNaO_{4}S$ [M + Na]⁺, calcd: 382.0895, found: 382.0882.

2,2-difluoro-2-(3-(phenylsulfonyl)cyclobutyl)-1-thiomorpholinoethan-1-one (4u)

Prepared according to General Procedure B, compound **4u** was obtained as a beige solid. (43 mg, 57 % yield, dr > 20:1). ¹H NMR (300 MHz, CDCl₃) δ 7.91 – 7.84 (m, 2H), 7.69 – 7.62 (m, 1H), 7.61 – 7.51 (m, 2H), 4.01 – 3.91 (m, 2H), 3.89 – 3.80 (m, 2H), 3.80 – 3.66 (m, 1H), 3.22 – 2.99 (m, 1H), 2.76 – 2.55 (m, 6H), 2.38 – 2.23 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 161.2 (t, ²*J*_{C-*F*} = 29.3 Hz), 137.9, 133.9, 129.4, 128.4, 117.9 (t, ¹*J*_{C-*F*} = 257.6 Hz), 52.5, 48.6 (t, ³*J*_{C-*F*} = 5.1 Hz), 45.8, 33.0 (t, ²*J*_{C-*F*} = 26.3 Hz), 28.2, 27.4, 23.4 (t, ³*J*_{C-*F*} = 6.1 Hz). ¹⁹F NMR (282 MHz, CDCl₃) δ -108.02. HRMS (ESI) for C₁₆H₁₉F₂NNaO₃S₂ [M + Na]⁺, calcd: 398.0667, found: 398.0656.

tert-butyl 4-(2,2-difluoro-2-(3-(phenylsulfonyl)cyclobutyl)acetyl)piperazine-1-carboxylate (4v)

Prepared according to General Procedure B, compound **4v** was obtained as a light-yellow solid. (46 mg, 50 % yield, dr > 20:1). ¹**H** NMR (300 MHz, CDCl₃) δ 7.90 – 7.83 (m, 2H), 7.68 – 7.62 (m, 1H), 7.60 – 7.51 (m, 2H), 3.81 – 3.64 (m, 3H), 3.59 – 3.41 (m, 6H), 3.21 – 2.99 (m, 1H), 2.74 – 2.61 (m, 2H), 2.40 – 2.25 (m, 2H), 1.47 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 161.3 (t, ²*J*_{C-F} = 29.3 Hz), 154.5, 137.8, 133.9, 129.4, 128.4, 117.8 (t, ¹*J*_{C-F} = 255.0 Hz), 80.6, 52.6, 45.6, 42.8, 32.9 (t, ²*J*_{C-F} = 26.3 Hz), 28.5, 23.3 (t, ³*J*_{C-F} = 5.3 Hz). ¹⁹F NMR (282 MHz, CDCl₃) δ -107.71. HRMS (ESI) for C₂₁H₂₈F₂N₂NaO₅S [M + Na]⁺, calcd: 481.1579, found: 481.1568.

2,2-difluoro-1-(4-phenylpiperazin-1-yl)-2-(3-(phenylsulfonyl)cyclobutyl)ethan-1-one (4w)

Prepared according to General Procedure B, compound **4w** was obtained as a beige solid. (56 mg, 65 % yield, dr > 20:1). ¹H NMR (300 MHz, CDCl₃) δ 7.94 – 7.83 (m, 2H), 7.70 – 7.50 (m, 3H), 7.35 – 7.27 (m, 2H), 7.04 – 6.88 (m, 3H), 3.95 – 3.66 (m, 5H), 3.29 – 3.03 (m, 5H), 2.77 – 2.62 (m, 2H), 2.41 – 2.25 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 161.1 (t, ²*J*_{*C*-*F*} = 29.3 Hz), 150.8, 137.9, 133.9, 129.4, 128.4, 120.9, 117.9 (t, ¹*J*_{*C*-*F*} = 259.6 Hz), 116.9, 52.6, 49.9, 49.5, 45.6, 42.9, 32.9 (t, ²*J*_{*C*-*F*} = 27.3 Hz), 23.4. ¹⁹F NMR (282 MHz, CDCl₃) δ -107.62. HRMS (ESI) for C₂₂H₂₄F₂N₂NaO₃S [M + Na]⁺, calcd: 457.1368, found: 457.1359.

2,2-difluoro-N-phenyl-2-(3-(phenylsulfonyl)cyclobutyl)acetamide (4x)

Prepared according to General Procedure B, compound **4x** was obtained as a yellow solid. (57 mg, 78 % yield, dr = 1.8:1). Mixture of isomer 1 and isomer 2: ¹H NMR (300 MHz, CDCl₃) δ 8.04 – 7.85 (m, 3H), 7.72 – 7.63 (m, 1H), 7.62 – 7.49 (m, 4H), 7.41 – 7.33 (m, 2H), 7.24 – 7.16 (m, 1H), 3.87 – 3.68 (m, 1H), 3.39 – 3.01 (m, 1H), 2.85 – 2.69 (m, 2H), 2.64 – 2.25 (m, 2H). Isomer 1: ¹³C NMR (101 MHz, Acetone- d_6) δ 162.3 (t, ² J_{C-F} = 29.3 Hz), 138.9, 138.2, 134.8, 130.3, 129.7, 129.2, 129.0, 125.9, 121.4, 118.1 (t, ¹ J_{C-F} = 254.5 Hz), 54.5, 34.8 (t, ² J_{C-F} = 26.3 Hz), 22.8 (t, ³ J_{C-F} = 5.1 Hz). ¹⁹F NMR (282 MHz, CDCl₃) δ -114.17. HRMS (ESI) for C₁₈H₁₇F₂NNaO₃S [M + Na]⁺, calcd: 388.0789, found: 388.0779. Isomer 2: ¹³C NMR (101 MHz, Acetone- d_6) δ 162.3 (t, ² J_{C-F} = 29.3 Hz), 121.5, 117.1 (t, ¹ J_{C-F} = 254.5 Hz), 52.5, 32.9 (t, ² J_{C-F} = 26.3 Hz), 23.4 (t, ³ J_{C-F} = 5.1 Hz). ¹⁹F NMR (282 MHz, CDCl₃) δ -113.49. HRMS (ESI) for C₁₈H₁₇F₂NNaO₃S [M + Na]⁺, calcd: 388.0789, found: 388.0789, found: 388.0789, found: 388.0789, found: 388.0779. S [M + Na]⁺, calcd: 388.0789, found: 388.0799. S [M + Na]⁺, calcd: 388.0789, found: 388.0799. S [M + Na]⁺, calcd: 388.0789, found: 388.0779. S [M + Na]⁺, calcd: 388.0789, found: 388.0779.

2,2-difluoro-1-(1-methyl-1*H*-indol-3-yl)-2-(3-(phenylsulfonyl)cyclobutyl)ethan-1-one (4y)

Prepared according to General Procedure B, compound **4y** was obtained as a light-yellow solid. (45 mg, 56 % yield, dr = 2.9:1). Mixture of isomer 1 and isomer 2: ¹H NMR (300 MHz, CDCl₃) δ 8.40 – 8.32 (m, 1H), 8.08 – 7.96 (m, 1H), 7.92 – 7.81 (m, 2H), 7.70 – 7.62 (m, 1H), 7.61 – 7.52 (m, 2H), 7.44 – 7.30 (m, 3H), 3.97 – 3.69 (m, 4H), 3.41 – 3.07 (m, 1H), 2.86 – 2.66 (m, 2H), 2.60 – 2.26 (m, 2H). Isomer 1: ¹³C NMR (101 MHz, CDCl₃) δ 183.4 (t, ²*J*_{C-F} = 30.3 Hz), 138.4 (t, ³*J*_{C-F} = 9.1 Hz), 137.6, 137.1, 134.0, 129.4, 128.4, 127.2, 124.3, 123.6, 122.6, 119.2 (t, ¹*J*_{C-F} = 254.5 Hz), 110.5, 110.0, 54.5, 34.0 (t, ²*J*_{C-F} = 25.3 Hz), 33.9, 22.6 (t, ³*J*_{C-F} = 5.1 Hz). ¹⁹F NMR (282 MHz, CDCl₃) δ -108.25. HRMS (ESI) for C₂₁H₁₉F₂NNaO₃S [M + Na]⁺, calcd: 426.0946, found: 426.0932. Isomer 2: ¹³C NMR (101 MHz, CDCl₃) δ 183.6 (t, ²*J*_{C-F} = 30.3 Hz), 138.8 (t, ³*J*_{C-F} = 9.1 Hz), 137.7, 137.1, 133.9, 129.4, 128.4, 127.3, 124.2, 123.6, 122.5, 118.1 (t, ¹*J*_{C-F} = 255.5 Hz), 110.6, 110.1, 52.7, 33.9, 32.1 (t, ²*J*_{C-F} = 26.3 Hz), 23.2 (t, ³*J*_{C-F} = 5.1 Hz). ¹⁹F NMR (282 MHz, CDCl₃) δ -109.61. HRMS (ESI) for C₂₁H₁₉F₂NNaO₃S [M + Na]⁺, calcd: 426.0946, found: 426.0932.

2,2-difluoro-1-phenyl-2-(3-(phenylsulfonyl)cyclobutyl)ethan-1-one (4z)

Prepared according to General Procedure B, compound **4z** was obtained as light-yellow oil (34 mg, 49 % yield, dr > 20:1). ¹**H NMR** (300 MHz, CDCl₃) δ 8.12 – 8.04 (m, 2H), 7.92 – 7.84 (m, 2H), 7.69 – 7.45 (m, 6H), 3.85 – 3.70 (m, 1H), 3.23 – 2.99 (m, 1H), 2.81 – 2.66 (m, 2H), 2.41 – 2.27 (m, 2H). ¹³**C NMR** (75 MHz, CDCl₃) δ 188.7 (t, ²*J*_{C-F} = 31.5 Hz), 137.7, 134.8, 134.0, 131.7 (t, ³*J*_{C-F} = 3.0 Hz), 130.3 (t, ⁴*J*_{C-F} = 3.0 Hz), 129.5, 128.9, 128.5, 117.8 (t, ¹*J*_{C-F} = 252.8 Hz), 52.8, 31.9 (t, ²*J*_{C-F} = 26.3 Hz), 23.3 (t, ³*J*_{C-F} = 6.0 Hz). ¹⁹**F NMR** (282 MHz, CDCl₃) δ -107.69. **HRMS** (ESI) for C₁₈H₁₆F₂NaO₃S [M + Na]⁺, calcd: 373.0680, found: 373.0666.

2-(difluoro(3-(phenylsulfonyl)cyclobutyl)methyl)benzo[d]oxazole (4aa)

Prepared according to General Procedure B, compound **4aa** was obtained as a light-yellow solid. (49 mg, 67 % yield, dr > 20:1). ¹H NMR (300 MHz, CDCl₃) δ 7.92 – 7.85 (m, 2H), 7.79 – 7.74 (m, 1H), 7.70 – 7.52 (m, 4H), 7.50 – 7.37 (m, 2H), 3.87 – 3.72 (m, 1H), 3.42 – 3.19 (m, 1H), 2.91 – 2.76 (m, 2H), 2.49 – 2.33 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 156.8 (t, ²*J*_{*C*-*F*} = 33.3 Hz), 150.7, 139.9, 137.5, 134.1, 129.5, 128.5, 127.2, 125.5, 121.4, 115.0 (t, ¹*J*_{*C*-*F*} = 242.4 Hz), 111.6, 52.3, 33.7 (t, ²*J*_{*C*-*F*} = 26.3 Hz), 23.3 (t, ³*J*_{*C*-*F*} = 5.1 Hz). ¹⁹F NMR (282 MHz, CDCl₃) δ -106.46. HRMS (ESI) for C₁₈H₁₅F₂NNaO₃S [M + Na]⁺, calcd: 386.0633, found: 386.0620.

2-(difluoro(3-(phenylsulfonyl)cyclobutyl)methyl)benzo[d]thiazole (4ab)

Prepared according to General Procedure B, compound **4ab** was obtained as a yellow solid. (58 mg, 76 % yield, dr > 20:1). ¹H NMR (300 MHz, CDCl₃) δ 8.09 – 8.04 (m, 1H), 7.96 (d, J = 7.4 Hz, 1H), 7.89 (d, J = 7.0 Hz, 2H), 7.69 – 7.62 (m, 1H), 7.61 – 7.45 (m, 4H), 3.84 – 3.69 (m, 1H), 3.51 – 3.29 (m, 1H), 2.91 – 2.76 (m, 2H), 2.44 – 2.29 (m, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 162.9 (t, ² $_{2C-F} = 34.5$ Hz), 152.6, 137.6, 135.1, 134.0, 129.5, 128.5, 126.9, 126.8, 124.4, 122.2, 118.1 (t, ¹ $_{JC-F} = 240.0$ Hz), 52.4, 34.3 (t, ² $_{JC-F} = 27.0$ Hz), 23.5 (t, ³ $_{JC-F} = 5.3$ Hz). ¹⁹F NMR (282 MHz, CDCl₃) δ -98.56. HRMS (ESI) for C₁₈H₁₅F₂NNaO₂S₂ [M + Na]⁺, calcd: 402.0405, found: 402.0392. diethyl (difluoro(3-(phenylsulfonyl)cyclobutyl)methyl)phosphonate (4ac)

Prepared according to General Procedure B, compound **4ac** was obtained as light-yellow oil (44 mg, 58 % yield, *dr* > 20:1). ¹**H** NMR (300 MHz, CDCl₃) δ 7.87 – 7.79 (m, 2H), 7.68 – 7.59 (m, 1H), 7.58 – 7.49 (m, 2H), 4.29 – 4.16 (m, 4H), 3.76 – 3.61 (m, 1H), 2.98 – 2.76 (m, 1H), 2.75 – 2.60

(m, 2H), 2.30 – 2.15 (m, 2H), 1.33 (t, J = 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 137.6, 134.0, 129.4, 128.4, 119.6 (td, ¹ $J_{C-F} = 260.6$, 214.1 Hz), 64.7, 64.6, 52.4, 32.1 (td, ² $J_{C-F} = 23.2$, 15.2 Hz), 23.0 (q, ³ $J_{C-F} = 4.3$ Hz), 16.5, 16.4. ¹⁹F NMR (282 MHz, CDCl₃) δ -119.97, -120.36. HRMS (ESI) for C₁₅H₂₁F₂NaO₅PS [M + Na]⁺, calcd: 405.0708, found: 405.0695.

ethyl 2-fluoro-2-(3-(phenylsulfonyl)cyclobutyl)acetate (4ad)

Prepared according to General Procedure B, compound **4ad** was obtained as light-yellow oil. (50 mg, 83 % yield, dr = 1.8:1). Isomer 1: ¹H NMR (300 MHz, CDCl₃) δ 7.91 – 7.84 (m, 2H), 7.70 – 7.62 (m, 1H), 7.61 – 7.52 (m, 2H), 4.84 (dd, J = 49.0, 6.1 Hz, 1H), 4.24 (q, J = 7.1 Hz, 2H), 3.77 – 3.65 (m, 1H), 2.84 – 2.53 (m, 3H), 2.37 – 2.16 (m, 2H), 1.29 (t, J = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 168.5 (d, ² $J_{CF} = 23.3$ Hz), 137.7, 134.0, 129.5, 128.4, 90.5 (d, ¹ $J_{C-F} = 185.3$ Hz), 61.8, 53.0, 31.5 (d, ² $J_{C-F} = 23.3$ Hz), 24.6 (d, ³ $J_{C-F} = 4.5$ Hz), 24.5 (d, ³ $J_{C-F} = 7.5$ Hz), 14.3. ¹⁹F NMR (282 MHz, CDCl₃) δ -197.46. HRMS (ESI) for C₁₄H₁₇FNaO₄S [M + Na]⁺, calcd: 323.0724, found: 323.0717. Isomer 2: ¹H NMR (300 MHz, CDCl₃) δ 7.91 – 7.84 (m, 2H), 7.70 – 7.62 (m, 1H), 7.61 – 7.52 (m, 2H), 4.86 (dd, J = 49.4, 3.9 Hz, 1H), 4.23 (q, J = 6.9 Hz, 2H), 3.82 – 3.68 (m, 1H), 3.17 – 2.93 (m, 1H), 2.82 – 2.69 (m, 1H), 2.66 – 2.53 (m, 1H), 2.48 – 2.32 (m, 2H), 1.28 (t, J = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 168.5 (d, ² $J_{C-F} = 24.0$ Hz), 137.8, 134.0, 129.5, 128.4, 90.5 (d, ¹ $J_{C-F} = 184.5$ Hz), 61.9, 54.3, 32.9 (d, ² $J_{C-F} = 21.8$ Hz), 24.0 (d, ³ $J_{C-F} = 4.5$ Hz), 22.9 (d, ³ $J_{C-F} = 4.5$ Hz), 14.3. ¹⁹F NMR (282 MHz, CDCl₃) δ -202.80. HRMS (ESI) for C₁₄H₁₇FNaO₄S [M + Na]⁺, calcd: 323.0724, found: 323.0717.

Prepared according to General Procedure B, compound **4ae** was obtained as yellow oil. (23 mg, 41 % yield, dr = 1.5:1). Mixture of isomer 1 and isomer 2: ¹H NMR (300 MHz, CDCl₃) δ 7.90 – 7.81 (m, 2H), 7.67 – 7.59 (m, 1H), 7.58 – 7.49 (m, 2H), 4.08 (qd, J = 7.2, 2.0 Hz, 2H), 3.83 – 3.62

(m, 1H), 2.91 - 2.52 (m, 2H), 2.51 - 1.95 (m, 5H), 1.21 (td, J = 7.2, 3.7 Hz, 3H). Isomer 1: ¹³C NMR (75 MHz, CDCl₃) δ 171.8, 138.0, 133.8, 129.4, 128.4, 60.6, 54.7, 40.0, 27.8, 27.3, 14.3. HRMS (ESI) for C₁₄H₁₈NaO₄S [M + Na]⁺, calcd: 305.0818, found: 305.0806. Isomer 2: ¹³C NMR (75 MHz, CDCl₃) δ 171.9, 138.2, 133.8, 129.4, 128.3, 60.6, 53.8, 40.3, 28.8, 26.2, 14.3. HRMS (ESI) for C₁₄H₁₈NaO₄S [M + Na]⁺, calcd: 305.0818, found: 305.0806.

2-(3-bromo-3-(phenylsulfonyl)cyclobutyl)-2,2-difluoroacetamide (5a)

White solid. (58 mg, 78 % yield, dr = 3:1) Mixture of isomer 1 and isomer 2: ¹H NMR (300 MHz, CDCl₃) δ 8.07 – 7.93 (m, 2H), 7.77 – 7.68 (m, 1H), 7.64 – 7.55 (m, 2H), 6.31 (s, 1H), 5.75 (s, 1H), 3.58 – 3.31 (m, 3H), 3.09 – 2.42 (m, 2H). Isomer 1: ¹³C NMR (75 MHz, CDCl₃) δ 165.45 (t, ²*J*_{*C*-*F*} = 30.0 Hz), 134.94, 133.51, 131.25, 129.10, 115.13 (t, ¹*J*_{*C*-*F*} = 252.8 Hz), 65.59, 35.82 (t, ²*J*_{*C*-*F*} = 5.3 Hz), 33.98 (t, ³*J*_{*C*-*F*} = 26.3 Hz). ¹⁹F NMR (282 MHz, CDCl₃) δ -114.16. HRMS (ESI) for C₁₂H₁₂BrF₂NNaO₃S [M + Na]⁺, calcd: 389.9582, found: 389.9571. Isomer 2: ¹³C NMR (75 MHz, CDCl₃) δ 165.38 (t, ²*J*_{*C*-*F*} = 30.0 Hz) 134.84, 133.93, 130.61, 129.22, 115.57 (t, ¹*J*_{*C*-*F*</sup> = 252.8 Hz), 67.68, 34.66 (t, ²*J*_{*C*-*F*} = 5.3 Hz), 31.27 (t, ³*J*_{*C*-*F*</sup> = 26.3 Hz). ¹⁹F NMR (282 MHz, CDCl₃) δ -113.47. HRMS (ESI) for C₁₂H₁₂BrF₂NNaO₃S [M + Na]⁺, calcd: 3(M + Na)⁺, calcd: 389.9582, found: 389.9582, found: 389.9571.}}

2,2-difluoro-2-(3-(phenylsulfonyl)cyclobutyl)acetic acid (5b)

White solid. (38 mg, 66 % yield, dr > 20:1) ¹**H** NMR (300 MHz, CDCl₃) δ 7.91 – 7.83 (m, 2H), 7.72 – 7.64 (m, 1H), 7.62 – 7.53 (m, 2H), 3.82 – 3.65 (m, 1H), 3.02 – 2.64 (m, 3H), 2.38 – 2.20 (m, 2H). ¹³**C** NMR (101 MHz, Acetone- d_6) δ 165.3, 139.2, 134.7, 130.32, 129.0, 115.8 (t, ¹ J_{C-F} = 249.5 Hz), 52.4, 33.0 (t, ² J_{C-F} = 26.3 Hz), 23.4 (t, ³ J_{C-F} = 5.1 Hz). ¹⁹**F** NMR (282 MHz, CDCl₃) δ - 114.20. **HRMS** (ESI) for C₁₂H₁₂F₂NaO₄S [M + Na]⁺, calcd: 313.0316, found: 313.0320.

(*1R*,*2S*,*5R*)-2-isopropyl-5-methylcyclohexyl 2-(3-bromo-3-(phenylsulfonyl)cyclobutyl)-2,2difluoroacetate (5c)

Prepared according to General Procedure A, compound **5**c was obtained as colorless oil (56 mg, 55 % yield, dr = 2.4:1). Mixture of isomer 1 and isomer 2: ¹H NMR (300 MHz, CDCl₃) δ 8.06 – 7.92 (m, 2H), 7.77 – 7.67 (m, 1H), 7.64 – 7.55 (m, 2H), 4.87 – 4.73 (m, 1H), 3.55 – 3.24 (m, 3H), 3.04 – 2.37 (m, 2H), 2.04 – 1.93 (m, 1H), 1.85 – 1.65 (m, 3H), 1.53 – 1.42 (m, 2H), 1.15 – 1.00 (m, 2H), 0.95 – 0.88 (m, 7H), 0.79 – 0.71 (m, 3H). Isomer 1: ¹³C NMR (75 MHz, CDCl₃) δ 162.7 (t, ²*J*_{C-} = 32.3 Hz), 134.9, 133.6, 131.3, 129.1, 113.8 (t, ¹*J*_{C-F} = 249.8 Hz), 78.0, 65.4, 46.8, 41.7, 35.7 (t, ³*J*_{C-F} = 5.3 Hz), 34.3 (t, ²*J*_{C-F} = 26.3 Hz), 34.0, 31.5, 26.3, 23.4, 22.0, 20.8, 16.2. ¹⁹F NMR (282 MHz, CDCl₃) δ -114.53 (d, *J* = 16.9 Hz). HRMS (ESI) for C₂₂H₂₉BrF₂NaO₄S [M + Na]⁺, calcd: 529.0830, found: 529.0825. Isomer 2: ¹³C NMR (75 MHz, CDCl₃) δ 162.8 (t, ²*J*_{C-F} = 32.3 Hz), 134.8, 134.0, 130.6, 129.2, 114.1 (t, ¹*J*_{C-F} = 250.5 Hz), 78.1, 67.8, 46.8, 40.4, 34.7 (t, ³*J*_{C-F} = 5.3 Hz), 34.0, 31.9 (t, ²*J*_{C-F} = 26.3 Hz), 31.5, 26.3, 23.4, 22.0, 20.8, 16.2. ¹⁹F NMR (282 MHz, CDCl₃) δ -113.84 (d, *J* = 19.7 Hz). HRMS (ESI) for C₂₂H₂₉BrF₂NaO₄S [M + Na]⁺, calcd: 529.0825.

(*1S*,*2S*,*4R*)-1,3,3-trimethylbicyclo[2.2.1]heptan-2-yl 2-(3-bromo-3-(phenylsulfonyl)cyclobutyl) -2,2-difluoroacetate (5d)

Prepared according to General Procedure A, compound **5d** was obtained as colorless oil (51 mg, 50 % yield, dr = 2.7:1). Mixture of isomer 1 and isomer 2: ¹H NMR (300 MHz, CDCl₃) δ 8.01 (dd, J = 18.9, 7.1 Hz, 2H), 7.73 (t, J = 7.5 Hz, 1H), 7.60 (t, J = 7.6 Hz, 2H), 4.46 (d, J = 2.0 Hz, 1H), 3.56 – 3.26 (m, 3H), 3.07 – 2.41 (m, 2H), 1.79 – 1.58 (m, 4H), 1.34 – 1.21 (m, 3H), 1.12 (s, 3H), 1.05 (s, 3H), 0.79 (s, 3H). Isomer 1: ¹³C NMR (75 MHz, CDCl₃) δ 163.6 (t, ² $_{JC-F} = 32.3$ Hz), 135.0, 133.5, 131.3, 129.1, 114.2 (t, ¹ $_{JC-F} = 249.8$ Hz), 89.7, 65.4, 48.5, 48.3, 41.3, 39.7, 35.8, 34.3 (t, ² $_{JC-F} = 32.3$ Hz), 135.0, 133.5, 131.3, 129.1, 114.2 (t, ¹ $_{JC-F} = 249.8$ Hz), 89.7, 65.4, 48.5, 48.3, 41.3, 39.7, 35.8, 34.3 (t, ² $_{JC-F} = 32.3$ Hz), 135.0, 133.5, 131.3, 129.1, 114.2 (t, ¹ $_{JC-F} = 249.8$ Hz), 89.7, 65.4, 48.5, 48.3, 41.3, 39.7, 35.8, 34.3 (t, ² $_{JC-F} = 32.3$ Hz), 135.0, 133.5, 131.3, 129.1, 114.2 (t, ¹ $_{JC-F} = 249.8$ Hz), 89.7, 65.4, 48.5, 48.3, 41.3, 39.7, 35.8, 34.3 (t, ² $_{JC-F} = 32.3$ Hz), 135.0, 133.5, 131.3, 129.1, 114.2 (t, ¹ $_{JC-F} = 249.8$ Hz), 89.7, 65.4, 48.5, 48.3, 41.3, 39.7, 35.8, 34.3 (t, ² $_{JC-F} = 32.3$ Hz), 135.0, 133.5, 131.3, 129.1, 114.2 (t, ¹ $_{JC-F} = 249.8$ Hz), 89.7, 65.4, 48.5, 48.3, 41.3, 39.7, 35.8, 34.3 (t, ² $_{JC-F} = 32.3$ Hz), 135.0, 133.5, 131.3, 129.1, 114.2 (t, ¹ $_{JC-F} = 249.8$ Hz), 89.7, 65.4, 48.5, 48.3, 41.3, 39.7, 35.8, 34.3 (t, ² $_{JC-F} = 32.3$ Hz), 135.0, 133.5, 131.3, 129.1, 114.2 (t, ¹ $_{JC-F} = 249.8$ Hz), 89.7, 65.4, 48.5, 48.3, 41.3, 39.7, 35.8, 34.3 (t, ² $_{JC-F} = 32.3$ Hz), 135.0, 133.5, 131.3, 129.1, 114.2 (t, ¹ $_{JC-F} = 249.8$ Hz), 89.7, 65.4, 48.5, 48.3, 41.3, 39.7, 35.8, 34.3 (t, ² $_{JC-F} = 32.3$ Hz), 135.0, 133.5, 131.3, 129.1, 114.2 (t, ¹ $_{TC-F} = 249.8$ Hz), 135.0, 1

 $_{F}$ = 25.5 Hz), 29.7, 26.6, 25.8, 20.1, 19.4. ¹⁹F NMR (282 MHz, CDCl₃) δ -114.20 (d, J = 11.3 Hz). HRMS (ESI) for C₂₂H₂₇BrF₂NaO₄S [M + Na]⁺, calcd: 527.0674, found: 527.0670. Isomer 2: ¹³C NMR (75 MHz, CDCl₃) δ 163.6 (t, ² J_{C-F} = 32.3 Hz), 134.8, 134.0, 130.7, 129.2, 114.2 (t, ¹ J_{C-F} = 249.8 Hz), 89.8, 67.8, 48.5, 48.3, 41.3, 39.7, 34.8, 31.9 (t, ² J_{C-F} = 26.3 Hz), 29.7, 26.6, 25.8, 20.1, 19.4. ¹⁹F NMR (282 MHz, CDCl₃) δ -113.52 (d, J = 11.3 Hz). HRMS (ESI) for C₂₂H₂₇BrF₂NaO₄S [M + Na]⁺, calcd: 527.0674, found: 527.0670.

(*1R*,*2R*,*4R*)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl 2-(3-bromo-3-(phenylsulfonyl)cyclobutyl) -2,2-difluoroacetate (5e)

Prepared according to General Procedure A, compound **5e** was obtained as colorless oil (53 mg, 52 % yield, dr = 2.4:1). Mixture of isomer 1 and isomer 2: ¹H NMR (300 MHz, CDCl₃) δ 8.06 – 7.92 (m, 2H), 7.77 – 7.67 (m, 1H), 7.64 – 7.55 (m, 2H), 4.79 (dd, J = 7.3, 3.8 Hz, 1H), 3.52 – 3.25 (m, 3H), 3.03 – 2.40 (m, 2H), 1.90 – 1.65 (m, 4H), 1.64 – 1.55 (m, 1H), 1.20 – 1.04 (m, 2H), 0.97 (s, 3H), 0.85 (s, 6H). Isomer 1: ¹³C NMR (75 MHz, CDCl₃) δ 162.6 (t, ² $J_{C-F} = 32.3$ Hz), 135.0, 133.6, 131.3, 129.1, 113.8 (t, ¹ $J_{C-F} = 250.5$ Hz), 84.5, 65.4, 49.2, 47.1, 45.0, 38.5, 35.7 (t, ³ $J_{C-F} = 5.3$ Hz), 34.3 (t, ² $J_{C-F} = 26.3$ Hz), 33.6, 27.0, 20.1, 19.9, 11.5. ¹⁹F NMR (282 MHz, CDCl₃) δ -114.55. HRMS (ESI) for C₂₂H₂₇BrF₂NaO₄S [M + Na]⁺, calcd: 527.0674, found: 527.0671. Isomer 2: ¹³C NMR (75 MHz, CDCl₃) δ 162.7 (t, ² $J_{C-F} = 32.3$ Hz), 134.8, 134.0, 130.7, 129.2, 114.1 (t, ¹ $J_{C-F} = 250.5$ Hz), 84.5, 67.8, 49.2, 47.1, 45.0, 38.5, 34.8 (t, ³ $J_{C-F} = 5.3$ Hz), 33.6, 31.9 (t, ² $J_{C-F} = 26.3$ Hz), 27.0, 20.1, 19.9, 11.5. ¹⁹F NMR (282 MHz, CDCl₃) δ 162.7 (t, ² $J_{C-F} = 32.3$ Hz), 134.8, 134.0, 130.7, 129.2, 114.1 (t, ¹ $J_{C-F} = 250.5$ Hz), 84.5, 67.8, 49.2, 47.1, 45.0, 38.5, 34.8 (t, ³ $J_{C-F} = 5.3$ Hz), 33.6, 31.9 (t, ² $J_{C-F} = 26.3$ Hz), 27.0, 20.1, 19.9, 11.5. ¹⁹F NMR (282 MHz, CDCl₃) δ -113.76. HRMS (ESI) for C₂₂H₂₇BrF₂NaO₄S [M + Na]⁺, calcd: 527.0674, found: ESI) for C₂₂H₂₇BrF₂NaO₄S

ethyl (2,2-difluoro-2-(3-(phenylsulfonyl)cyclobutyl)acetyl)-L-methioninate (5f)

Prepared according to General Procedure B, compound **5f** was obtained as colorless oil (58 mg, 65 % yield, dr > 20:1). ¹H NMR (300 MHz, CDCl₃) δ 7.92 – 7.84 (m, 2H), 7.67 (t, J = 7.4 Hz, 1H), 7.61 – 7.53 (m, 2H), 7.09 (d, J = 7.2 Hz, 1H), 4.71 – 4.62 (m, 1H), 4.24 (q, J = 7.2 Hz, 2H), 3.78 – 3.64 (m, 1H), 3.09 – 2.88 (m, 1H), 2.79 – 2.63 (m, 2H), 2.51 (t, J = 7.4 Hz, 2H), 2.33 – 2.14 (m, 3H), 2.13 – 1.99 (m, 4H), 1.30 (t, J = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 170.8, 163.2 (t, ² $J_{C-F} = 29.3$ Hz), 137.5, 134.0, 129.5, 128.4, 115.7 (t, ¹ $J_{C-F} = 252.0$ Hz), 62.2, 52.2, 51.7, 32.0 (t, ² $J_{C-F} = 26.3$ Hz), 31.0, 29.9, 22.8 (t, ³ $J_{C-F} = 4.5$ Hz), 15.5, 14.2. ¹⁹F NMR (282 MHz, CDCl₃) δ - 113.17 – -115.72 (m, 2F). HRMS (ESI) for C₁₉H₂₅F₂NNaO₅S₂ [M + Na]⁺, calcd: 472.1034, found: 472.1021.

Prepared according to General Procedure B, compound **5g** was obtained as a white solid. (63 mg, 68 % yield, dr > 20:1). ¹H NMR (300 MHz, CDCl₃) δ 7.90 – 7.83 (m, 2H), 7.71 – 7.63 (m, 1H), 7.61 – 7.53 (m, 2H), 7.33 – 7.26 (m, 3H), 7.14 – 7.06 (m, 2H), 6.75 (d, J = 7.8 Hz, 1H), 4.86 – 4.75 (m, 1H), 4.21 (q, J = 7.2 Hz, 2H), 3.75 – 3.60 (m, 1H), 3.24 – 3.05 (m, 2H), 3.01 – 2.79 (m, 1H), 2.71 – 2.52 (m, 2H), 2.27 – 2.07 (m, 2H), 1.26 (t, J = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 170.4, 162.9 (t, ² $_{J_{C-F}} = 29.3$ Hz), 137.6, 135.2, 134.0, 129.5, 129.3, 128.8, 128.5, 127.5, 115.7 (t, ¹ $_{J_{C-F}} = 252.0$ Hz), 62.1, 53.2, 52.2, 37.7, 32.0 (t, ² $_{J_{C-F}} = 26.3$ Hz), 22.8 (q, ³ $_{J_{C-F}} = 4.5$ Hz), 14.2. ¹⁹F NMR (282 MHz, CDCl₃) δ -114.74. HRMS (ESI) for C₂₃H₂₅F₂NNaO₅S [M + Na]⁺, calcd: 488.1314, found: 488.1299.

1-(4-(8-chloro-5,6-dihy*dr*o-11*H*-benzo[5,6]cyclohepta[1,2-*b*]pyridin-11-ylidene)piperidin-1yl)-2,2-difluoro-2-(3-(phenylsulfonyl)cyclobutyl)ethan-1-one (5h)

Prepared according to General Procedure B, compound **5h** was obtained as a white solid. (48 mg, 41 % yield, dr > 20:1). ¹H NMR (300 MHz, CDCl₃) δ 8.42 (d, J = 5.0 Hz, 1H), 7.87 (d, J = 7.1 Hz, 2H), 7.69 – 7.60 (m, 1H), 7.60 – 7.45 (m, 3H), 7.21 – 7.09 (m, 4H), 4.07 – 3.86 (m, 2H), 3.79 – 3.66 (m, 1H), 3.51 – 3.28 (m, 3H), 3.28 – 3.01 (m, 2H), 2.95 – 2.75 (m, 2H), 2.74 – 2.49 (m, 3H), 2.48 – 2.22 (m, 5H). ¹³C NMR (101 MHz, CDCl₃) δ 161.1 (t, ² $J_{C-F} = 30.3$ Hz), 156.7, 146.7, 139.6, 137.9, 137.8, 137.5, 136.3, 134.9, 133.9, 133.5, 133.2, 130.5, 129.4, 129.2, 128.4, 126.4, 122.6, 117.8 (t, ¹ $J_{C-F} = 257.6$ Hz), 52.6, 46.2, 44.2, 33.2, 33.0 (t, ² $J_{C-F} = 27.3$ Hz), 32.7, 31.7, 31.1, 30.3, 29.8, 23.3. ¹⁹F NMR (282 MHz, CDCl₃) δ -106.57 – -109.31 (m, 2F). HRMS (ESI) for C₃₁H₂₉ClF₂N₂NaO₃S [M + Na]⁺, calcd: 605.1448, found: 605.1443.

6 Reference

Lopchuk, J. M.; Fjelbye, K.; Kawamata, Y.; Malins, L. R.; Pan, C.-M.; Gianatassio, R.; Wang, J.; Prieto, L.; Bradow, J.; Brandt, T. A.; Collins, M. R.; Elleraas, J.; Ewanicki, J.; Farrell, W.; Fadeyi, O. O.; Gallego, G. M.; Mousseau, J. J.; Oliver, R.; Sach, N. W.; Smith, J. K.; Spangler, J. E.; Zhu, H.; Zhu, J.; Baran, P. S. Strain-Release Heteroatom Functionalization: Development, Scope, and Stereospecificity. *J. Am. Chem. Soc.* **2017**, *139*, 3209-3226.

 [2] Gao, H.; Guo, L.; Shi, C.-C.; Zhu, Y.-N.; Yang, C.; Xia, W.-J. Transition Metal-Free Radical α-Oxy C-H Cyclobutylation via Photoinduced Hydrogen Atom Transfer. *Adv. Synth. Catal.* 2022, *364*, 2140-2145.

[3] Jung, M.; Lindsay, V. N. G. One-Pot Synthesis of Strain-Release Reagents from Methyl Sulfones.J. Am. Chem. Soc. 2022, 144, 4764-4769.

[4] Du, B.; Chan, C.-M.; Lee, P.-Y.; Cheung, L.-H.; Xu, X.; Lin, Z.; Yu, W.-Y., 2, 2- Difluorovinyl Benzoates for Diverse Synthesis of Gem-Difluoroenol Ethers by Ni-Catalyzed Cross-Coupling Reactions. *Nat. Commun.* **2021**, *12*, 1-10.

[5] Huo, J.; Geng, X.; Li, W.; Zhang, P.; Wang, L. A Traceless Heterocyclic Amine Mediator in Regioselectivity-Switchable Formal [1 + 2 + 2] Cycloaddition Reaction to 1,3,4- and 1,4,5-Trisubstituted Pyrazoles. *Org. Lett.* **2023**, *25*, 512-516.

[6] Huo, J.; Geng, X.; Li, W.; Zhang, P.; Wang, L. Photoinduced Three-Component Cyclization of Arylamines, Enaminones and Difluorobromoacetates to 2,3-Difunctionalized Quinolines. *Adv. Synth. Catal.* **2022**, *364*, 3539-3543.

[7] Yang, J.; Sun, B.; Ding, H.; Huang, P.-Y.; Tang, X.-L.; Shi, R.-C.; Yan, Z.-Y.; Yu, C.-M.; Jin,
C. Photo-triggered Self-catalyzed Fluoroalkylation/cyclization of Unactivated Alkenes: Synthesis of Quinazolinones Containing the CF₂R Group. *Green Chem.* 2021, 23, 575-581.

[8] Chen, C.; Zeng, R.; Zhang, J.; Zhao, Y. Ruthenium-Catalyzed Difluoroalkylation of 8-Aminoquinoline Amides at the C5-Position. *Eur. J. Org. Chem.* **2017**, *46*, 6947-6950.

[9] Ye, Z.; Gettys, K. E.; Shen, X.; Dai, M. Copper-Catalyzed Cyclopropanol Ring Opening Csp3-Csp3 Cross-Couplings with (Fluoro)Alkyl Halides. *Org. Lett.* 2015, *17*, 6074-6077.

[10] Bian, K.-J.; Nemoto, D., Jr; Kao, S.-C.; He, Y.; Li, Y.; Wang, X.-S.; West, J. G. Modular Difunctionalization of Unactivated Alkenes through Bio-Inspired Radical Ligand Transfer Catalysis. *J. Am. Chem. Soc.* **2022**, *144*, 11810–11821.

[11] Da, Y.; Han, S.; Du, X.; Liu, S.; Liu, L.; Li, J. Copper(I)-Catalyzed Oxydifluoroalkylation of Alkenes: A Route to Functionalization of Lactones. *Org. Lett.* **2018**, *20*, 5149.

[12] Yao, S. J.; Ren, Z. H.; Wang, Y. Y.; Guan, Z. H. Friedel-Crafts Fluoroacetylation of Indoles with Fluorinated Acetic Acids for the Synthesis of Fluoromethyl Indol-3-yl Ketones under Catalystand Additive-free Conditions. *J. Org. Chem.* **2016**, *81*, 4226-4234,

[13] (a) Zhang, T.; Pan, J.; Duan, J.; Wu, J.; Zhang, W.; Wu, F. *ChemCatChem.* 2019, *11*, 5778-5782.
(b) Li, G.; Wang, T.; Fei, F.; Su, Y. M.; Li, Y.; Lan, Q.; Wang, X. S. *Angew. Chem. Int. Ed. Engl.* 2016, *55*, 3491-3495. (c) Wang, D.; Wu, J.; Huang, J.; Liang, J.; Peng, P.; Chen, H.; Wu, F. *Tetrahedron.* 2017, *73*, 3478-3484.

[14] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T.

Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M.

Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai,

T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd,

E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K.

Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M.

Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B.

Foresman, and D. J. Fox, Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford CT, 2019.

- [15] Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215.
- [16] Y. Zhao, D. G. Truhlar, Acc. Chem. Res. 2008, 41, 157.
- [17] F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297.
- [18] M. Cossi, G. Scalmani, N. Rega, V. Barone, J. Chem. Phys. 2002, 117, 43.
- [19] A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B. 2009, 113, 6378.
- [20] R. Bauernschmitt, R. Ahlrichs, J. Chem. Phys. 1996, 104, 9047.
- [21] C. Gonzalez, H. B. Schlegel, J. Chem. Phys. 1989, 90, 2154.
- [22] C. Gonzalez, H. B. Schlegel, J. Phys. Chem. 1990, 94, 5523.

7 NMR spectra (¹H, ¹³C and ¹⁹F)

¹H NMR Spectrum of Compound **1a** (300 MHz, DMSO-*d*₆)

¹H NMR Spectrum of Compound **1c** (300 MHz, CDCl₃)

¹H NMR Spectrum of Compound 1d (300 MHz, CDCl₃)

¹³C NMR Spectrum of Compound **1d** (101 MHz, DMSO-*d*₆)

¹H NMR Spectrum of Compound 1e (300 MHz, CDCl₃)

¹⁹F NMR Spectrum of Compound 1e (282 MHz, CDCl₃)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

¹H NMR Spectrum of Compound **1f** (300 MHz, CDCl₃)

¹H NMR Spectrum of Compound **1g** (300 MHz, CDCl₃)

¹H NMR Spectrum of Compound **1h** (300 MHz, CDCl₃)

5.0 f1 (ppm)

¹⁹F NMR Spectrum of Compound **1h** (282 MHz, CDCl₃)

-100 -110 -120 f1 (ppm)

-90

-130 -140 -150 -160 -170 -180 -190 -200 -210

¹H NMR Spectrum of Compound **1i** (300 MHz, CDCl₃)

-70 -80

10 0 -10

-20

-30 -40 -50 -60

¹⁹F NMR Spectrum of Compound 1i (282 MHz, CDCl₃)

¹H NMR Spectrum of Compound 1j (300 MHz, CDCl₃)

88

¹⁹F NMR Spectrum of Compound 1j (282 MHz, CDCl₃)

¹H NMR Spectrum of Compound 1k (300 MHz, CDCl₃)

¹⁹F NMR Spectrum of Compound 1k (282 MHz, CDCl₃)

¹H NMR Spectrum of Compound 11 (300 MHz, CDCl₃)

¹⁹F NMR Spectrum of Compound **11** (282 MHz, CDCl₃)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 11 (ppm)

¹H NMR Spectrum of Compound 1m (300 MHz, CDCl₃)

¹³C NMR Spectrum of Compound **1m** (75 MHz, CDCl₃)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

¹H NMR Spectrum of Compound **1n** (300 MHz, CDCl₃)

¹H NMR Spectrum of Compound **10** (300 MHz, CDCl₃)

-100 fl (ppm) -210 10 -170 -180 -190 -200 0 -10 -20 30 40 50 -70 -90 -110 -140 -150 -160 -80 ·120 130

¹H NMR Spectrum of Compound **1q** (300 MHz, CDCl₃)

¹H NMR Spectrum of Compound 1t (300 MHz, CDCl₃)

-100 fl (ppm) -210 10 -170 -180 -190 -200 0 -10 40 50 -70 -80 -90 -110 -140 -150 -160 -20 -120 130

¹H NMR Spectrum of Compound 1u (300 MHz, CDCl₃)

¹H NMR Spectrum of Compound **1v** (300 MHz, CDCl₃) $\frac{g}{2}$

¹H NMR Spectrum of Compound **1x** (300 MHz, CDCl₃)

¹H NMR Spectrum of Compound **2b** (300 MHz, CDCl₃)

¹H NMR Spectrum of Compound **2c** (300 MHz, CDCl₃)

¹⁹F NMR Spectrum of Compound **2f** (282 MHz, CDCl₃)

¹H NMR Spectrum of Compound **2g** (300 MHz, CDCl₃)

¹H NMR Spectrum of Compound **2h** (300 MHz, CDCl₃)

¹⁹F NMR Spectrum of Compound **2h** (282 MHz, CDCl₃)⁻

¹H NMR Spectrum of Compound **2i** (300 MHz, CDCl₃)

¹³C NMR Spectrum of Compound **2j** (101 MHz, CDCl₃)

¹⁹F NMR Spectrum of Compound **2j** (282 MHz, CDCl₃)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

¹⁹F NMR Spectrum of Compound **2k** (282 MHz, CDCl₃)

 $^{19}\mathrm{F}$ NMR Spectrum of Compound **21** (282 MHz, CDCl_3)

10 0 -10 -20 -30 -40 -50 -60 -70 -80

118

-90 -100 f1 (ppm)

-110 -120

-130 -140 -150

-160

-170 -180 -190 -200 -210

¹H NMR Spectrum of Compound **3a** (300 MHz, CDCl₃)

¹³C NMR Spectrum of Compound **3a** (75 MHz, CDCl₃)

¹⁹F NMR Spectrum of Compound **3a** (282 MHz, CDCl₃)

¹H NMR Spectrum of Compound **3b** (300 MHz, CDCl₃)

~-113.38

~-114.53

¹⁹F NMR Spectrum of Compound **3b** (282 MHz, CDCl₃)

-100 fl (ppm) 10 -200 -210 0 -10 -30 -40 -50 -60 -70 80 -90 -110 -120 -150 -170 -180 -190 -20 -130 -140 -160

¹H NMR Spectrum of Compound **3c** (300 MHz, CDCl₃)

¹⁹F NMR Spectrum of Compound **3c** (282 MHz, CDCl₃)

-113.37
-114.50

¹⁹F NMR Spectrum of Compound **3d** (282 MHz, CDCl₃)

¹H NMR Spectrum of Compound **3e** (300 MHz, CDCl₃)

¹³C NMR Spectrum of Compound **3e** (75 MHz, CDCl₃)

¹⁹F NMR Spectrum of Compound **3e** (282 MHz, CDCl₃)

¹H NMR Spectrum of Compound **3f** (300 MHz, CDCl₃)

¹⁹F NMR Spectrum of Compound **3f** (282 MHz, CDCl₃)

-100 f1 (ppm) -110 -120 -130 -140 -150 160 -170 -180 -190 -200 -210 0 -10 -20 -30 40 -50 60 -70 80 -90

¹H NMR Spectrum of Compound **3g** (300 MHz, CDCl₃)

¹⁹F NMR Spectrum of Compound **3g** (282 MHz, CDCl₃)

¹H NMR Spectrum of Compound **3h** (300 MHz, CDCl₃)

 ^{19}F NMR Spectrum of Compound **3h** (282 MHz, CDCl₃)

¹H NMR Spectrum of Compound **3i** (400 MHz, CDCl₃)

210 200 190 140 130 f1 (ppm) 170 160 150 -10

¹⁹F NMR Spectrum of Compound **3i** (282 MHz, CDCl₃)

¹³C NMR Spectrum of Compound **3j** (101 MHz, CDCl₃)

¹⁹F NMR Spectrum of Compound **3j** (282 MHz, CDCl₃)

¹H NMR Spectrum of Compound **3k** (300 MHz, CDCl₃)

~-103.55
~-105.35
~-113.37
~-114.52

¹H NMR Spectrum of Compound **31** (300 MHz, CDCl₃)

¹³C NMR Spectrum of Compound **3l** (101 MHz, CDCl₃)

¹⁹F NMR Spectrum of Compound **31** (282 MHz, CDCl₃)

¹³C NMR Spectrum of Compound **3m** (101 MHz, CDCl₃)

¹⁹F NMR Spectrum of Compound **3m** (282 MHz, CDCl₃)

¹H NMR Spectrum of Compound **3n** (300 MHz, CDCl₃)

¹³C NMR Spectrum of Compound **30** (101 MHz, CDCl₃)

¹⁹F NMR Spectrum of Compound **30** (282 MHz, CDCl₃)

¹H NMR Spectrum of Compound **3p** (300 MHz, CDCl₃)

<-113.72
 <-114.64

¹⁹F NMR Spectrum of Compound **3p** (282 MHz, CDCl₃)

¹H NMR Spectrum of Compound **3q** (300 MHz, CDCl₃)

¹⁹F NMR Spectrum of Compound **3q** (282 MHz, CDCl₃)

¹H NMR Spectrum of Compound **3r** (300 MHz, CDCl₃)

¹³C NMR Spectrum of Compound **3r** (75 MHz, CDCl₃)

F F 3r

¹³C NMR Spectrum of Compound **3s** (75 MHz, CDCl₃)

¹⁹F NMR Spectrum of Compound **3s** (282 MHz, CDCl₃)

¹H NMR Spectrum of Compound **3t** (300 MHz, CDCl₃)

-10

-20 -30 -40 -50 -60 -70 -80 -90

10 0

¹³C NMR Spectrum of Compound **3t** (75 MHz, CDCl₃)

-100 -110 -120 f1 (ppm) -140 -150

-130

-170

160

-180 -190 -200 -210

¹³C NMR Spectrum of Compound **3u** (75 MHz, CDCl₃)

¹³C NMR Spectrum of Compound **3v** (101 MHz, CDCl₃)

 $< \frac{-107.58}{-108.02}$

20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm) ¹⁹F NMR Spectrum of Compound **3w** (282 MHz, CDCl₃)

¹H NMR Spectrum of Compound 4a (isomer 1) (400 MHz, CDCl₃)

¹⁹F NMR Spectrum of Compound **4a** (isomer 1) (282 MHz, CDCl₃)

 \cap Ó 4a (isomer 1)

⁻¹⁰⁰ f1 (ppm) 10 -170 -180 -190 -200 -210 -10 -80 -110 -120 -140 -150 0 -20 -30 -40 -50 -60 -70 -90 -130 -160

¹³C NMR Spectrum of Compound 4a (isomer 2) (75 MHz, CDCl₃)

¹⁹F NMR Spectrum of Compound 4a (isomer 2) (282 MHz, CDCl₃)

¹H NMR Spectrum of Compound **4b** (300 MHz, CDCl₃)

¹⁹F NMR Spectrum of Compound **4b** (282 MHz, CDCl₃)

¹⁹F NMR Spectrum of Compound **4c** (282 MHz, CDCl₃)

¹H NMR Spectrum of Compound 4d (300 MHz, CDCl₃)

¹⁹F NMR Spectrum of Compound 4d (282 MHz, CDCl₃)

¹³C NMR Spectrum of Compound 4e (75 MHz, CDCl₃)

¹⁹F NMR Spectrum of Compound 4e (282 MHz, CDCl₃)

¹H NMR Spectrum of Compound 4f (300 MHz, CDCl₃)

¹⁹F NMR Spectrum of Compound **4f** (282 MHz, CDCl₃)

¹³C NMR Spectrum of Compound 4g (75 MHz, CDCl₃)

¹⁹F NMR Spectrum of Compound **4g** (282 MHz, CDCl₃)

¹H NMR Spectrum of Compound 4h (300 MHz, CDCl₃)

 ^{19}F NMR Spectrum of Compound 4h (282 MHz, CDCl_3)

10 -100 f1 (ppm) -130 -150 -170 -180 -190 -200 -210 0 -10 -20 -30 $^{-40}$ -50 -60 -70 80 -90 -110 -120 -140 -160

¹³C NMR Spectrum of Compound 4i (75 MHz, CDCl₃)

140 130 120 170 160 150 f1 (ppm)

¹H NMR Spectrum of Compound **4j** (300 MHz, CDCl₃)

¹⁹F NMR Spectrum of Compound **4j** (282 MHz, CDCl₃)

¹³C NMR Spectrum of Compound **4j** (75 MHz, CDCl₃)

¹³C NMR Spectrum of Compound 4k (75 MHz, CDCl₃)

20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm) ¹⁹F NMR Spectrum of Compound 4k (282 MHz, CDCl₃)

-120

-140-150 -160

-130

¹H NMR Spectrum of Compound **4l** (300 MHz, CDCl₃)

— -113.48

¹⁹F NMR Spectrum of Compound 4I (282 MHz, CDCl₃)

¹⁰ -100 f1 (ppm) -180 -190 -200 -210 0 -10 -20 -30 $^{-40}$ -50 -60 -70 -80 -90 -110 -120 -130 -140 -150 -160 -170

¹H NMR Spectrum of Compound 4m (300 MHz, CDCl₃)

¹³C NMR Spectrum of Compound 4m (101 MHz, CDCl₃)

140 130 100 90 f1 (ppm) -10

¹⁹F NMR Spectrum of Compound 4m (282 MHz, CDCl₃)

¹⁹F NMR Spectrum of Compound **4n** (282 MHz, CDCl₃)

-100 f1 (ppm) -170 -180 -190 -200 -210 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -120 -130 -140 -150 -160

¹H NMR Spectrum of Compound **40** (300 MHz, CDCl₃)

¹³C NMR Spectrum of Compound 40 (75 MHz, CDCl₃)

¹⁹F NMR Spectrum of Compound **4p** (282 MHz, CDCl₃)

¹³C NMR Spectrum of Compound 4q (101 MHz, CDCl₃)

¹⁹F NMR Spectrum of Compound **4q** (282 MHz, CDCl₃)

¹⁹F NMR Spectrum of Compound **4r** (282 MHz, CDCl₃)

¹H NMR Spectrum of Compound **4s** (300 MHz, CDCl₃)

¹³C NMR Spectrum of Compound **4s** (75 MHz, CDCl₃)

¹H NMR Spectrum of Compound 4t (400 MHz, CDCl₃)

¹⁹F NMR Spectrum of Compound 4t (282 MHz, CDCl₃)

¹H NMR Spectrum of Compound **4u** (300 MHz, CDCl₃)

¹³C NMR Spectrum of Compound **4u** (101 MHz, CDCl₃)

¹⁹F NMR Spectrum of Compound **4u** (282 MHz, CDCl₃)

¹⁹F NMR Spectrum of Compound 4v (282 MHz, CDCl₃)

-170 -180 -190 -200 -210 10 -100 f1 (ppm) 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -120 -130 -140 -150 -160

¹H NMR Spectrum of Compound 4w (300 MHz, CDCl₃)

¹³C NMR Spectrum of Compound 4w (101 MHz, CDCl₃)

¹⁹F NMR Spectrum of Compound 4w (282 MHz, CDCl₃)

¹⁹F NMR Spectrum of Compound **4x** (282 MHz, CDCl₃)

¹³C NMR Spectrum of Compound 4x (101 MHz, Acetone- d_6)

¹H NMR Spectrum of Compound 4y (300 MHz, CDCl₃)

¹³C NMR Spectrum of Compound 4y (101 MHz, CDCl₃)

¹⁹F NMR Spectrum of Compound **4y** (282 MHz, CDCl₃)

¹³C NMR Spectrum of Compound **4z** (75 MHz, CDCl₃)

¹⁹F NMR Spectrum of Compound 4z (282 MHz, CDCl₃)

-100 f1 (ppm) -170 -180 -190 -200 -210 10 0 -10 -130 -140 -150 -160 -20 -30 -40 -50 -60 -70 -80 -90 -110 -120

¹³C NMR Spectrum of Compound 4aa (101 MHz, CDCl₃)

¹⁹F NMR Spectrum of Compound 4aa (282 MHz, CDCl₃)

 $\int_{1}^{\frac{1}{9}}$

¹H NMR Spectrum of Compound 4ab (300 MHz, CDCl₃)

¹⁹F NMR Spectrum of Compound **4ab** (282 MHz, CDCl₃)

--- -98.56

¹H NMR Spectrum of Compound 4ac (300 MHz, CDCl₃)

¹³C NMR Spectrum of Compound 4ac (101 MHz, CDCl₃)

¹⁹F NMR Spectrum of Compound 4ad (isomer 1) (282 MHz, CDCl₃)

4ad (Isomer 1)

-130 f1 (ppm) 50 -110 -210 -60 -70 -80 -90 -100 -120 -150 -160 -170 -180 -190 -200 -140

¹H NMR Spectrum of Compound 4ad (isomer 2) (300 MHz, CDCl₃)

¹³C NMR Spectrum of Compound 4ad (isomer 2) (75 MHz, CDCl₃)

4ad (Isomer 2)

¹H NMR Spectrum of Compound 4ae (300 MHz, CDCl₃)

¹H NMR Spectrum of Compound **5a** (300 MHz, CDCl₃)

¹⁹F NMR Spectrum of Compound **5a** (282 MHz, CDCl₃)

<-113.47
<-114.16

-70 -180 -190 -200 -210 10 -10 -20 -30 -40 -50 -60 -80 -100 f1 (ppm) -110 -120 -130 -140 -150 0 -90 -160 -170

¹³C NMR Spectrum of Compound **5b** (101 MHz, Acetone- d_6)

¹⁹F NMR Spectrum of Compound **5c** (282 MHz, CDCl₃)

- -113.84 - -113.87 - -114.53 - -114.59

10 -10 -20 -30 -40 -50 60 -70 80 -90 -100 -110 f1 (ppm) -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 0

¹H NMR Spectrum of Compound **5d** (300 MHz, CDCl₃)

¹⁹F NMR Spectrum of Compound **5d** (282 MHz, CDCl₃)

-113.52 -113.56 -114.20 -114.24

¹H NMR Spectrum of Compound **5e** (300 MHz, CDCl₃)

10 -10 -100 -110 f1 (ppm) -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 0 -20 -30 40 50 -60 -70 80 -90

¹³C NMR Spectrum of Compound **5f** (75 MHz, CDCl₃)

	- 77.16 CDCI - 77.16 CDCI - 82.15 - 82.24 - 15.24 - 15.27 - 15.27 - 15.27 - 15.57 - 1
--	---

¹⁹F NMR Spectrum of Compound **5f** (282 MHz, CDCl₃)

 ^{13}C NMR Spectrum of Compound 5g (75 MHz, CDCl_3)

¹³C NMR Spectrum of Compound **5h** (101 MHz, CDCl₃)

¹⁹F NMR Spectrum of Compound **5h** (282 MHz, CDCl₃)

¹H NMR Spectrum of Compound **5l** (300 MHz, DMSO-*d*₆)

6 f1 (ppm)

1.99<u>4</u> 1.97<u>4</u>

2001 2001 2001 2001 2001 3.09, 2.94, ≇

¹H NMR Spectrum of Compound **5m** (300 MHz, CDCl₃)

¹⁹F NMR Spectrum of Compound **5m** (282 MHz, CDCl₃)

4.00-

4

13

12

'n

10

¹³C NMR Spectrum of Compound **5n** (75 MHz, CDCl₃)

¹H NMR Spectrum of Compound **5n** (300 MHz, CDCl₃)

¹⁹F NMR Spectrum of Compound **5n** (282 MHz, CDCl₃)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 F1 (ppm)