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1. General Information

Materials and methods
Reagents were all obtained from commercial sources and used without further purification. CAUTION!
Appropriate precautions are essential for handling all uranium compounds.

The FT-IR spectrum was obtained by using a Fourier transform infrared (FT-IR) (4000-500 cm!)
spectrometer (Thermo Nicolet iS5) at 0.5 cm™! resolution and 16 scans. Raman spectra were performed
on an RMS5 spectrometer (Edinburgh Instrument) from 1200-100 cm™!. Thermogravimetric analyses
(TGA) were performed under air atmosphere on Mettler-Toledo TGA/SDTA 851¢ thermalanalyzer
from 25 to 1000 °C. Powder X-ray diffraction (PXRD) was performed on a Bruker D8 Advance
diffractometer with Cu Ka radiation (A = 1.5406 A) at room temperature. Scanning electron
microscope (SEM) figures and energy disperse spectroscopy (EDS) results were collected on a Zeiss
Gemini Sigma 300 VP SEM with EDS. X-ray photoelectron spectra (XPS) were collected on an X-ray
photoelectron spectroscopy (Shimadzu AXIS Supra+). The 'H, and '3C spectra were recorded on a
Brucker ADVANCE III spectrometer at 500 MHz and 126 MHz, and chemical shifts were reported in
parts per million (ppm). Flash column chromatography was performed using silica gel of 200-300
mesh. The GC analysis was performed on Agilent 7890B equipped with a capillary column (HP-5, 30

m X 0.25 um) using a flame ionization detector.

X-ray crystallography

The single crystal X-ray diffraction data were collected on Bruker D8 Smart Apex II diffractometer
with graphite monochromated Mo Ka radiation (A = 0.71073 A). Intensities were collected by w-scan
and reduced on APEX 3 and a multi-scan absorption correction was applied.! The structures were
solved and refined on Olex2 using the SHELX package.> Parameters of the crystal data collection and
refinement are given in Table S1. The CSD numbers are 2222603, 2222722, and 2222723.

2. Experimental

Synthesis of Na;H;(H,0)q¢[FeUMo;,0,,/4.5H,0 (FeUMo)

(NH4)6M070,4-4H,0 (0.5 mmol, 0.1179 g), Fe;(SOy4); (0.25 mmol, 0.1 g) were dissolved in a 10 mL
H,0. A solution of Na,S,;04 (0.5 mmol, 0.0871 g) in 5 mL H,O was then dropwise added into the
above solution. UO,(NOs3),-6H,0 (0.1 mmol, 0.0502g) was then added into the dark green solution



when the drip was done. The mixture was stirred until the solid dissolved completely and then was
adjusted to pH = 4.2 using 1 M H,SO,. The solution was stirred for another 30 min before being sealed
into a 25 mL Teflon-lined autoclave and heated at 120 °C. Black crystals of FeUMo were collected
after five days. FT-IR (cm'): 3400 (m), 3184 (m), 1609 (m), 1409 (m), 940 (s), 905 (s), 842(vs), 601
(vs).

Synthesis of Nas ¢H; (H,0)9/CoUMo0;,0,/4.5H,0 (CoUMo)

The synthesis of CoUMo was similar to that of FeUMo except for the usage of CoSO,-7H,0 (0.5
mmol, 0.1406 g) instead of Fe,(SO4);. Brown crystals of CoUMo were collected after five days. FT-
IR (cm™): 3192 (m), 1606 (m), 1406 (m), 937 (s), 905 (s), 853(vs), 591 (vs).

Synthesis of Na;;H; ;,(H,0)9[NiyssUMo;,04,]-4.5H,0 (NiUMo)

The synthesis of NiUMo was similar to that of FeUMo except for the usage of LiAc/HAc (10 mL, 1
M, pH =4.8) and NiSO4-7H,0 (0.5 mmol, 0.1404 g) instead of 10 mL H,O and FeSO,4. Brown crystals
of NiUMo were collected after five days. FT-IR (cm™): 3200 (m), 1610 (m), 1409 (m), 933 (s), 904
(s), 863(vs), 589 (vs).

Synthesis of Nas sH, ;]JUMo0;,04,/:13.5H,0 (NaUMo)

The synthesis of NaUMo was similar to that of FeUMo except for the usage of Na,SO, (5 mmol,
0.7102 g) instead of Fe,(SO4);. Orange crystals of NaUMo were collected after five days. FT-IR
(cm™): 3524 (m), 3201 (m), 3030 (m), 2843 (m), 1606 (m), 1422 (m), 905 (s), 903 (vs), 627 (vs), 595
(vs).

Synthesis discussion

To the best of our knowledge, there is no known UVl-heteroatom in Silverton-type structure. Two
reasons can explain the existence of U instead of UV! in this work. In terms of synthesis, Na,S,04
acts as a strong reductant, and partial MoV! and UO,*" (and Fe3") are reduced into low valence. The
color changes of the solution in synthesis procedures from yellow (FeUMo) or pink (CoUMo) or green
(NiUMo) to dark blue and then brown indicated the valence changes. The final solution is a reducing
atmosphere. UO,?" with relatively strong oxidability cannot continue to exist. From the standpoint of

coordination chemistry, UO,?* is the only stable existing form of UY! in solution. The biggest



coordination number of UO,?" is only 6 at the equator position and the corresponding bonds have to
be close to the equatorial plane. The two oxygen atoms of the U-O triple bond (1.8 A) in UO,2* are
always inset and could only join in very weak coordination bonds with alkali metals at most. While,
Silverton-type POMs could only tolerate a few cases of lanthanides and actinides as heteroatoms
including Ce*", Gd**, Th*, U*, Np*, and Pu*" and so on. Those heteroatoms all show high
coordination numbers up to 12. Other ions are difficult to meet this requirement including UO,?*. The
weak coordination chemical basis of uranyl is insufficient to support the assembly of uranyl into
Silverton-type structures. Thus, the existence of UV!-heteroatom in Silverton- {UMo,04,} has not been
found yet.

For the synthesis of NiUMo, the same procedure was first used instead of LiAc/HAc buffer. But we
can only obtain a kind of densely packed crystals in a big sheet shape (named Ni-1) that covered all
the surfaces of the Teflon liner exposed to the solution. The crystals scraped from the Teflon liner all
have bad quality and it is difficult to find a good single crystal. This kind of crystal in a big sheet shape
may have some kind of similar Silverton-type but we could not find a suitable single crystal for X-ray
diffraction after many attempts. This phenomenon may be attributed to the stronger hydrolysis effect
of Ni?*. Thus, we tried to use LiAc/HAc buffer to improve this problem. Fortunately, we finally
obtained isostructural NiUMo with better crystal qualities. OAc™ may effectively relieve the hydrolysis
of Ni**, while Li" may play a key role in the self-assembly of NiUMo. The unsaturated occupancy of

Ni?* ions in NiUMo may be the result of a combination of factors.

Typical procedure of the condensation reaction

In a reaction vial of 4 mL, 2-aminobenzamide (1, 0.2 mmol), aldehyde (2, 0.2 mmol), NiUMo (3
mol%) and CH3;CN (1 mL) were added. Then the reactions were carried out in screw cap vials with a
Teflon seal at 90 °C for 2 h. After cooling to room temperature, the mixture was further purified by

column chromatography (petroleum ether/EtOAc) to afford the desired products.



General procedure for the synthesis of substrates 1
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Substrates 1a-1d are commercially available.

Synthesis of substrate 1’

0 o)
I, (10 mol%) -Ph
© +  Ph-NH, ——— N
©\)l > EtOH, reflux H
N“~o NH,
1e

Isatoic anhydride (5 mmol), aniline (5 mmol), and iodine (127 mg, 0.5 mmol) were added to EtOH (10
mL), and the mixture was heated at reflux in the air. The progress of the reaction was monitored by
TLC. Upon completion, the solvent was distilled off and the residue was diluted with EtOAc. The
mixture was quenched with saturated Na,S,0; solution and then washed with brine. The organic layer
was dried over anhydrous Na,SO,, concentrated, and then purified by flash column chromatography

on silica gel to afford the desired substrate 1e.

Synthesis of substrate 1f-1j3
0

0
o DMF, 50 °C N/R

/g + R-NH, ————> N

N~ 0 NH,

H 1f-1j

Isatoic anhydride (5 mmol) and aniline (5 mmol) were added to DMF (25 mL) and the mixture was
stirred at 50 °C in air for 3 h. Upon completion, the solution was diluted with EtOAc and then washed
with brine. The organic layer was dried over anhydrous Na,SO,, concentrated, and then purified by

flash column chromatography on silica gel to afford the desired substrate.



3. Characterization of crystals

Table S1. Crystallographic data and structure refinement.

Code FeUMo CoUMo NiUMo NaUMo
CSD No. 2222603 2222722 2222723 2292524
Empirical formula HjzgFeMo;Na3Os5sU  Hyg4CoMo1,Naz ¢Oss.sU HZQ{}NIO'SgMOuNaMO Hzo2Mo12Nas. 8055 sU
55.5

Fw 2432.37 2459.19 2438.43 2440.08
T (K) 150 150 100 150
Crystal system cubic cubic cubic trigonal
Space group la-3 la-3 la-3 R-3
a(A) 26.0130(2) 25.9609(3) 25.9532(8) 19.0319(3)
b(A) 26.0130(2) 25.9609(3) 25.9532(8) 19.0319(3)
c(A) 26.0130(2) 25.9609(3) 25.9532(8) 11.4460(5)
a () 90 90 90 90
L) 90 90 90 90
7(°) 90 90 90 120
v (A3%) 17602.4(4) 17496.8(6) 17481.3(16) 3590.45(19)
F (000) 18064.0 18176.0 17954.0 3399.0
Z 16 16 16 3
Pealed (gcm3) 3.671 3.718 3.673 3.386
1 (mm) 7.450 7.549 7.426 6.584
Reflections

18752 25767 23550 11019
collected

Unique reflections
Parameter

GOOF on F?
Ri2[1=20(D)]
WR,P (all data)

2600 (R, =0.0223)
256

1.128

0.0218

0.0513

2589 (Rjy = 0.0383)
247

1.131

0.0235

0.0549

3353 (Rin = 0.0447)
247

1.126

0.0231

0.0608

1985 (Riy = 0.0261)
167

1.093

0.0201

0.0494

“Ry = Z|FOHF/EIF], PwRy = {Z[W(F -F 2P VEW(EF )1}



Table S2. Selected bond lengths (A).

FeUMo
U1-05 2.495(4) U1-08 2.493(4)
U2-013 2.502(4) U2-014 2.494(4)
Mo1-0O1 1.743(4) Mo1-03 1.703(4)
Mo1-04 1.924(4) Mo1-05 2.293(4)
Mo1-O5#2 1.921(4) Mo1-O8#5 2.246(4)
Mo2-04 1.949(4) Mo2-05 2.268(4)
Mo2-06 1.709(4) Mo2-07 1.711(4)
Mo2-O8#5 2.266(4) Mo2-08 1.947(4)
Mo3-02 1.751(4) Mo3-09 1.692(4)
Mo3-010 1.938(4) Mo3-0O13#6 2.221(4)
Mo3-014 1.917(4) Mo3-0O14#4 2.304(4)
Mo4-010 1.964(4) Mo4-011 1.702(4)
Mo4-012 1.703(4) Mo4-013 1.955(4)
Mo4-0O13#6 2.263(4) Mo4-0O14#4 2.284(4)
Fel-O1 2.092(4) Fel-O2 2.072(4)

Symmetry transformations used to generate equivalent atoms: #1 1-X, 1-Y,-Z; #2 1-Y, 1/2+Z, 1/2-
X;#3Y, 12-Z, -12+X; #4 1/2-7, 1-X, -12+Y; #5 1/2+7, X, 1/2-Y; #6 Z, 1/2+X, 1-Y.

CoUMo
U1-04 2.491(4) U1-05 2.490(4)
U2-011 2.489(4) U2-012 2.493(4)
Mo1-01 1.740(4) Mo1-02 1.705(4)
Mo1-03 1.927(4) Mo1-0O4 2.290(4)
Mo1-0O4#3 1.922(4) Mo1-O5#2 2.249(4)
Mo2-03 1.944(4) Mo2-04 2.263(4)
Mo2-05#2 2.262(4) Mo2-05 1.945(4)
Mo2-06 1.707(4) Mo2-07 1.708(4)
Mo3-08 1.738(4) Mo3-09 1.696(4)
Mo3-010 1.935(4) Mo3-0O11#3 1.919(4)
Mo3-011 2.298(4) Mo3-O12#8 2.225(4)
Mo4-010 1.963(4) Mo4-011 2.279(4)
Mo4-012 1.951(4) Mo4-O12#8 2.263(4)
Mo4-013 1.705(4) Mo4-014 1.709(4)
Col-01 2.090(4) Col-08 2.076(4)

Symmetry transformations used to generate equivalent atoms: #1 1-Y, 1-Z, 1-X; #2 1-Z, 1-X, 1-Y;
#HIY,Z, X;#4 7, X, Y #51-X, 1-Y, 1-Z; #6 3/2-Y, 3/2-Z, 3/2-X; #7 3/2-X, 3/2-Y, 3/2-Z; #8 3/2-Z,
3/2-X, 3/2-Y.

NiUMo
U1-06 2.489(4) U1-07 2.498(4)
U2-09 2.490(4) U2-014 2.486(4)
Mol-01 1.740(4) Mo1-02 1.702(4)

Mo1-03 1.948(4) Mol-O6#1 2.232(4)



Mo1-O7 1.920(3) Mol1-O7#3 2.290(3)

Mo02-03 1.965(4) Mo02-04 1.707(4)
Mo02-05 1.706(3) Mo02-06#1 2.264(3)
Mo02-06 1.949(3) Mo02-0O7#3 2.277(3)
Mo3-08 1.733(4) Mo3-09%#3 2.285(3)
Mo3-09 1.925(3) Mo03-010 1.704(4)
Mo3-0O11 1.935(3) Mo3-014#6 2.253(4)
Mo4-0943 2.266(3) Mo4-011 1.948(4)
Mo4-012 1.708(4) Mo4-013 1.716(4)
Mo4-014#6 2.267(3) Mo4-O14 1.944(3)
Nil-O1 2.075(4) Nil-08 2.099(4)

Symmetry transformations used to generate equivalent atoms: #1 Y, 1/2-Z, -1/2+X; #2 1/2+Z, X,
1/2-Y; #3 1-Y, 1/2+7, 1/2-X; #4 1-X, 1-Y, -Z; #5 1/2-Z, 1-X, -1/2+Y; #6 -1/2+Y, 1-Z, X.




Table S3. Bond valence calculations for FeUMo, CoUMo, and NiUMo.

Code Atom BVS Valence
Ul 4.27 +4
U2 423 +4
Mol 5.96 +6
FeUMo Mo2 5.95 +6
Mo3 5.98 +6
Mo4 5.95 +6
Fel 2.34 +2
Ul 431 +4
U2 431 +4
Mol 5.96 +6
CoUMo Mo2 6.00 +6
Mo3 6.01 +6
Mo4 5.93 +6
Col 2.09 +2
Ul 4.28 +4
U2 4.34 +4
Mol 5.94 +6
NiUMo Mo2 5.94 +6
Mo3 5.96 +6
Mo4 5.94 +6
Nil 1.86 +2

Bond valence sum (BVS) analysis: The BVS values (Vi) of metal atoms were calculated using the
following equation:*

Vi = Zexp[(ro-1;i)/B] (D

where ) is the bond valence parameter for a given atom pair, ;; is the bond length between atoms i

and j obtained from the crystal structure, and B is a constant with the value 0.37 A.
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Figure S1. View of the asymmetric units of (a) FeUMo, (b) CoUMo, and (c) NiUMo in ellipsoid
mode with 50% probability.



Figure S2. (a) Ball-and-stick view of the {CoUMo,} unit; (b) the 1D chain of {CoUMo,},; (c) the
coordination environment of U1; (d) the six disordered Na ions coordinated with the {CoUMo,} unit;
(e) View of the tetranuclear Na-H,O cluster; (f) the 3D packing structure of CoUMo; (g) the simplified
diagram of the 3D packing structure, pink balls and blue sticks represent Co ions and {UMo,} units,

respectively.

CoUMo is isomorphic with FeUMo (Figure S2a). Single crystal X-ray diffraction analysis revealed
that CoUMo also crystallized in the /a-3 space group. The asymmetric unit of CoUMo is also the 1/6
of the whole structure and consists of two 1/6 UV (U1 and U2), one 1/3 Co'" (Col), four MoV! (Mo1-
Mo4), two disordered Na ions (1.36 occupancy in total), other fourteen oxygen atoms (O1-O14) from
the {UMo,} units, three coordination and one and a half lattice water molecules. The 12-coordinated
Ul and U2 ions in the center of the Silverton-type {UMo0,,04,} polyanion are also tetravalent. The
bond lengths of U1-O4, U1-05, U2-0O11, and U2-O12 are 2.491(4), 2.490(4), 2.489(4), and 2.493(4)
A, respectively. The coordination environments of Ul and U2 also show a near-perfect regular
icosahedron (Figure S2b). The bond lengths of Mo-O bonds are in the range of 1.705(4)-2.298(4) A.
Both Mol and Mo2, Mo3 and Mo4 exhibit weak interaction with the distance of 3.1199(7) and
3.1299(7) A, respectively. Col is coordinated with six terminus oxygen atoms
(O1/01#3/01#4/08/08#3/08#4) from two adjacent {UMo0;,04,} units with the bond length of
2.090(4) and 2.076(4) A, respectively. The valences of U1, U2, Mo1-Mo4, and Col are also confirmed
by bond valence sum (BVS) calculation (Table S3). Both Nal and Na2 ions are also coordinated by



three terminus oxygen atoms from one {UMo0;,04,} unit and three water molecules. Thus, one
{UM0,,04,} unit is coordinated with two Co!' ions and six Na ions (Figure S2d). Adjacent
{UMo0,,04,} units are alternately connected by Co'' ions to form a {CoUMo,}, 1D chain (Figure S2c).
The adjacent Na ions are connected by bridging water molecules (O15/015A) to form a rhombic
tetranuclear Na-H,O cluster (Figure S2e). One tetranuclear Na-H,O cluster then connects with four
adjacent equivalent tetranuclear Na-H,O clusters by the connection of bridging water molecules
(O17/017A). The 1D chain of {CoUMo;,}, is then extended by the connection of Na ions and bridging
water molecules to form the 3D packing structures of CoUMo (Figure S2f). The directions of the 1D
chains in CoUMo also have four directions in space which could also be simplified as a ball-and-stick

schematic diagram (Figure S2g). The space torsion angle of adjacent 1D chains is about 70.529°.



Figure S3. (a) Ball-and-stick view of the {NiUMo,} unit; (b) the 1D chain of {NiUMo,},; (c) the
coordination environment of U1; (d) the six disordered Na ions coordinated with the {NiUMo,} unit;
(e) View of the tetranuclear Na-H,O cluster; (f) the 3D packing structure of NiUMo; (g) the simplified
diagram of the 3D packing structure, light green balls and blue sticks represent Ni ions and {UMoy,}

units, respectively.

NiUMo is isomorphic with FeUMo (Figure S3a). Single crystal X-ray diffraction analysis revealed
that NiUMo also crystallized in the /a-3 space group. The asymmetric unit of NiUMo is also the 1/6
of the whole structure and consists of two 1/6 UV (U1 and U2), one 0.192 Ni"! (Nil), four Mo"! (Mo1-
Mo4), two disordered Na ions (1.1 occupancy in total), other fourteen oxygen atoms (O1-O14) from
the {UMo1,} units, three coordination and one and a half lattice water molecules. The 12-coordinated
Ul and U2 ions in the center of the Silverton-type {UMo1,04,} polyanion are also tetravalent. The
bond lengths of U1-06, U1-O7, U2-09, and U2-O14 are 2.489(4), 2.498(4), 2.490(4), and 2.486(4)
A, respectively. The coordination environments of Ul and U2 also show a near-perfect regular
icosahedron (Figure S3b). The bond lengths of Mo-O bonds are in the range of 1.702(4)-2.290(3) A.
Both Mol and Mo2, Mo3 and Mo4 exhibit weak interaction with the distance of 3.1330(6) and
3.1268(6) A, respectively. Nil is coordinated with six terminus oxygen atoms
(O1/01#3/01#5/08/08#3/08#5) from two adjacent {UMo01,04,} units with the bond length of
2.075(4) and 2.099(4) A, respectively. The occupancy of Nil is only about 0.576 calculated by the
program. For comparison, both Fel in FeUMo and Col in CoUMo have a 100% occupancy. The



valences of U1, U2, Mo1-Mo4, and Nil are also confirmed by bond valence sum (BVS) calculation
(Table S3). Both Nal and Na2 ions are also coordinated by three terminus oxygen atoms from one
{UMo0,,04,} unit and three water molecules. One {UMo1,04,} unit is coordinated with two Ni'l ions
and six Na ions (Figure S3d). Adjacent {UMo0,,04,} units are alternately connected by Ni'' ions to
form a {NiUMoi,}, 1D chain (Figure S3c). The adjacent Na ions are connected by bridging water
molecules (O16/016A) to form a rhombic tetranuclear Na-H,O cluster (Figure S3¢). One tetranuclear
Na-H,O cluster then connects with four adjacent equivalent tetranuclear Na-H,O clusters by the
connection of bridging water molecules (O17/O17A). The 1D chain of {NiUMo,}, is then extended
by the connection of Na ions and bridging water molecules to form the 3D packing structures of
NiUMo (Figure S3f). The directions of the 1D chains in NiUMo also have four directions in space
(Figure S3g). The space torsion angle of adjacent 1D chains is also about 70.529°.



Figure S4. (a) View of the asymmetric units of NaUMo in ellipsoid mode with 50% probability; (b)
structural representation of the constitutional unit; (c) the 3D packing structure; (d-e) the simplified
diagram of the 3D packing structure from two directions. Green balls and blue sticks represent Nal

ion and {UMo,} units, respectively.

The basic constitutional unit of NaUMo is similar to FeUMo, CoUMo, and NiUMo, but NaUMo
shows different space symmetry and crystallizes in the R-3 space group in the trigonal crystal system.
The asymmetric unit of NaUMo is 1/6 of the complete structure and consists of one 1/6 UV (U1), two
MoV! (Mol, Mo2), seven bridging or terminal oxygen atoms from {UMo0,04,} unit (O1-O7), one
ordered (Nal) and two disordered Na ions (Na2, Na2A), and seven disordered water molecules (OS,
O8A-08D, 09, O9A, 2.25 occupancy in total) (Figure S4a). Two adjacent Silverton-type {UMo0,04,}
units are connected by a Nal to form the 1D chain structure with a formula of {NaUMo0,,04,}, (Figure
S4b). Adjacent {NaUMo0;,04,}, 1D chains are then connected by Na2, Na2A, and bridging water
molecules to form the 3D packing structures of NaUMo with a parallel-arranged configuration (Figure
S4c-e). The different 3D packing configurations are the main difference between NaUMo and the

above three compounds.
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Figure SS. FT-IR spectra of FeUMo, CoUMo, and NiUMo.

The FT-IR spectra of FeUMo, CoUMo, and NiUMo showed typical bands of Silverton-type
polyoxomolybdates. The bands in the range of 1000~500 cm™! should be attributed to the vibrations of
v(Mo=0y), v(Mo-0,-Mo), and v(Mo-0O-X) (X = Fe, Co, and Ni), respectively. The bands around 1400
cm’! may be attributed to the vibrations of v(O-X) or v(Mo-O-Na) bonds. The bands around 1610 and

3200 cm’! are attributed to the vibration of water molecules.
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Figure S6. Raman spectra of FeUMo, CoUMo, and NiUMo.

According to the reference, the U-O band in {UMo,} should be around 660 cm!, which can be found
in NiUMo as a weak peak.’ The bands around 800 cm!' and 1000~900 cm™' should be the attributed to
the vibration of X-O-Mo (X = Fe, Co, and Ni), Mo-O-Mo and Mo=0,, respectively.
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Figure S7. TGA curves of FeUMo, CoUMo, and NiUMo.

The thermostabilities of FeUMo, CoUMo, and NiUMo were evaluated by TGA, which indicates that
the frameworks of these compounds could keep stable before ~400 °C. The theoretical weight losses
of water molecules are about 10% at ~400 °C, but only FeUMo matches this result. The collapse of
inorganic frameworks or the highly disordered water molecules in the structures of CoUMo and

NiUMo may be responsible for this difference.
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Figure S8. PXRD patterns of FeUMo.
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Figure S9. PXRD patterns of CoUMo.
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Figure S10. PXRD patterns of NiUMo.

Map Data 17

Map Data 17

Map Data 17

Figure S11. EDS mapping of FeUMo.
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Map Data 19
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Figure S12. EDS mapping of CoUMo.
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Figure S13. EDS mapping of NiUMo.
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Figure S14. The XPS of FeUMo.
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Figure S16. The XPS of NiUMo.
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Figure S17. FT-IR spectra comparison of NiUMo before and after 7 runs of catalytic reactions.
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Figure S18. The thermal filtration experiments.
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4. Optimization of reaction conditions

Table S4. Examination of the catalysts

O O
catalyst (2 mol%)
NH, PhAO K NH
CH5CN (1 mL), 70°C, 1 h J
NH, N7~ “Ph
H
1a 2a 3a
0.2 mmol 0.2 mmol
Entry Catalyst Yield (%)lal
1 24
2 FeUMo 45
3 CoUMo 43
4 NiUMo 68

[a] The conversions and yields were determined by GC with biphenyl as the internal standard.

Table S5. Examination of solvents

O 0]
NH, . PhA NiUMo (2 mol%) g NH
solvent (1 mL), 70 °C, 1 h J
NH, N~ >Ph
H
1a 2a 3a
0.2 mmol 0.2 mmol
Entry Solvent Yield (%)!al
1 Ph-Cl1 49
2 EtOH 58
3 i-PrOH 65
4 CH;CN 68
5 DCE 60
6 DMSO 62
7 DMF 57

[a] The conversions and yields were determined by GC with biphenyl as the internal standard.
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Table S6. Investigation of the reaction temperature

O 0]
NiUMo (2 mol%)
NH: o g o) NH
CH5CN (1 mL), temp., 1 h A
NH, N™ ~Ph
H
1a 2a 3a
0.2 mmol 0.2 mmol
Entry Temperature Yield (%)l
1 70 68
2 80 73
3 90 82
4 100 81

[a] The conversions and yields were determined by GC with biphenyl as the internal standard.

Table S7. Investigation of the reaction time

O 0]
N2, e NiUMo (2mol%) NH
CH5CN (1 mL), 90 °C, time J
NH, N “Ph
H
1a 2a 3a
0.2 mmol 0.2 mmol
Entry Time (h) Yield (%)lal
1 1 82
2 1.5 84
3 2 87
4 2.5 87

[a] The conversions and yields were determined by GC with biphenyl as the internal standard.
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Table S8. Optimization of catalyst loading

0] 0]
NH, PhAo NiUMo (x mol%) NH
CH4CN (1 mL), 90 °C, 2 h J
NH2 N” “Ph
H
1a 2a 3a
0.2 mmol 0.2 mmol
Entry Loading Yield (%)@l
1 2 87
2 2.5 89
3 3 93
4 3.5 92

[a] The conversions and yields were determined by GC with biphenyl as the internal standard.

Table S9. Control experiments

0 O
NiUMo (3 mol%)
NHz 4 P00 CH3CN (1 mL), 90 °C, 2 h )N\H
NH; N™ ~Ph
H
1a 2a 3a
Entry Catalyst Yield (%)lal
1 30
3 NaUMo 46
4 Mixture of NiSO4-7H,0 and NaUMo 81
5 NiUMo 93

[a] Isolated yield.
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5. NMR data®

2-phenyl-2,3-dihydroquinazolin-4(1H)-one (3a)
0]

NH

N)\Ph
By following the typical procedure, the product was obtained as a white solid with a 91% yield.
TH NMR (500 MHz, DMSO-d6) 5 = 8.48 (s, 1H), 7.76 (d, J=7.6, 1H), 7.61 (d, J=7.4, 2H), 7.41 (dt,
J=23.3,7.0, 3H), 7.32 (t, J=7.5, 1H), 7.25 (s, 1H), 6.89 (d, J=8.1, 1H), 6.76 (t, J=7.4, 1H), 5.88 (s,
1H).
13C NMR (126 MHz, DMSO-d6) 6 = 164.38, 148.47, 142.07, 133.95, 129.05, 128.89, 127.99, 127.44,
117.77, 115.48, 115.02, 67.24.

7-methyl-2-phenyl-2,3-dihydroquinazolin-4(1H)-one (3b)
o

/@\)J\NH
N)\Ph

H

By following the typical procedure, the product was obtained as a white solid with a 90% yield.

'TH NMR (500 MHz, DMSO-d6) 6 = 8.29 (s, 1H), 7.54 (dd, J/=14.3, 7.6, 3H), 7.42 — 7.34 (m, 3H),
7.10 (s, 1H), 6.60 (s, 1H), 6.53 (d, J=7.9, 1H), 5.77 (s, 1H), 2.22 (s, 3H).

I3C NMR (126 MHz, DMSO-d6) 5 = 164.22, 148.33, 143.90, 142.30, 128.88, 128.81, 127.93, 127.30,
118.96, 114.91, 113.16, 67.04, 21.88.

6-fluoro-2-phenyl-2,3-dihydroquinazolin-4(1H)-one (3¢)

0

F\©\)J\NH
N)\Ph
H

By following the typical procedure, the product was obtained as a yellow solid with an 87% yield.
TH NMR (500 MHz, DMSO-d6) 5 =8.53 (s, 1H), 7.53 (d, J=7.3, 2H), 7.38 (dt, /=18.0, 5.0, 4H), 7.21
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~7.11 (m, 2H), 6.82 (dd, J=8.8, 4.4, 1H), 5.79 (s, 1H).
13C NMR (126 MHz, DMSO-d6) & = 163.36 (d, /= 2.2 Hz), 155.23 (d, J = 233.5 Hz), 145.13, 141.59,
129.07, 128.84, 127.47, 121.28 (d, J = 23.4 Hz), 116.66 (d,J= 7.0 Hz), 116.18 (d, J= 6.7 Hz), 113.01
(d, J=23.0 Hz), 67.24.

6-chloro-2-phenyl-2,3-dihydroquinazolin-4(1H)-one (3d)

0]

N)\Ph

H

By following the typical procedure, the product was obtained as a yellow solid with an 85% yield.

'H NMR (500 MHz, DMSO-d6) 6 = 8.53 (s, 1H), 7.55 (d, J=2.5, 1H), 7.49 (d, J=7.1, 2H), 7.42 —
7.36 (m, 4H), 7.29 (dd, J=8.7, 2.6, 1H), 6.79 (d, J=8.7, 1H), 5.80 (s, 1H).

I3C NMR (126 MHz, DMSO-d6) 5 = 162.92, 147.08, 141.69, 133.58, 129.09, 128.89, 127.32, 126.89,
121.22, 116.89, 116.49, 66.90.

2,3-diphenyl-2,3-dihydroquinazolin-4(1H)-one (3e)
O
O
N)\Ph
H
By following the typical procedure, the product was obtained as a white solid with a 74% yield.
TH NMR (500 MHz, DMSO-d6) & = 7.80 (d, J=7.7, 1H), 7.72 (s, 1H), 7.43 (d, J=7.5, 2H), 7.35 —
7.23 (m, 8H), 7.19 (t, J/=6.8, 1H), 6.81 (d, J/=8.1, 1H), 6.74 (t, J=7.5, 1H), 6.33 (s, 1H).

I3C NMR (126 MHz, DMSO-d6) 5 = 162.83, 147.09, 141.32, 141.21, 134.29, 129.12, 128.89, 128.80,
128.52, 127.09, 126.72, 126.50, 118.05, 115.86, 115.32, 73.14.

3-benzyl-2-phenyl-2,3-dihydroquinazolin-4(1H)-one (3f)
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)
e

N Ph

H

By following the typical procedure, the product was obtained as a white solid with 82% yield.

TH NMR (500 MHz, DMSO-d6) 6 = 7.75 (d, J=6.8, 1H), 7.43 (d, J/=2.3, 1H), 7.36 — 7.21 (m, 11H),
6.69 (dd, J=15.6, 7.8, 2H), 5.77 (d, J=2.5, 1H), 5.36 (d, J=15.4, 1H), 3.83 (d, J=15.4, 1H).

13C NMR (126 MHz, DMSO-d6) 5 =162.93, 146.83, 141.09, 137.97, 133.95, 129.07, 128.96, 128.94,
128.16, 127.93, 127.64, 126.64, 117.75, 115.10, 114.87, 70.31, 47.61.

3-hexyl-2-phenyl-2,3-dihydroquinazolin-4(1H)-one (3g)

o]

NN

H)\Ph
By following the typical procedure, the product was obtained as a white solid with a 93% yield.
'"H NMR (500 MHz, DMSO-dé6) 6 = 7.71 (d, J=6.8, 1H), 7.33 (ddd, J=22.7, 18.1, 7.2, 6H), 7.21 —
7.16 (m, 1H), 6.71 — 6.63 (m, 2H), 5.87 (d, J=2.2, 1H), 3.97 — 3.83 (m, 1H), 2.82 — 2.69 (m, 1H), 1.62
—1.41 (m, 2H), 1.21 (s, 6H), 0.82 (t, J/=6.7, 3H).
13C NMR (126 MHz, DMSO-d6) 3 =162.73, 146.77, 141.69, 133.52, 128.93, 128.79, 127.92, 126.66,
117.52, 115.52, 114.70, 70.71, 44.88, 31.48, 27.86, 26.51, 22.53, 14.35.

3-isobutyl-2-phenyl-2,3-dihydroquinazolin-4(1H)-one (3h)

(0]
N
seas

By following the typical procedure, the product was obtained as a white solid with a 90% yield.

TH NMR (500 MHz, DMSO-d6) 5 = 7.64 (d, J=7.4, 1H), 7.44 (d, J=2.3, 1H), 7.35 — 7.25 (m, 5H),
7.18 (t,J=7.1, 1H), 6.64 (dd, J=7.6, 5.2, 2H), 5.79 (d, J=2.5, 1H), 3.89 (dd, J=13.3, 7.7, 1H), 2.45 (dd,
J=13.3,7.1, 1H), 1.99 (dp, J=13.6, 6.8, 1H), 0.88 (dd, J/=33.2, 6.6, 6H).
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I3C NMR (126 MHz, DMSO-d6) 5 = 163.06, 146.66, 141.60, 133.58, 128.94, 128.65, 127.94, 126.438,
117.57, 115.67, 114.83, 70.65, 52.22, 27.25, 20.40, 20.35.

3-cyclohexyl-2-phenyl-2,3-dihydroquinazolin-4(1H)-one (3i)

S0 o
H)\Ph

By following the typical procedure, the product was obtained as a white solid with an 80% yield.

'H NMR (500 MHz, DMSO-d6) 6 = 7.70 (d, J=7.1, 1H), 7.37 — 7.11 (m, 7H), 6.64 (t, J/=7.5, 1H),
6.59 (d, J=8.1, 1H), 5.92 (d, J=2.7, 1H), 4.45 — 4.34 (m, 1H), 1.75—-0.97 (m, 10H).

I3C NMR (126 MHz, DMSO-d6) 5 = 162.32, 146.02, 143.46, 133.37, 128.62, 128.26, 128.03, 126.30,
117.69, 116.84, 114.95, 66.33, 53.34, 30.88, 30.77, 26.02, 25.99, 25.34.

3-(cyclopropylmethyl)-2-phenyl-2,3-dihydroquinazolin-4(1H)-one (3j)

O
N
CY

By following the typical procedure, the product was obtained as a white solid with a 92% yield.

TH NMR (500 MHz, DMSO-d6) & = 7.69 (d, J=7.7, 1H), 7.40 — 7.26 (m, 6H), 7.21 — 7.17 (m, 1H),
6.65 (dd, J/=11.7, 5.4, 2H), 5.97 (d, J/=2.4, 1H), 3.79 (dd, J=14.0, 6.6, 1H), 2.74 (dd, J=14.0, 7.1, 1H),
1.05-0.96 (m, 1H), 0.46 — 0.40 (m, 1H), 0.35 —0.23 (m, 2H), 0.14 (td, J=9.2, 5.0, 1H).

13C NMR (126 MHz, DMSO-d6) 6 = 162.82, 146.62, 141.70, 133.65, 128.93, 128.75, 127.96, 126.60,
117.55, 115.45, 114.73, 70.65, 48.85, 10.24, 4.34, 3.47.

2-(p-tolyl)-2,3-dihydroquinazolin-4(1H)-one (3k)

S13



]

o

By following the typical procedure, the product was obtained as a white solid with an 87% yield.

TH NMR (500 MHz, DMSO-d6) 5 = 8.31 (s, 1H), 7.65 (d, /=7.6, 1H), 7.41 (d, J=8.0, 2H), 7.25 (4,
J=1.7, 1H), 7.20 (d, J=7.9, 2H), 7.10 (s, 1H), 6.78 (d, J/=8.1, 1H), 6.69 (t, J/=7.4, 1H), 5.74 (s, 1H),
2.30 (s, 3H).

I3C NMR (126 MHz, DMSO-d6) 6 = 164.22, 148.44, 139.10, 138.24, 133.78, 129.32, 127.86, 127.31,
117.59, 115.47, 114.92, 66.91, 21.22.

2-(m-tolyl)-2,3-dihydroquinazolin-4(1H)-one (31)

]

T

By following the typical procedure, the product was obtained as a white solid with an 85% yield.

TH NMR (500 MHz, DMSO-d6) 6 = 8.31 (s, 1H), 7.65 (d, J=7.6, 1H), 7.37 — 7.23 (m, 4H), 7.18 (d,
J=7.2,1H), 7.12 (s, 1H), 6.78 (d, J/=8.1, 1H), 6.69 (t, J/=7.4, 1H), 5.75 (s, 1H), 2.32 (s, 3H).

13C NMR (126 MHz, DMSO-d6) 3 =164.19, 148.42, 141.96, 137.94, 133.82, 129.60, 128.74, 128.01,
127.87, 124.52, 117.60, 115.39, 114.89, 67.15, 21.56.

2-(o-tolyl)-2,3-dihydroquinazolin-4(1H)-one (3m)

0]

e

By following the typical procedure, the product was obtained as a white solid with 81% yield.
TH NMR (500 MHz, DMSO-d6) & = 8.19 (s, 1H), 7.73 (d, J=7.7, 1H), 7.64 (d, J=7.0, 1H), 7.32 -
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7.23 (m, 4H), 6.97 (s, 1H), 6.84 (d, J/=8.1, 1H), 6.76 (t, J=7.4, 1H), 6.07 (s, 1H), 2.48 (s, 3H).
13C NMR (126 MHz, DMSO-d6) & = 164.67, 149.10, 138.52, 136.65, 133.76, 131.19, 129.02, 127.97,
126.46, 117.76, 115.40, 115.01, 65.20, 19.32.

2-(4-methoxyphenyl)-2,3-dihydroquinazolin-4(1H)-one (3n)

By following the typical procedure, the product was obtained as a white solid with 82% yield.

TH NMR (500 MHz, DMSO-d6) & = 8.25 (s, 1H), 7.62 (d, J=7.7, 1H), 7.43 (d, J=8.4, 2H), 7.25 (1,
J=17.6, 1H), 7.05 (s, 1H), 6.95 (d, J/=8.4, 2H), 6.75 (d, J=8.1, 1H), 6.68 (t, J/=7.4, 1H), 5.72 (s, 1H),
3.74 (s, 3H).

13C NMR (126 MHz, DMSO-d6) 6 = 164.24, 159.89, 148.53, 133.86, 133.75, 128.73, 127.84, 117.59,
115.46, 114.89, 114.09, 66.79, 55.62.

2-(4-ethoxyphenyl)-2,3-dihydroquinazolin-4(1H)-one (30)

o}
Cr

L

H

o

By following the typical procedure, the product was obtained as a white solid with an 80% yield.
TH NMR (500 MHz, DMSO-d6) & = 8.27 (s, 1H), 7.66 (d, J=7.7, 1H), 7.44 (d, J=8.6, 2H), 7.26 (t,
J=17.6, 1H), 7.07 (s, 1H), 6.94 (d, J=8.7, 2H), 6.79 (d, J=8.1, 1H), 6.70 (t, J/=7.4, 1H), 5.74 (s, 1H),
4.00 (q, J=6.9, 2H), 1.31 (t, J=7.0, 3H).

13C NMR (126 MHz, DMSO-d6) 6 = 164.29, 159.19, 148.57, 133.76, 133.72, 128.75, 127.87, 117.60,
115.47,114.92, 114.54, 66.89, 63.53, 15.10.
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2-(4-isopropylphenyl)-2,3-dihydroquinazolin-4(1H)-one (3p)
0}

[:[ NH
N
H

By following the typical procedure, the product was obtained as a white solid with 84% yield.

TH NMR (500 MHz, DMSO-d6) & = 8.29 (s, 1H), 7.65 (d, J=7.7, 1H), 7.45 (d, J=8.1, 2H), 7.26 (dd,
J=14.5,7.6, 3H), 7.11 (s, 1H), 6.77 (d, J/=8.1, 1H), 6.69 (t, J=7.5, 1H), 5.75 (s, 1H), 2.94 — 2.85 (m,
1H), 1.20 (d, J=7.0, 6H).

13C NMR (126 MHz, DMSO-d6) 6 = 164.23, 149.34, 148.50, 139.45, 133.76, 127.87, 127.50, 126.73,
117.56, 115.43, 114.87, 67.10, 33.75, 24.38.

2-(4-fluorophenyl)-2,3-dihydroquinazolin-4(1H)-one (3q)

0]

e,

By following the typical procedure, the product was obtained as a white solid with a 90% yield.

'TH NMR (500 MHz, DMSO-d6) 5 = 8.33 (s, 1H), 7.62 (d, J=6.8, 1H), 7.55 (dd, J=8.6, 5.6, 2H), 7.29
—7.20 (m, 3H), 7.13 (s, 1H), 6.76 (d, J=8.1, 1H), 6.69 (t, J=7.4, 1H), 5.79 (s, 1H).

13C NMR (126 MHz, DMSO-d6) 5 = 164.07, 162.59 (d, J = 244.2 Hz), 148.29, 138.23 (d, /= 2.8
Hz), 133.85, 129.53 (d, J= 8.4 Hz), 127.84, 117.74, 115.58 (d, J=21.5 Hz), 115.41, 114.92, 66.40.

2-(4-chlorophenyl)-2,3-dihydroquinazolin-4(1H)-one (3r)

By following the typical procedure, the product was obtained as a white solid with an 89% yield.
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H NMR (500 MHz, DMSO-d6) & = 8.41 (s, 1H), 7.63 (d, J=7.6, 1H), 7.53 (d, J=8.3, 2H), 7.46 (d,
J=8.4, 2H), 7.26 (t, J=7.5, 1H), 7.19 (s, 1H), 6.77 (d, J=8.1, 1H), 6.69 (t, J=7.4, 1H), 5.80 (s, 1H).
13C NMR (126 MHz, DMSO-d6) & = 164.05, 148.16, 141.06, 133.92, 133.51, 129.26, 128.81, 127.87,
117.80, 115.40, 114.96, 66.27.

2-(3-chlorophenyl)-2,3-dihydroquinazolin-4(1H)-one (3s)

O

By following the typical procedure, the product was obtained as a white solid with an 86% yield.

TH NMR (500 MHz, DMSO-d6) 6 = 8.48 (s, 1H), 7.65 (d, J=7.7, 1H), 7.57 (s, 1H), 7.47 (d, J=4.7,
1H), 7.41 (dd, J=7.7, 5.7, 2H), 7.31 — 7.22 (m, 2H), 6.80 (d, J=8.1, 1H), 6.70 (t, J=7.5, 1H), 5.83 (s,
1H).

13C NMR (126 MHz, DMSO-d6) 6 = 164.04, 148.00, 144.83, 134.01, 133.54, 130.77, 128.78, 127.90,
127.25, 125.89, 117.87, 115.36, 115.00, 66.09.

2-(2-chlorophenyl)-2,3-dihydroquinazolin-4(1H)-one (3t)

)

e

N
H

By following the typical procedure, the product was obtained as a white solid with 82% yield.

TH NMR (500 MHz, DMSO-d6) & = 8.27 (s, 1H), 7.68 (d, J=6.3, 2H), 7.54 — 7.47 (m, 1H), 7.43 —
7.36 (m, 2H), 7.27 (t, J=7.1, 1H), 7.05 (s, 1H), 6.79 (d, J/=8.1, 1H), 6.73 (t, J/=7.4, 1H), 6.16 (s, 1H).
13C NMR (126 MHz, DMSO-d6) 6 = 5 164.18, 148.15, 138.32, 133.95, 132.35, 130.78, 130.07,
129.22,127.94, 127.88, 117.96, 115.15, 115.06, 64.17.
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2-(4-bromophenyl)-2,3-dihydroquinazolin-4(1H)-one (3u)

By following the typical procedure, the product was obtained as a yellow solid with a 90% yield.

TH NMR (500 MHz, DMSO-d6) & = 8.40 (s, 1H), 7.70 — 7.54 (m, 3H), 7.45 (d, J=8.4, 2H), 7.25 (t,
J=7.0, 1H), 7.19 (s, 1H), 6.76 (d, J/=8.1, 1H), 6.69 (t, J/=7.4, 1H), 5.77 (s, 1H).

I3C NMR (126 MHz, DMSO-d6) 5 = 164.01, 148.13, 141.52, 133.91, 131.72, 129.58, 127.86, 122.09,
117.79, 115.40, 114.95, 66.28.

4-(4-o0x0-1,2,3,4-tetrahydroquinazolin-2-yl)benzonitrile (3v)

By following the typical procedure, the product was obtained as a yellow solid with an 88% yield.
TH NMR (500 MHz, DMSO-d6) 6 = 8.53 (s, 1H), 7.88 (d, J=8.3, 2H), 7.67 (d, J=8.2, 2H), 7.61 (d,
J=1.7, 1H), 7.32 (s, 1H), 7.26 (t, J=7.6, 1H), 6.77 (d, J=8.1, 1H), 6.68 (t, J=7.5, 1H), 5.86 (s, 1H).
13C NMR (126 MHz, DMSO-d6) 5 = 163.83, 147.81, 134.04, 132.90, 129.11, 128.17, 127.87, 119.15,
117.91, 115.35, 114.98, 111.53, 65.97.

2-(4-nitrophenyl)-2,3-dihydroquinazolin-4(1H)-one (3w)

O

©\)‘\NH
N
NO

By following the typical procedure, the product was obtained as a yellow solid with an 80% yield.

2

TH NMR (500 MHz, DMSO-d6) 5 = 8.61 (s, 1H), 8.26 (d, J=8.7, 2H), 7.77 (d, J=8.7, 2H), 7.64 (d,
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J=7.5, 1H), 7.38 (s, 1H), 7.27 (t, J=7.1, 1H), 6.80 (d, J=8.1, 1H), 6.69 (t, J=7.5, 1H), 5.96 (s, 1H).
13C NMR (126 MHz, DMSO-d6) & = 163.88, 149.74, 147.86, 147.74, 134.07, 128.52, 127.92, 124.05,
117.97, 115.36, 115.04, 65.81.

2-(naphthalen-2-yl)-2,3-dihydroquinazolin-4(1H)-one (3x)

By following the typical procedure, the product was obtained as a white solid with an 86% yield.

'TH NMR (500 MHz, DMSO-d6) 6 = 8.43 (s, 1H), 8.01 — 7.91 (m, 4H), 7.72 (d, J=8.5, 1H), 7.67 (d,
J=6.8, 1H), 7.54 (dd, J=6.2, 3.2, 2H), 7.30 — 7.22 (m, 2H), 6.79 (d, J=8.0, 1H), 6.70 (t, J/=7.4, 1H),
5.96 (s, 1H).

13C NMR (126 MHz, DMSO-d6) 6 = 164.12, 148.39, 139.32, 133.86, 133.48, 132.94, 128.62, 128.46,
128.07, 127.88, 126.92, 126.88, 126.37, 125.34, 117.68, 115.42, 114.91, 67.32.

2-(naphthalen-1-yl)-2,3-dihydroquinazolin-4(1H)-one (3y)

O
sede

e
By following the typical procedure, the product was obtained as a white solid with 82% yield.
'"H NMR (500 MHz, DMSO-d6) § = 8.64 (d, J=7.7, 1H), 8.43 (s, 1H), 8.03 (dd, J=11.4, 8.2, 2H),
7.80 (t, J=7.0, 2H), 7.64 — 7.56 (m, 3H), 7.33 (t, J/=7.6, 1H), 7.21 (s, 1H), 6.87 (d, J=8.1, 1H), 6.80 (t,
J=7.5, 1H), 6.57 (s, 1H).
13C NMR (126 MHz, DMSO-d6) 3 =164.71, 149.03, 135.64, 134.31, 133.86, 131.08, 129.95, 129.16,
128.13, 126.66, 126.62, 126.37, 125.74, 125.14, 117.87, 115.54, 115.11, 66.56.
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2-(5-methylthiophen-2-yl)-2,3-dihydroquinazolin-4(1H)-one (3z)
(0]

O\)LNH

N T S/
By following the typical procedure, the product was obtained as a white solid with a 77% yield.
'TH NMR (500 MHz, DMSO-d6) é = 8.42 (s, 1H), 7.64 (d, J=7.6, 1H), 7.25 (dd, J=12.0, 5.0, 2H),
6.79 (d, J/=8.1, 1H), 6.69 (t, /=7.4, 1H), 6.15 (d, J/=3.0, 1H), 5.99 (d, J/=2.2, 1H), 5.73 (s, 1H), 2.21 (s,
3H).
13C NMR (126 MHz, DMSO-d6) 6 = 163.88, 153.00, 151.95, 147.67, 133.76, 127.78, 117.68, 115.39,
115.00, 108.65, 106.81, 60.79, 13.79.

2-butyl-2,3-dihydroquinazolin-4(1H)-one (3aa)

0]

H

By following the typical procedure, the product was obtained as a white solid with a 71% yield.

TH NMR (500 MHz, DMSO-d6) 7.92 (s, 1H), 7.58 (d, J=7.7, 1H), 7.22 (t, J=7.6, 1H), 6.73 (d, J=8.1,
1H), 6.65 (t, J/=7.4, 1H), 6.57 (s, 1H), 4.68 (s, 1H), 1.68 — 1.59 (m, 2H), 1.39 (dt, J=14.9, 7.6, 2H),
1.33 - 1.24 (m, 2H), 0.88 (t, /=7.2, 3H).

13C NMR (126 MHz, DMSO-d6) & = 164.43, 148.99, 133.50, 127.82, 117.33, 115.47, 114.83, 64.88,
35.21,25.90, 22.56, 14.42.
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6. NMR Spectra
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