Supplementary information

S1) The avoided burden approach

If the system investigated in an LCA study provides more than one product, the system is called "multifunctional." The ISO standards define a clear priority order of approaches to deal with multifunctionality in LCA.^{1,2} Following this order, the favored approach in ESTIMATe is the avoided burden approach.

The avoided burden approach assumes that the co-production of a given product replaces the benchmark production route of that product. Hence, the environmental burden of the benchmark is assumed to be avoided. Figure S1 shows the application of the avoided burden approach to determine product-specific environmental impacts for CO_2 -based methanol production. The CO_2 -based system provides two functions: electricity production and methanol production from captured CO_2 . In order to compare CO_2 -based and fossil-based methanol, a mono-functional system that provides solely the electricity production, i.e., a power plant without CO_2 capture, is subtracted from the multi-functional system (cf. Figure S1).

While the avoided burden approach is commonly used in LCA, results must be interpreted carefully to avoid misinterpretation. Specifically, the avoided environmental burdens depend on the assumption that by-products actually replace the benchmark process, and on the choice of benchmark process, which might improve or change in the future. Furthermore, assumed avoided emissions could be misinterpreted as true emission removal from the environment. For a broader discussion on allocation in the context of CCU, please refer to von der Assen et al.³

Figure S1: The avoided burden approach: Quantitative flow sheet from a methanol producer perspective. Calculation of product-specific results for methanol. Adapted from von der Assen et al.³

S2) Estimation methods included in the ESTIMATe tool

Table S1: Estimation methods available in ESTIMATe. TRL refers to recommendations in the CCU guidelines ⁴

Estimation of	TRL	Source	Automation within ESTIMATe	Comment
Environmental impact	1	Wernet et al. (2009) ⁵	Not automated	EstiMol database, available online. Information and link are given in ESTIMATe.
Reactant & water mass flows	2-3	Althaus et al. (2007), Hischier et al. (2005) ^{6,7}	Calculation and scaling to functional unit	Consistent with ecoinvent database.
Minimum energy demand	2 - 3	Roh et al. (2020) ⁸	Calculation and scaling to functional unit	
Electricity and heat demand	2-3	Althaus et al. (2007) ⁶	Calculation and scaling to functional unit	Guidelines also recommend Kim et al. (2003) ⁹ . We use Althaus to be consistent with the source for reactant mass flows.
Emissions to air and water	2	Hischier et al. (2005) ⁷	Calculation and scaling to functional unit	While guidelines also recommend method by Jimenez-Gonzalez et al. (2000) ¹⁰ , we use Hischier to be consistent with the source for reactant mass flows.
Energy for separation and recycling	3	Roh et al. (2020) ⁸	Calculation	
Energy demand for reactor	3	Parvatker et al. (2019) ¹¹	Calculation	
Energy demand for distillation	3	Parvatker et al. (2019) ¹¹	Calculation	
Energy demand for dryer	3	Parvatker et al. (2019) ¹¹	Calculation	
Energy demand for liquid batch reactor	4	Piccinno et al. (2016) ¹²	Calculation	
Energy demand for drying	4	Piccinno et al. (2016) ¹²	Calculation	
Energy demand for distillation	4	Piccinno et al. (2016) ¹²	Calculation	
Energy demand for pumping	4	Piccinno et al. (2016) ¹²	Calculation	
Energy demand for pressurizing	4	Perry et al. (2008) ¹³	Calculation	
Fugitive emissions	4	Ng et al. (2017), Hassim et al. (2010) ^{14,15}	No	Hybrid approach for fugitive emissions from process modules, e.g., tanks, valves, etc. Not automatable, information & link given in ESTIMATe.
Energy demand of separation	N/A	Lange (2017) ¹⁶	Calculation	Applicable to separation of organic chemicals. Not included in guideline.

S3) Process inventory data used for case studies

In the process inventories listed below, linked processes from the ecoinvent database are referred to by their reference product, process name, and location following the format [reference product], from [process name] [location]. The location codes used are RoW for Rest of World and GLO for Global.

S3.1) Best-Case Assessment

Table S2: Process inventory of the Best-Case Assessment of CO₂ reduction to ethylene

reference product	amount	unit	type	linked process
ethylene (g)	1	kg	main product	ethylene, from market for ethylene [RoW]
carbon dioxide (g)	3.14	kg	input	ESTIMATe feedstock carbon dioxide
				water, deionised, from market for water,
water (l)	1.28	kg	input	deionised [RoW]
oxygen (g)	3.42	kg	emission	oxygen (g)
electricity	13.18	kWh	input	ESTIMATe electricity

S3.2) Hotspot Assessment at laboratory scale

Table S3: Process inventory of the laboratory-scale Hotspot Assessment of CO_2 reduction to ethylene without recycle assumption

reference product	amount	unit	type	linked process
			main	
ethylene (g)	1	kg	product	ethylene, from market for ethylene [RoW]
carbon dioxide (g)	18.03	kg	input	ESTIMATe feedstock carbon dioxide
				water, deionised, from market for water,
water (l)	6.76	kg	input	deionised [RoW]
carbon dioxide (g)	13.52	kg	emission	carbon dioxide (g)
water (l)	5.07	kg	emission	water (l)
carbon monoxide (g)	0.373	kg	emission	carbon monoxide (g)
oxygen (g)	4.39	kg	emission	oxygen (g)
ethanol (I)	0.236	kg	emission	ethanol (I)
methane (g)	0.0066	kg	emission	methane (g)
acetic acid (I)	0.0615	kg	emission	acetic acid (I)
formic acid (I)	0.0892	kg	emission	formic acid (I)
propanol (I)	0.0410	kg	emission	propanol (I)
electricity	37.82	kWh	input	ESTIMATe electricity

Table S4: Process inventory of the laboratory-scale Hotspot Assessment of CO₂ reduction to ethylene with recycle assumption

reference product	amount	unit	type	linked process
ethylene (g)	1	kg	main product	ethylene, from market for ethylene [RoW]
/ (0/		0		
carbon dioxide (g)	5.01	kg	input	ESTIMATe feedstock carbon dioxide
				water, deionised, from market for water,
water (l)	6.76	kg	input	deionised [RoW]
carbon dioxide (g)	0.50	kg	emission	carbon dioxide (g)
water (l)	5.07	kg	emission	water (I)
carbon monoxide (g)	0.373	kg	emission	carbon monoxide (g)
oxygen (g)	4.39	kg	emission	oxygen (g)
ethanol (I)	0.236	kg	emission	ethanol (I)
methane (g)	0.0066	kg	emission	methane (g)
acetic acid (I)	0.0615	kg	emission	acetic acid (I)
formic acid (I)	0.0892	kg	emission	formic acid (I)
propanol (l)	0.0410	kg	emission	propanol (I)
electricity	37.82	kWh	input	ESTIMATe electricity
minimum separation				
electricity	2.25	kWh	input	ESTIMATe electricity

S3.3) Hotspot Assessment at process design scale Table S5: Process inventory of the process design-scale Hotspot Assessment of CO_2 reduction to ethylene

reference product	amount	unit	type	linked process
			main	
ethylene (g)	1	kg	product	ethylene, from market for ethylene [RoW]
carbon dioxide (g)	3.15	kg	input	ESTIMATe feedstock carbon dioxide
				water, deionised, from market for water,
water (I)	1.79	kg	input	deionised [RoW]
electricity (electrolyzer)	40.14	kWh	input	ESTIMATe electricity
electricity (compression				
& auxiliaries)	0.28	kWh	input	ESTIMATe electricity
				potassium hydroxide, from market for
КОН	0.0382	kg	input	potassium hydroxide [GLO]
hydrogen (g)	0.0348	kg	by-product	ESTIMATe hydrogen
				oxygen, liquid, from market for oxygen, liquid
oxygen (g)	3.70	kg	by-product	[RoW]
				wastewater, average, from treatment of
wastewater	0.0001	m3	waste	wastewater, average, capacity 1E9I/year [RoW]

S3.4) Hotspot Assessment of methanol at process design scale (for Mitigation Potential Assessment)

Table S6: Process inventory of the process design-scale Hotspot Assessment of CO_2 hydrogenation to methanol. This assessment was used in the Mitigation Potential Assessment case study.

reference product	amount	unit	type	linked process
methanol (l)	1	kg	main product	methanol, from market for methanol [GLO]
		0		
electricity	0.144	kWh	input	ESTIMATe electricity
carbon dioxide (g)	1.45	kg	input	ESTIMATe feedstock carbon dioxide
hydrogen (g)	0.201	kg	input	ESTIMATe hydrogen
steam	3.32	MJ	input	ESTIMATe steam
argon (g)	0.0010	kg	emission	[not characterized]
carbon dioxide (g)	0.1016	kg	emission	carbon dioxide (g)
	0.2020	0	0	
hydrogen (g)	0.0001	kg	by-product	ESTIMATe hydrogen
nitrogen (g)	0.0951	kg	emission	nitrogen (g)
				oxygen, liquid, from market for oxygen,
oxygen (g)	0.225	kg	by-product	liquid [RoW]
water (I)	1170 75			
water (I)	11/9./5	кg	emission	water (I)

S4) Additional case study result figures

S4.1) Best-Case Assessment

Figure S2: Material resources: metals/minerals impacts for the Best-Case Assessment of CO_2 reduction to ethylene in the ESTIMATe tool. The different bars correspond to the different background system scenarios defined in the methods section. An increase in renewable electricity production leads to increasing metals consumption for electricity supply and electricity-using processes.

S4.2) Hotspot Assessment at laboratory scale

Figure S3: Human toxicity: non-carcinogenic impacts for the laboratory-scale Hotspot Assessment of CO₂ reduction to ethylene in the ESTIMATe tool. The different bars correspond to the different background system scenarios defined in the methods section. Carbon monoxide emissions are the major contributor to the overall impact.

Figure S4: Ecotoxicity: freshwater impacts for the laboratory-scale Hotspot Assessment of CO_2 reduction to ethylene in the ESTIMATe tool. The different bars correspond to the different background system scenarios defined in the methods section. Electricity use and emissions of organic substances contribute most to the overall impact.

S4.3) Hotspot Assessment at process design scale

Figure S5: Ecotoxicity: freshwater impacts for the process design-scale Hotspot Assessment of CO₂ reduction to ethylene in the ESTIMATe tool. The different bars correspond to the different background system scenarios defined in the methods section. Electricity use and potassium hydroxide production contribute most to the overall impact.

S5) Modeled process inventories for scenario processes

Table S7: Process inventory for electric boiler, assuming an efficiency of 95%

	Name	Amount	Unit	Linked ecoinvent process
Products				
	Heat	1	megajoule	
Flows to/from technosphere				
	Electricity	0.292	kilowatt hour	ESTIMATe electricity, GLO

Table S8: Process inventory for alkaline water electrolysis, from Koj et al. (2017)¹⁷

	Name	Amount	Unit	Linked ecoinvent process				
P	Products							
	Hydrogen	1	kilogram					
Flows to/from technosphere								
	Electrolyser cell	0.00000015	pcs.	Cell Production, GLO				
	Cell Stack Framework	0.00000037	pcs.	Cell Stack Framework Production, GLO				
	electricity	50	kilowatt hour	ESTIMATe electricity, GLO				
	market for nitrogen, liquid	0.00029	kilogram	market for nitrogen, liquid, RoW				
	market for potassium hydroxide	0.0019	kilogram	market for potassium hydroxide, GLO				
	market for water, deionised	10	kilogram	market for water, deionised, RoW				
	steam	0.3025	megajoule	ESTIMATe steam, GLO				

Table S9: Process inventory for cell stack framework production for alkaline water electrolysis, from Koj et al. (2017)¹⁷

	Name	Amount	Unit	Linked ecoinvent process		
Р	roducts					
	cell stack framework	1	pcs.			
F	Flows to/from technosphere					
	copper, cathode	2000	kilogram	market for copper, cathode, GLO		
	reinforcing steel	200000	kilogram	market for reinforcing steel, GLO		

Table S10: Process inventory for electrolyser cell production for alkaline water electrolysis, from Koj et al. (2017)¹⁷

	Name	amount	unit	linked ecoinvent process
Р	roducts			
	electrolyser cell	1	pcs.	
F	ows to/from technosphere			
	acetic anhydride	54	kilogram	market for acetic anhydride, GLO
	acrylonitrile-butadiene-styrene	160	kilogram	market for acrylonitrile-butadiene-styrene copolymer,
		100	kilogram	GLO
	Aniline	450	kilogram	market for aluminum, cast alloy, GLO
	Aniline	49	kilogram	market for aniline, Row
	carbon monoxide	150	kilogram	market for carbon monoxide, RoW
	decarbonized water	11000	kilogram	market for water, decarbonised, RoW
	electricity	10000	kilowatt hour	ESTIMATe electricity, GLO
	graphite	430	kilogram	market for graphite, GLO
	Heat	88000	megajoule	ESTIMATe heat, GLO
	hydrochloric acid, without water, in 30% solution state	433.33	kilogram	market for hydrochloric acid, without water, in 30% solution state, RoW
	industrial machine production	0.16	kilogram	industrial machine production, heavy, unspecified, RoW
	lubricating oil	0.48	kilogram	market for lubricating oil, RoW
	nickel, class 1	19000	kilogram	market for nickel, class 1, GLO
	nitric acid, without water, in 50% solution state	33	kilogram	market for nitric acid, without water, in 50% solution state, RoW
	N-methyl-2-pyrrolidone	1300	kilogram	market for N-methyl-2-pyrrolidone, GLO
	plaster mixing	780	kilogram	market for plaster mixing, GLO
	polyphenylene sulfide	340	kilogram	market for polyphenylene sulfide, GLO
	polysulfone	260	kilogram	market for polysulfone, GLO
	purified terephthalic acid	88	kilogram	market for purified terephthalic acid, GLO
	steam	700	megajoule	ESTIMATe steam, GLO
	tetrafluoroethylene	78	kilogram	market for tetrafluoroethylene, GLO
	water, deionised	86000	kilogram	market for water, deionised, RoW
	zirconium oxide	1100	kilogram	market for zirconium oxide, GLO

Table S11: Process inventory for methanation	, from Müller et al.	(2011)18
--	----------------------	----------

 Name		Amount	Unit	Linked ecoinvent process
	Products			
natural gas		1	kilogram	
Flows to/from		technosphere		
feedstock ca	rbon dioxide	2.94	kilogram kilowatt	ESTIMATe feedstock carbon dioxide, GLO
electricity		0.330	hour	ESTIMATe electricity, GLO
 hydrogen		0.511	kilogram	ESTIMATe hydrogen, GLO
Flows to/from		biosphere		
 Carbon dioxi	de	0.197	kilogram	

Table S12: Process inventory for direct air capture, from von der Assen et al. (2013)³

	Name	Amount	Unit	Linked ecoinvent process		
Products						
	feedstock carbon dioxide	1	kilogram			
Flows to/from technosphere						
	electricity	0.358	kilowatt hour	ESTIMATe electricity, GLO		
_	heat	4.19	megajoule	ESTIMATe heat, GLO		
Flows to/from biosphere						
	Carbon dioxide	-1	kilogram			

Table S13: Process inventory for carbon dioxide captured from a coal-fired power plant, from Schreiber et al. (2009)¹⁹

	Name	Amount	Unit	Linked ecoinvent process			
Р	Products						
	feedstock carbon dioxide	1	kilogram				
F	Flows to/from technosphere						
	Electricity	0.339	kilowatt hour	ESTIMATe electricity, GLO			
Flows to/from biosphere							
	Carbon dioxide	-1	kilogram				

Table S14: Process inventory for steam production, assuming 85% efficiency and an energy content of 2.75 MJ steam/kg steam⁶

	Name	Amount	Unit	Linked ecoinvent process		
Р	roducts					
	steam	1	kilogram			
F	Flows to/from technosphere					
	heat	3.24	megajoule	ESTIMATe heat, GLO		
	I	I	l	I		

	Name	Amount	Unit	Linked ecoinvent process		
Products						
	steam	1	megajoule			
Flows to/from technosphere						
	heat	1.18	megajoule	ESTIMATe heat, GLO		

*Table S15: Process inventory for hydrogen production from steam methane reforming, from Mehmeti et al. (2018)*²⁰*. Assumed density of natural gas is 0.92 kg/cubic meter.*²¹

	Name	Amount	Unit	Linked ecoinvent process		
Р	Products					
	hydrogen	1	kilogram			
FI	Flows to/from technosphere					
	electricity	1.11	kilowatt hour	ESTIMATe electricity, GLO		
	water, deionised	21.869	kilogram	market for water, deionised, RoW		
	natural gas	3.929	cubic meter	ESTIMATe natural gas, GLO		
Flows to/from biosphere						
	carbon dioxide	9.2565	kilogram			

I. References

- 1. International Organization for Standardization. *Environmental management Life cycle assessment Requirements and guidelines.* 14044th ed. (2020).
- 2. International Organization for Standardization. *Environmental management Life cycle assessment Principles and framework*. 14040th ed. (2020).
- 3. Assen, N. von der, Jung, J. & Bardow, A. Life-cycle assessment of carbon dioxide capture and utilization: avoiding the pitfalls. *Energy Environ. Sci.* **6**, 2721; 10.1039/c3ee41151f (2013).
- 4. Langhorst, T. *et al.* Techno-Economic Assessment & Life Cycle Assessment Guidelines for CO2 Utilization (Version 2.0), 2022.
- 5. Wernet, G., Papadokonstantakis, S., Hellweg, S. & Hungerbühler, K. Bridging data gaps in environmental assessments: Modeling impacts of fine and basic chemical production. *Green Chem.* **11**, 1826; 10.1039/b905558d (2009).
- 6. Althaus, H.-J. *et al. Life cycle inventories of chemicals. Data v2.0.* ecoinvent report No. 8 (EMPA, Dübendorf, 2007).
- Hischier, R., Hellweg, S., Capello, C. & Primas, A. Establishing Life Cycle Inventories of Chemicals Based on Differing Data Availability (9 pp). *Int J Life Cycle Assess* **10**, 59–67; 10.1065/lca2004.10.181.7 (2005).
- 8. Roh, K. *et al.* Early-stage evaluation of emerging CO 2 utilization technologies at low technology readiness levels. *Green Chem.* **22**, 3842–3859; 10.1039/C9GC04440J (2020).
- 9. Kim, S. & Overcash, M. Energy in chemical manufacturing processes: gate-to-gate information for life cycle assessment. *J. Chem. Technol. Biotechnol.* **78**, 995–1005; 10.1002/jctb.821 (2003).
- 10. Jiménez-González, C., Kim, S. & Overcash, M. R. Methodology for developing gate-to-gate Life cycle inventory information. *Int J Life Cycle Assess* **5**, 153–159; 10.1007/BF02978615 (2000).
- Parvatker, A. G. & Eckelman, M. J. Comparative Evaluation of Chemical Life Cycle Inventory Generation Methods and Implications for Life Cycle Assessment Results. ACS Sustainable Chem. Eng. 7, 350–367; 10.1021/acssuschemeng.8b03656 (2019).
- Piccinno, F., Hischier, R., Seeger, S. & Som, C. From laboratory to industrial scale: a scale-up framework for chemical processes in life cycle assessment studies. *Journal of Cleaner Production* 135, 1085–1097; 10.1016/j.jclepro.2016.06.164 (2016).
- 13. Perry, R. H. & Green, D. W. *Perry's chemical engineers' handbook.* 8th ed. (McGraw-Hill, New York, NY, 2008).
- Ng, R. T.L., Hassim, M. H. & Hurme, M. A hybrid approach for estimating fugitive emission rates in process development and design under incomplete knowledge. *Process Safety and Environmental Protection* **109**, 365–373; 10.1016/j.psep.2017.04.003 (2017).
- 15. Hassim, M. H., Pérez, A. L. & Hurme, M. Estimation of chemical concentration due to fugitive emissions during chemical process design. *Process Safety and Environmental Protection* **88**, 173–184; 10.1016/j.psep.2010.01.006 (2010).
- 16. Lange, J.-P. Don't Forget Product Recovery in Catalysis Research-Check the Distillation Resistance. *ChemSusChem* **10**, 245–252; 10.1002/cssc.201600855 (2017).

- 17. Koj, J. C., Wulf, C., Schreiber, A. & Zapp, P. Site-Dependent Environmental Impacts of Industrial Hydrogen Production by Alkaline Water Electrolysis. *Energies* **10**, 860; 10.3390/en10070860 (2017).
- Müller, B., Müller, K., Teichmann, D. & Arlt, W. Energiespeicherung mittels Methan und energietragenden Stoffen - ein thermodynamischer Vergleich. *Chemie Ingenieur Technik* 83, 2002–2013; 10.1002/cite.201100113 (2011).
- Schreiber, A., Zapp, P. & Kuckshinrichs, W. Environmental assessment of German electricity generation from coal-fired power plants with amine-based carbon capture. *Int J Life Cycle Assess* 14, 547–559; 10.1007/s11367-009-0102-8 (2009).
- 20. Mehmeti, A., Angelis-Dimakis, A., Arampatzis, G., McPhail, S. & Ulgiati, S. Life Cycle Assessment and Water Footprint of Hydrogen Production Methods: From Conventional to Emerging Technologies. *Environments* **5**, 24; 10.3390/environments5020024 (2018).
- 21. ecoinvent Association. ecoinvent. Available at https://www.ecoinvent.org/ (2019).