Supporting Information

Metal- and photocatalyst-free three-component strategy toprepare benzylalcohol-, aldehyde-substituted BCP buildingblocks
Fei Li, ${ }^{+}$Huijuan Liao, ${ }^{+}$Jianyang Dong, ${ }^{+}$Weikang Xiong, ${ }^{+}$Yonggang Yan, ${ }^{+}$Gang Li, ${ }^{\dagger}$ and Dong Xue ${ }^{*+}$
${ }^{\dagger}$ Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
*Correspondence to: xuedong_welcome@snnu.edu.cn
Table of contents

1. General information 2
2. Preparation of [1.1.1]propellane (solution in $\left.\mathrm{Et}_{2} \mathrm{O}\right)^{1,2}$ 3
3. Optimization of reaction conditions 3
4. Mechanistic studies 6
5. General procedure for reactions 9
6. Characterization data of benzylalcohol-, aldehyde-substituted BCPs 10
7. Synthesis and characterization of BCP aldehyde 63 30
8. Post-functionalizations 31
9. Calculation of Atom efficiency and EcoScale of the reaction 34
10. Diastereoisomer ratio (d.r.) determination studies 36
11. References 39
12. Copies of NMR spectra for products 40

1. General information

Commercially available reagents were used without further purification unless otherwise stated. All reactions were carried out under argon atmosphere with dry solvents under anhydrous conditions, all solvents were purified by VG-P7 solvent drying system from Vigor, or commercial super dry solvents. Analytical thin-layer chromatography (TLC) was conducted with TLC plates (Silica gel 60 F254, Qingdao Haiyang) and visualization on TLC was achieved by UV light or Phosphomolybdic acid. Flash column chromatography was performed on silica gel 200-300 mesh with freshly distilled solvents. Nuclear magnetic resonance (NMR) spectra were recorded on a Bruker $600,400 \mathrm{MHz}$ in CDCl_{3} solvent. All chemical shifts in ${ }^{1} \mathrm{H}$ NMR spectra were given in parts per million (ppm) relative to the residual or $\mathrm{CDCl}_{3}(7.26 \mathrm{ppm})$ as internal standards and coupling constants (J) were given in Hertz $(\mathrm{Hz}) .{ }^{13} \mathrm{C}$ NMR chemical shifts were reported in ppm relative to the central peak of $\mathrm{CDCl}_{3}(77.16 \mathrm{ppm})$ as internal standards. Data are reported as follows: chemical shift, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{dt}=$ doublet of triplets, brs = broad), coupling constant (Hz), and integration. X-Ray crystallographic analyses were performed on Bruker D8 Venture. HRMS data were obtained by ESI or APCI method with Bruker mass spectrometer (MAXIS).

The general reactions were carried with the assembled photoreactor (Figure S1). Each of lamp include: 9 W purple LED (390-395 nm, 3 LED lamp beads in series), aluminium radiator with fan, electric driver (XC-8W600-OS). The optical power up to $200 \pm 10 \mathrm{mw}$ at 1 cm axis distance detected by Thorlabs' Optical Power Meter (PM100D, S120VC). The LED beads were purchased from Zhuhai UV Optoelectronics Co., Ltd. (TH-UV395T3WL-3535 60).

Figure S1. Pictures of assembled photoreactor.
(Notes: the thermal radiation of LEDs increased the temperature of reaction mixture as an average level at $30^{\circ} \mathrm{C}$ approximately, and there are no external heating units were equipped.)

2. Preparation of [1.1.1]propellane (solution in $\left.\mathrm{Et}_{2} \mathrm{O}\right)^{1,2}$

The synthesis procedure and concentration determination were based on the Molander's literature. ${ }^{1}$ 1,1-Dibromo-2,2-bis(chloromethyl)cyclopropane ($10.0 \mathrm{~g}, 33.7 \mathrm{mmol}$) and $\mathrm{Et}_{2} \mathrm{O}(20$ mL) were added to a 500 mL round-bottomed flask under inert atmosphere. The reaction was cooled to $-78^{\circ} \mathrm{C}$, then $\mathrm{PhLi}\left(41 \mathrm{~mL}, 77.5 \mathrm{mmol}, 2.3\right.$ equiv, 1.9 M in $\left.n-\mathrm{Bu}_{2} \mathrm{O}\right)$ was added dropwise to the light brown slurry over 15 min , and the resulting mixture was then stirred at $-78^{\circ} \mathrm{C}$ for another 30 min and then was allowed to warm to $0^{\circ} \mathrm{C}$. After 2 h , the product propellane is codistilled with $\mathrm{Et}_{2} \mathrm{O}$ as a clear, colorless solution. The receiving flask was submerged in a $-78^{\circ} \mathrm{C}$ ethanol or liquid nitrogen bath.
Determination of propellane concentration: Add 0.1 mmol of 1,3,5-trimethoxybenzene and 100 $\mu \mathrm{L}$ of [1.1.1]propane solution to an NMR tube containing an appropriate amount of CDCl_{3}. Calculated the concentration of [1.1.1]propellane based on the ratio of 1,3,5-trimethoxybenzene to propellane.

$$
c(\text { propellane })=\operatorname{lnt} \text { (propellane) } \times 0.5 \mathrm{M}=1.94 \times 0.5 \mathrm{M}=0.97 \mathrm{M}
$$

Figure S2. ${ }^{1} \mathrm{H}$ NMR spectrum for the propellane solution with $1,3,5$-trimethoxybenzene in CDCl_{3}

3. Optimization of reaction conditions

Table S1. The screening of amount of solvent

 1	$+2$	$\xrightarrow[\mathrm{Et}_{2} \mathrm{O}, 30^{\circ} \mathrm{C}, 8 \mathrm{~h}]{h v 390-395 \mathrm{~nm}}$	
Entry		$\mathrm{Et}_{2} \mathrm{O}$	3 Yield (\%) ${ }^{[a]}$
1		0.5 mL	60\%
2		1.0 mL	72\%
3		1.5 mL	76\%
4		2.0 mL	80\%
5		2.5 mL	80\%
6		3.0 mL	80\%

Reaction conditions: $1(0.3 \mathrm{mmol}), 2(0.2 \mathrm{mmol}), \mathrm{Et}_{2} \mathrm{O}(\mathrm{X} \mathrm{mL})$, purple LEDs (390-395 nm$), 30$ ${ }^{\circ} \mathrm{C}, \mathrm{Ar}, 8 \mathrm{~h}$. [a] Yields determined by ${ }^{1} \mathrm{H}$ NMR analysis using 1,3,5-trimethoxybenzene as internal standard.

Table S2. The screening of light sources

 1		 3
Entry	Light	3 Yield (\%) ${ }^{[\text {[a] }}$
1	purple LEDs 360-365 nm	68\%
2	purple LEDs $390-395 \mathrm{~nm}$	80\%
3	blue LEDs 460-465 nm	10\%
4	white 6000 K	trace
5	green LEDs 520-530 nm	NR
6	red LEDs 620-630 nm	NR
7	purple LEDs 390-395 nm, air	78\%

Reaction conditions: $\mathbf{1}$ (0.3 mmol), $\mathbf{2}(0.2 \mathrm{mmol}), \mathrm{Et}_{2} \mathrm{O}(2.0 \mathrm{~mL})$, Light, $30^{\circ} \mathrm{C}, \mathrm{Ar}, 8 \mathrm{~h}$. [a] Yields determined by ${ }^{1} \mathrm{H}$ NMR analysis using 1,3,5-trimethoxybenzene as internal standard.

Table S3. The screening of material ratio

 1	$+$ 2	$\xrightarrow[\mathrm{Et}_{2} \mathrm{O}, 30^{\circ} \mathrm{C}, 8 \mathrm{~h}]{\mathrm{hv} 390-395 \mathrm{~nm}}$	 3
Entry		1:2 (equiv ratio)	3 Yield (\%) ${ }^{[a]}$
1		1:1	52\%
2		$1: 1.5$	54\%
3		$1: 2.0$	48\%
4		$1: 3.0$	42\%
5		$1.5: 1$	80\%
6		2.0: 1	82\%
7		2.5 : 1	82\%
8		3.0 : 1	82\%

Reaction conditions: 1 (x mmol), 2 (y mmol), $\mathrm{Et}_{2} \mathrm{O}(2.0 \mathrm{~mL})$, purple LEDs ($390-395 \mathrm{~nm}$), $30^{\circ} \mathrm{C}$, Ar, 8 h . [a] Yields determined by ${ }^{1} \mathrm{H}$ NMR analysis using 1,3,5-trimethoxybenzene as internal standard.

Table S4. The screening of reaction time

 1	$+2$	$\xrightarrow[\mathrm{Et}_{2} \mathrm{O}, 30^{\circ} \mathrm{C}, \mathrm{x} \mathrm{~h}]{h v 390-395 \mathrm{~nm}}$	 3
Entry		time	3 Yield (\%) ${ }^{[a]}$
1		1 h	72\%
2		2 h	76\%
3		3 h	82\%/67\% ${ }^{\text {b }}$
4		4 h	82\%
5		6 h	82\%
6		8 h	82\%

Reaction conditions: 1 (0.2 mmol), $\mathbf{2}$ (0.4 mmol), $\mathrm{Et}_{2} \mathrm{O}(2.0 \mathrm{~mL})$, purple LEDs ($390-395 \mathrm{~nm}$), 30 ${ }^{\circ} \mathrm{C}$, Ar, xh. [a] Yields determined by ${ }^{1} \mathrm{H}$ NMR analysis using 1,3,5-trimethoxybenzene as internal standard. [b] Isolated yield.

Table S5. Control experiments

 1		 3
Entry	Variation from the standard conditions	Yield (\%) $)^{[\mathrm{a}][\mathrm{b}]}$
1	standard conditions	82\% ${ }^{\left[{ }^{\text {a] }} / 67 \%{ }^{[b]} \text { [b] }\right.}$
2	UV (365-370 nm)	68\%
3	blue LEDs (460-465 nm)	10\%
4	green LEDs (530-535 nm)	NR
5	red LEDs (620-630 nm)	NR
6	white LEDs	trace
7	no light, $30{ }^{\circ} \mathrm{C}$	NR
8	air instead of Ar	78\%

Reaction conditions: 1 (0.4 mmol), $\mathbf{2}(0.2 \mathrm{mmol}), \mathrm{Et} 2 \mathrm{O}(2.0 \mathrm{~mL})$, purple LEDs ($390-395 \mathrm{~nm}$), 30 ${ }^{\circ} \mathrm{C}, \mathrm{Ar}, 3 \mathrm{~h}$. [a] Yields determined by ${ }^{1} \mathrm{H}$ NMR analysis using 1,3,5-trimethoxybenzene as internal standard. [b] Isolated yield.

4. Mechanistic studies

4.1 Control experiment

To a 10 mL glass tube equipped with a magnetic stir bar was added with benzaldehyde (0.2 mmol, 1.0 eq) and $\mathrm{Et}_{2} \mathrm{O}(2.0 \mathrm{~mL})$ under argon atmosphere. The reaction mixture was placed in a stirrer and irradiated with two 9 W purple LEDs (390-395 nm, approximately 1.0 cm away from the tube, optical power: $200 \pm 10 \mathrm{mw} / \mathrm{cm}^{2}$) at $30^{\circ} \mathrm{C}$ for 3 h . After cooling to room temperature, the reaction mixture was concentrated in vacuo to afford crude product. The residue was purified by column chromatography using (PE/EA $=5: 1 \rightarrow 3: 1$) to afford compound 1a as a colorless oil ($8.0 \mathrm{mg}, 38 \%$ yield) and compound $\mathbf{1 b}$ as a white solid ($9.0 \mathrm{mg}, 42 \%$ yield).

2-ethoxy-1-phenylpropan-1-ol (1a): The product 1a was purified by column chromatography ($\mathrm{PE} / E A=5: 1$) as a colorless oil ($8.0 \mathrm{mg}, 38 \%$ yield, d.r. $=1: 1$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39-7.24(\mathrm{~m}, 5 \mathrm{H}), 4.89(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.38(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $0.5 \mathrm{H}), 3.75-3.67(\mathrm{~m}, 0.5 \mathrm{H}), 3.66-3.58(\mathrm{~m}, 1 \mathrm{H}), 3.58-3.51(\mathrm{~m}, 0.5 \mathrm{H}), 3.50-3.40(\mathrm{~m}, 1 \mathrm{H}), 3.32$ (brs, 0.5 H), $2.58(\mathrm{brs}, 0.5 \mathrm{H}), 1.28-1.19(\mathrm{~m}, 3 \mathrm{H}), 0.98(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.8,140.7,128.4,128.2,128.1,127.4,127.3,126.4,80.2$, 79.1, 78.4, 74.9, 64.6, 64.5, 15.7, 15.66, 15.6, 13.4.

HRMS(ESI) m/z calcd. for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 203.1043, found: 203.1044.

1,2-Diphenylethane-1,2-diol (1b): The product 1b was purified by column chromatography (PE/EA $=3: 1$) as a white solid ($9.0 \mathrm{mg}, 42 \%$ yield, dl:meso $=1.2: 1$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 5 \mathrm{H}), 7.15-7.10(\mathrm{~m}, 2 \mathrm{H}), 4.83(\mathrm{~s}$, $1 \mathrm{H}), 4.71(\mathrm{~s}, 1 \mathrm{H}), 2.88(\mathrm{~s}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 140.0,139.9,128.4,128.3,128.2,128.1,127.2,127.1,79.3$, 78.3.

HRMS(ESI) m/z calcd. for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 237,0886$, found: 237.0887 .
4.2 Radical-trapping experiment
1)

PhCHO remained 20% by HNMR
To a 10 mL glass tube equipped with a magnetic stir bar was added with 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) ($0.4 \mathrm{mmol}, 2.0$ equiv) and the tube was evacuated and backfilled with argon three times. Then benzaldehyde ($0.2 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{Et}_{2} \mathrm{O}(2.0 \mathrm{~mL})$ were added under argon atmosphere. The reaction mixture was placed in a stirrer and irradiated with two 9 W purple LEDs (390-395 nm, approximately 1.0 cm away from the tube, optical power: $200 \pm 10 \mathrm{mw} / \mathrm{cm}^{2}$) at $30^{\circ} \mathrm{C}$ for 3 h . After cooling to room temperature, the reaction mixture was subjected to HRMS for analysis. Desired product 1a and 1b were not detected, and the radical trapping product 1-(1-ethoxyeth-oxy)-2,2,6,6-tetramethylpiperi dine was detected by high-resolution mass spectrometry.
HRMS(ESI) m/z calcd. for $\mathrm{C}_{13} \mathrm{H}_{27} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]+: 252.1934$, found: 252.1932.
2)

0.4 mmol

0.2 mmol

3, 0\%

HRMS

PhCHO remained 12% by HNMR
To a 10 mL glass tube equipped with a magnetic stir bar was added with 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) ($1.0 \mathrm{mmol}, 5.0$ equiv) and the tube was evacuated and backfilled with argon three times. Then [1.1.1]propellane ($0.2 \mathrm{mmol}, 1.0$ equiv, $0.7-1.1 \mathrm{M}$ in $\mathrm{Et}_{2} \mathrm{O}$), benzaldehyde ($0.4 \mathrm{mmol}, 2.0$ equiv) and $\mathrm{Et}_{2} \mathrm{O}(2.0 \mathrm{~mL})$ were added under argon atmosphere. The reaction mixture was placed in a stirrer and irradiated with two 9 W purple LEDs (390-395 nm, approximately 1.0 cm away from the tube, optical power: $200 \pm 10 \mathrm{mw} / \mathrm{cm}^{2}$) at $30^{\circ} \mathrm{C}$ for 3 h . After cooling to room temperature, the reaction mixture was subjected to HRMS for analysis. Desired product 3 was not detected, and the radical trapping product 1-(1-ethoxyeth-oxy)-2,2,6,6-tetramethylpiperi dine was detected by high-resolution massspectrometry.
HRMS(ESI) m/z calcd. for $\mathrm{C}_{13} \mathrm{H}_{27} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 252.1934 , found: 252.1932.
3)

0.4 mmol

0.2 mmol

PhCHO remained 10\% by HNMR

3, 0\%

or

HRMS

To a 10 mL glass tube equipped with a magnetic stir bar were added with 1,1diphenylethylene ($0.8 \mathrm{mmol}, 5.0$ equiv), [1.1.1]propellane ($0.2 \mathrm{mmol}, 1.0$ equiv, $0.7-1.1 \mathrm{M}$ in $\mathrm{Et}_{2} \mathrm{O}$), benzaldehyde ($0.4 \mathrm{mmol}, 2.0$ equiv) and $\mathrm{Et}_{2} \mathrm{O}(2.0 \mathrm{~mL})$ under argon atmosphere. The reaction mixture was placed in a stirrer and irradiated with 9 W pure LEDs (390-395 nm, approximately 1.0 cm away from the tube, optical power: $200 \pm 10 \mathrm{mw} / \mathrm{cm}^{2}$) at $30^{\circ} \mathrm{C}$ for 3 h . After cooling to room temperature, the reaction mixture was subjected to HRMS for analysis. Desired product 3 was not detected, and the addition product of ketyl and α-oxyalkyl radical was observed by mass spectrometry.
HRMS(ESI) m/z calcd. for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 383.1982$, found: 383.1982.

5. General procedure for reactions

5.1 Standard procedure for the synthesis of BCP benzylalcohols

To a 10 mL reaction vial equipped with a magnetic stir bar was added aryl aldehydes (0.4 mmol, 2.0 equiv) and the tube was evacuated and backfilled with argon three times. Then [1.1.1]propellane ($0.2 \mathrm{mmol}, 1.0$ equiv, $0.7-1.1 \mathrm{M}$ in $\mathrm{Et}_{2} \mathrm{O}$) and ether solvents (2.0 mL) were added under argon atmosphere. The reaction mixture was sealed and placed into the assembled photoreactor, stirred and irradiated with two 9 W purple LEDs (390-395 nm, approximately 1.0 cm away from the tube, optical power: $200 \pm 10 \mathrm{mw} / \mathrm{cm}^{2}$) at $30^{\circ} \mathrm{C}$ for 3 h . After cooling to room temperature, the reaction mixture was concentrated in vacuo to afford crude product. The crude product was then purified by column chromatography on silica gel to give the desired products.
5.2 Standard procedure for gram-scale synthesis of BCP benzylalcohols

To a 100 mL reaction vial equipped with a magnetic stir bar was added aryl aldehydes (10.0 mmol, 2.0 equiv) and the tube was evacuated and backfilled with argon three times. Then freshly prepared [1.1.1]propellane ($5.0 \mathrm{mmol}, 1.0$ equiv, $0.7-1.1 \mathrm{M} \mathrm{in} \mathrm{Et}_{2} \mathrm{O}$) and ether solvents $(50.0 \mathrm{~mL})$ were added under argon atmosphere. Then the reaction mixture was irradiated with two 30 W purple LEDs ($390-395 \mathrm{~nm}$) at $30^{\circ} \mathrm{C}$ for 3 h . After cooling to room temperature, the reaction mixture was concentrated in vacuo to afford crude product. The crude product was then purified by column chromatography on silica gel to give the desired products.

Figure S3. Pictures of gram-scale reaction setup

6. Characterization data of benzylalcohol-, aldehyde-substituted BCPs

(3-(1-Ethoxyethyl)bicyclo[1.1.1]pentan-1-yl)(phenyl)methanol (3)2: The product 3 was purified by column chromatography ($\mathrm{PE} / E A=6: 1$) as a colorless oil ($33 \mathrm{mg}, 67 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.23(\mathrm{~m}, 3 \mathrm{H}), 4.71(\mathrm{~s}, 1 \mathrm{H}), 3.47(\mathrm{q}, \mathrm{J}=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.35(\mathrm{q}, \mathrm{J}=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.99(\mathrm{brs}, 1 \mathrm{H}), 1.60-1.44(\mathrm{~m}, 6 \mathrm{H}), 1.13(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, 1.01 (dd, $J=6.4,1.2 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathrm{CDCI}_{3}$) δ 141.8, 128.2, 127.4, 126.1, 126.0, 74.0, 64.9, 46.4, 42.8, 42.78 17.2, 15.8.

HRMS(ESI) m/z calcd. for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 269.1512, found: 269.1509.

(3-(1-Ethoxyethyl)bicyclo[1.1.1]pentan-1-yl)(p-tolyl)methanol (4): The product 4 was purified by column chromatography ($\mathrm{PE} / \mathrm{EA}=7: 1$) as a white solid ($28 \mathrm{mg}, 54 \%$ yield).
${ }^{1}{ }^{H}$ NMR (400 MHz, CDCl_{3}) $\delta 7.14$ (s, 4H), 4.67 ($\mathrm{s}, 1 \mathrm{H}$), 3.53-3.42 (m, 2H), 3.35 (q, J = 6.4 Hz , 1 H), $2.34(\mathrm{~s}, 3 \mathrm{H}), 1.88(\mathrm{brs}, 1 \mathrm{H}), 1.60-1.45(\mathrm{~m}, 6 \mathrm{H}), 1.13(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{dd}, J=6.4$, $1.3 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.9,137.0,136.98,128.9,126.0,125.99,74.0,73.9,64.9$, 46.4, 42.9, 42.8, 21.3, 17.2, 15.8.

HRMS(ESI) m/z calcd. for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 283.1669 , found: 283.1665.
Melting point: $74-75^{\circ} \mathrm{C}$.

[1,1'-Biphenyl]-4-yl(3-(1-ethoxyethyl)bicyclo[1.1.1]pentan-1-yl)methanol (5): The product 5 was purified by column chromatography ($\mathrm{PE} / \mathrm{EA}=7: 1$) as a white solid ($38 \mathrm{mg}, 59 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ס 7.63-7.55 (m, 4H), 7.46-7.41 (m, 2H), 7.37-7.31 (m 3H), 4.77 (s, $1 \mathrm{H}), 3.49(\mathrm{q}, ~ J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.37(\mathrm{q}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.97(\mathrm{brs}, 1 \mathrm{H}), 1.65-1.50(\mathrm{~m}, 6 \mathrm{H}), 1.15$ (t, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.04$ (dd, $J=6.4,1.2 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 141.0,140.9,140.3,128.9,127.3,127.2,127.0,126.5,126.49$, 74.0, 73.8, 64.9, 46.4, 42.9, 42.8, 17.2, 15.8.

HRMS(ESI) m/z calcd. for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 345.1825$, found: 345.1824.
Melting point: $72-74{ }^{\circ} \mathrm{C}$

(3-(1-Ethoxyethyl)bicyclo[1.1.1]pentan-1-yl)(4-methoxyphenyl)methanol (6): The product 6 was purified by column chromatography (PE/EA = 7:1) as a colorless oil ($29 \mathrm{mg}, 52 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.17(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.66(\mathrm{~s}, 1 \mathrm{H})$, $3.80(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.35(\mathrm{q}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.89(\mathrm{~s}, 1 \mathrm{H}), 1.59-1.43(\mathrm{~m}, 6 \mathrm{H})$, 1.13 (t, J = $7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.01$ (d, $J=6.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 159.0,134.1,127.3,127.2,113.6,74.0,73.7,64.9,55.4,46.4$, 43.0, 42.8, 17.2, 15.8.

HRMS(ESI) m/z calcd. for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$: 299.1618, found: 299.1614.

(3-(1-Ethoxyethyl)bicyclo[1.1.1]pentan-1-yl)(4-(methylthio)phenyl)methanol (7): The product 7 was purified by column chromatography (PE/EA = 7:1) as a yellow solid ($30 \mathrm{mg}, 51 \%$ yield).
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.22(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.66(\mathrm{~s}, 1 \mathrm{H})$, 3.47 ($q, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$), 3.34 ($\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.47 ($\mathrm{s}, 3 \mathrm{H}$), 1.93 (brs, 1H), 1.60-1.41 (m, 6 H), 1.13 (t, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.01$ (dd, $J=6.4,1.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 138.8,137.2,126.6,126.59,126.5,73.4,73.6,64.9,46.3,42.8$, 17.2, 16.1, 15.8.

HRMS(ESI) m/z calcd. for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{NaO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$: 315.1389 , found: 315.1387.
Melting point: $55-57^{\circ} \mathrm{C}$

(3-(1-Ethoxyethyl)bicyclo[1.1.1]pentan-1-yl)(4-(trifluoromethoxy)phenyl)methanol
(8):

The product 8 was purified by column chromatography (PE/EA $=7: 1$) as a colorless oil (50 mg , 76\% yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.27(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.72(\mathrm{~s}, 1 \mathrm{H})$, $3.47(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.35(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{brs}, 1 \mathrm{H}), 1.59-1.44(\mathrm{~m}, 6 \mathrm{H}), 1.13(\mathrm{t}, J=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}$), 1.01 (dd, $J=6.4,1.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 148.5,140.5,127.4,127.38,120.7,120.6$ ($\mathrm{q}, \mathrm{J}=255.3 \mathrm{~Hz}, 1 \mathrm{H}$), 73.9, 73.3, 64.9, 46.3, 42.9, 42.7, 17.1, 15.7.
${ }^{19} \mathrm{~F}$ NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) δ-57.87 (s).
HRMS(ESI) m/z calcd. for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$: 353.1335, found: 353.1333.

(3-(1-Ethoxyethyl)bicyclo[1.1.1]pentan-1-yl)(4-(trifluoromethyl)phenyl)methanol (9): The product 9 was purified by column chromatography (PE/EA $=6: 1$) as a colorless oil ($50 \mathrm{mg}, 80 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.57(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.75(\mathrm{~s}, 1 \mathrm{H})$, $3.46(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.34(\mathrm{q}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{brs}, 1 \mathrm{H}), 1.59-1.42(\mathrm{~m}, 6 \mathrm{H}), 1.12(\mathrm{t}, J=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.00$ (dd, $J=6.4,1.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.8,129.6(\mathrm{q}, J=32.1 \mathrm{~Hz}), 126.3,126.28,125.2(\mathrm{q}, J=3.8$ Hz), $124.4(\mathrm{q}, \mathrm{J}=270.3 \mathrm{~Hz}), 73.9,73.4,64.9,46.3,42.9,42.6,17.1,15.7$.
${ }^{19} \mathrm{~F}$ NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) δ-62.38 (s).

HRMS(ESI) m/z calcd. for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 311.1618$, found: 311.1617.

4-((3-(1-Ethoxyethyl)bicyclo[1.1.1]pentan-1-yl)(hydroxy)methyl)phenyl acetate (10): The product 10 was purified by column chromatography (PE/EA $=5: 1$) as a colorless oil (37 mg , 61\% yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.27(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.71(\mathrm{~s}, 1 \mathrm{H})$, 3.49 ($q, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$), 3.37 ($\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.30 ($\mathrm{s}, 3 \mathrm{H}$), 2.02 (brs, 1H), 1.61-1.46 (m, 6 H), 1.15 (t, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{dd}, J=6.4,1.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.6,149.9,139.4,127.03,127.0,121.3,74.0,73.4,64.9,46.3$, 42.8, 42.7, 21.2, 17.2, 15.7.

HRMS(ESI) m/z calcd. for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 327.1567$, found: 327.1573

(3-(1-Ethoxyethyl)bicyclo[1.1.1]pentan-1-yl)(4-fluorophenyl)methanol (11): The product 11 was purified by column chromatography ($\mathrm{PE} / E A=7: 1$) as a colorless oil ($34 \mathrm{mg}, 64 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.25-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.05-6.97(\mathrm{~m}, 2 \mathrm{H}), 4.69(\mathrm{~s}, 1 \mathrm{H}), 3.47(\mathrm{q}, \mathrm{J}=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.35(\mathrm{q}, \mathrm{J}=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.97(\mathrm{brs}, 1 \mathrm{H}), 1.58-1.43(\mathrm{~m}, 6 \mathrm{H}), 1.13(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, 1.01 (dd, J = 6.4, 1.0 Hz, 3H).
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 162.2(\mathrm{~d}, \mathrm{~J}=243.3 \mathrm{~Hz}, 1 \mathrm{H}), 137.5(\mathrm{~d}, \mathrm{~J}=3.1 \mathrm{~Hz}), 127.6(\mathrm{~d}, \mathrm{~J}=$ $1.5 \mathrm{~Hz}), 127.5(\mathrm{~d}, J=1.5 \mathrm{~Hz}), 115.0(\mathrm{~d}, J=21.2 \mathrm{~Hz}), 74.0,73.4,64.9,46.3,42.8,42.81,17.1$, 15.7.
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$) δ-115.53--115.61 (m).
HRMS(ESI) m/z calcd. for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{FNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 287.1418$, found: 287.1422.

(4-Chlorophenyl)(3-(1-ethoxyethyl)bicyclo[1.1.1]pentan-1-yl)methanol (12): The product 12 was purified by column chromatography ($\mathrm{PE} / E A=7: 1$) as a yellow solid ($40 \mathrm{mg}, 71 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.67(\mathrm{~s}, 1 \mathrm{H})$, $3.46(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.34(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{brs}, 1 \mathrm{H}), 1.57-1.40(\mathrm{~m}, 6 \mathrm{H}), 1.12(\mathrm{t}, J=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.00$ (dd, $J=6.4,1.3 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 140.3,133.0,128.4,127.4,127.38,73.9,73.3,64.9,46.3,42.8$, 42.7, 17.1, 15.7.

HRMS(ESI) m/z calcd. for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{CINaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 303.1122, found: 303.1126.
Melting point: 56-58 ${ }^{\circ} \mathrm{C}$

(3-(1-Ethoxyethyl)bicyclo[1.1.1]pentan-1-yl)(4-(methylsulfonyl)phenyl)methanol
(13):

The product 13 was purified by column chromatography (DCM/EA $=6: 1$) as a white solid (27 $\mathrm{mg}, 42 \%$ yield).
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.87(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.80(\mathrm{~s}, 1 \mathrm{H})$, 3.50-3.40 (m, 2H), $3.34(\mathrm{q}, \mathrm{J}=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{brs}, 1 \mathrm{H}), 1.60-1.42(\mathrm{~m}, 6 \mathrm{H}), 1.12$ (t, J = 7.0 Hz, 3H), 1.00 (dd, $J=6.4,1.0 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.2,139.4,127.3,126.9,73.8,73.3,64.9,46.3,44.6,43.0$, 42.6, 17.1, 15.7.

HRMS(ESI) m/z calcd. for $\mathrm{C}_{11} \mathrm{H}_{24} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$: 347.1288 , found: 347.1287.
Melting point: $79-81^{\circ} \mathrm{C}$

1-(4-((3-(1-Ethoxyethyl)bicyclo[1.1.1]pentan-1-yl)(hydroxy)methyl)phenyl)ethan-1-one
(14): The product 14 was purified by column chromatography (PE/EA =6:1) as a colorless oil ($30 \mathrm{mg}, 52 \%$ yield).
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\delta 7.92$ (d, J = $8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.35 (d, J = $8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 4.78 (s, 1H), $3.46(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.35(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}), 1.59-1.45(\mathrm{~m}, 6 \mathrm{H}), 1.12(\mathrm{t}, J=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}$), 1.01 (dd, $J=6.4,1.4 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 198.1,147.3,136.3,128.3,126.13,126.1,73.9,73.5,64.9,46.3$, 42.9, 42.6, 26.7, 17.1, 15.7.

HRMS(ESI) m/z calcd. for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$: 311.1618 , found: 311.1617.

4-((3-(1-Ethoxyethyl)bicyclo[1.1.1]pentan-1-yl)(hydroxy)methyl)benzonitrile (15): The product 15 was purified by column chromatography (PE/EA $=5: 1$) as a colorless oil (37 mg , 68\% yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.62(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.77(\mathrm{~s}, 1 \mathrm{H})$, $3.51-3.42(\mathrm{~m}, 2 \mathrm{H}), 3.35(\mathrm{q}, \mathrm{J}=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{brs}, 1 \mathrm{H}), 1.60-1.43(\mathrm{~m}, 6 \mathrm{H}), 1.13(\mathrm{t}, \mathrm{J}=7.0$ $\mathrm{Hz}, 3 \mathrm{H}), 1.01$ (dd, J = 6.4, 1.1 Hz, 3H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.2,132.0,126.7,119.0,111.0,73.8,73.3,64.9,46.3,42.9$, 42.5, 17.1, 15.7.

HRMS(ESI) m/z calcd. for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 294,1465, found: 294.1462.

(3-(1-Ethoxyethyl)bicyclo[1.1.1]pentan-1-yl)(4-(4,4,5,5-tetramethyl-1,3,2-dioxabo-rolan-2yl)phenyl)methanol (16): The product 16 was purified by column chromatography (PE/EA = $5: 1$) as a white solid ($50 \mathrm{mg}, 67 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.77$ (d, J = $7.9 \mathrm{~Hz}, 2 \mathrm{H}$), 7.25 ($\mathrm{d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), 4.72 ($\mathrm{s}, 1 \mathrm{H}$), 3.46 (q, J = 6.9 Hz, 2H), 3.33 (q, J = 6.4 Hz, 1H), 1.92 (brs, 1H), 1.58-1.44 (m, 6H), 1.34 (s, $12 \mathrm{H}), 1.12(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{dd}, J=6.4,1.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) б 145.0, 134.7, 125.4, 125.3, 83.9, 74.0, 64.8, 46.4, 42.8, 42.7, 25.0, 17.2, 15.7.

HRMS(ESI) m/z calcd. for $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{BNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 395.2364$, found: 395.2363.
Melting point: $83-85^{\circ} \mathrm{C}$

Methyl 4-((3-(1-Ethoxyethyl)bicyclo[1.1.1]pentan-1-yl)(hydroxy)methyl)benzoate (17): The product 17 was purified by column chromatography (PE/EA $=6: 1$) as a colorless oil (47 mg, 77\% yield).
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\delta 8.00(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.78(\mathrm{~s}, 1 \mathrm{H})$, 3.91 (s, 3H), 3.46 (q, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.34(\mathrm{q}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{brs}, 1 \mathrm{H}), 1.58-1.45(\mathrm{~m}$, 6 H), 1.12 (t, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$), 1.00 (dd, $J=6.3,1.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 167.2,147.1,129.5,129.1,125.9,73.9,73.5,64.8,52.1,46.3$, 42.8, 42.6, 17.1, 15.7.

HRMS(ESI) m/z calcd. for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 327.1567$, found: 327.1563.

4-((3-(1-Ethoxyethyl)bicyclo[1.1.1]pentan-1-yl)(hydroxy)methyl)phenyl
trifluoromethanesulfonate (18): The product 18 was purified by column chromatography ($\mathrm{PE} / \mathrm{EA}=$ $7: 1$) as a yellow oil ($45 \mathrm{mg}, 57 \%$ yield).
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.35(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.77(\mathrm{~s}, 1 \mathrm{H})$, 3.47 (q, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.36(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.89(\mathrm{brs}, 1 \mathrm{H}), 1.58-1.47(\mathrm{~m}, 6 \mathrm{H}), 1.14(\mathrm{t}, J=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.02$ (dd, $J=6.4,0.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 148.8,142.3,127.8,127.79,121.1,118.9$ (q, $J=318.8 \mathrm{~Hz}$), 73.9 , 73.1, 64.9, 46.3, 42.9, 42.7, 17.1, 15.7.
${ }^{19} \mathrm{~F}$ NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) $\delta-72.89$ (s).

HRMS(ESI) m/z calcd. for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{NaO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$: 417.0954, found: 417.0955.

(4-(1H-pyrazol-1-yl)phenyl)(3-(1-ethoxyethyl)bicyclo[1.1.1]pentan-1-yl)methanol
The product 19 was purified by column chromatography (PE/EA $=4: 1$) as a yellow solid (37 $\mathrm{mg}, 59 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.89(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.47-6.42(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~s}, 1 \mathrm{H}), 3.46(\mathrm{q}, J=7.0 \mathrm{~Hz}$, $2 \mathrm{H}), 3.34(\mathrm{q}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{brs}, 1 \mathrm{H}), 1.59-1.43(\mathrm{~m}, 6 \mathrm{H}), 1.12(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.00$ (dd, $J=6.4,1.4 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.1,140.3,139.4,127.05,127.0,126.9,119.1,107.6,73.9$, 73.4, 64.9, 46.3, 42.83, 42.8, 17.2, 15.7.

HRMS(ESI) m/z calcd. for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 335.1730, found: 335.1735.
Melting point: 58-60 ${ }^{\circ} \mathrm{C}$

4'-((3-(1-Ethoxyethyl)bicyclo[1.1.1]pentan-1-yl)(hydroxy)methyl)-[1,1'-biphenyl]-4-
carbaldehyde (20): The product 20 was purified by column chromatography (PE/EA =6:1) as a yellow oil ($18 \mathrm{mg}, 26 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.05(\mathrm{~s}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.61(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.79(\mathrm{~s}, 1 \mathrm{H}), 3.48(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.37(\mathrm{q}$, $J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.99(\mathrm{~s}, 1 \mathrm{H}), 1.65-1.49(\mathrm{~m}, 6 \mathrm{H}), 1.13(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, 3H).
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 192.1,147.0,142.3,138.7,135.3,130.4,127.7,127.2,126.75$, 126.7, 74.0, 73.7, 64.9, 46.4, 42.9, 42.8, 17.2, 15.8.

HRMS(ESI) m/z calcd. for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$: 373.1774 , found: 373.1772.

(3-(1-Ethoxyethyl)bicyclo[1.1.1]pentan-1-yl)(4-(phenylethynyl)phenyl)methanol (21): The product 21 was purified by column chromatography (PE/EA $=7: 1$) as a yellow solid (20 mg , 29\% yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.55-7.48(\mathrm{~m}, 4 \mathrm{H}), 7.36-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.24(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $4.73(\mathrm{~s}, 1 \mathrm{H}), 3.47(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.36(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{brs}, 1 \mathrm{H}), 1.60-1.45(\mathrm{~m}$, $6 \mathrm{H}), 1.14(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{dd}, J=6.4,1.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 142.1,131.7,131.5,128.5,128.3,126.1,126.0,123.4,122.3$, 89.45, 89.4, 74.0, 73.8, 64.9, 46.4, 42.9, 42.7, 17.2, 15.8.

HRMS(ESI) m/z calcd. for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 369.1825$, found: 369.1828.
Melting point: 60-62 ${ }^{\circ} \mathrm{C}$

(3-(1-Ethoxyethyl)bicyclo[1.1.1]pentan-1-yl)(o-tolyl)methanol (22):The product 22 was purified by column chromatography ($\mathrm{PE} / \mathrm{EA}=7: 1$) as a colorless oil ($27 \mathrm{mg}, 52 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.07(\mathrm{~m}, 3 \mathrm{H}), 5.03(\mathrm{~s}, 1 \mathrm{H}), 3.47(\mathrm{q}$, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.35(\mathrm{qd}, J=6.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 1.85(\mathrm{brs}, 1 \mathrm{H}), 1.63-1.47(\mathrm{~m}, 6 \mathrm{H})$, 1.13 (td, $J=7.0,0.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.01$ (dd, $J=6.4,2.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 140.2,134.7,130.1,127.1,126.1,125.7,74.0,69.8,64.8,46.6$, 42.8, 42.7, 19.4, 17.2, 15.8.

HRMS(ESI) m/z calcd. for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 283.1669, found: 283.1672.

(3-(1-Ethoxyethyl)bicyclo[1.1.1]pentan-1-yl)(2-methoxyphenyl)methanol (23): The product 23 was purified by column chromatography (PE/EA $=7: 1$) as a colorless oil ($37 \mathrm{mg}, 67 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\delta 7.25-7.20(\mathrm{~m}, 2 \mathrm{H}), 6.96-6.91(\mathrm{~m}, 1 \mathrm{H}), 6.86(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.90(\mathrm{~s}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.51-3.41(\mathrm{~m}, 2 \mathrm{H}), 3.34(\mathrm{q}, \mathrm{J}=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.68($ brs, 1 H$), 1.67-1.41$ (m, 6H), 1.13 (t, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.8,129.8,128.2,127.6,127.5,120.7,110.5,74.1,71.34$, 71.3, 64.8, 55.2, 46.8, 42.5, 42.1, 17.2, 15.8.

HRMS(ESI) m/z calcd. for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 299.1618$, found: 299.1623.

(3-(1-Ethoxyethyl)bicyclo[1.1.1]pentan-1-yl)(2-fluorophenyl)methanol (24): The product 24 was purified by column chromatography (PE/EA $=7: 1$) as a colorless oil ($42 \mathrm{mg}, 79 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.12(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.03-6.95(\mathrm{~m}, 1 \mathrm{H}), 5.04(\mathrm{~s}, 1 \mathrm{H}), 3.46(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.34(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{brs}$, $1 \mathrm{H}), 1.61-1.45(\mathrm{~m}, 6 \mathrm{H}), 1.12(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl ${ }_{3}$) $\delta 159.8(\mathrm{~d}, J=243.6 \mathrm{~Hz}), 128.9(\mathrm{~d}, J=13.4 \mathrm{~Hz}), 128.6(\mathrm{~d}, J=8.2$ $\mathrm{Hz}), 127.4(\mathrm{~d}, J=1.8 \mathrm{~Hz}), 127.36(\mathrm{~d}, J=1.8 \mathrm{~Hz}), 124.0(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 115.0(\mathrm{~d}, J=21.8 \mathrm{~Hz})$, 73.9, 67.8, 64.8, 46.3, 42.3, 42.2, 17.1, 15.6.
${ }^{19} \mathrm{~F}$ NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) δ-119.32--119.46 (m).

HRMS(ESI) m/z calcd. for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 287.1418 , found: 287.1419 .

(2-Chlorophenyl)(3-(1-ethoxyethyl)bicyclo[1.1.1]pentan-1-yl)methanol (25): The product 25 was purified by column chromatography (PE/EA $=7: 1$) as a colorless oil ($45 \mathrm{mg}, 80 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCI ${ }_{3}$) $\delta 7.47(\mathrm{dd}, J=7.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J$ $=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.17$ (td, $J=7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~s}, 1 \mathrm{H}), 3.46(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.34(\mathrm{q}, J=$ $6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.11$ (brs, 1H), 1.65-1.45 (m, 6H), 1.12 (t, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.5,132.2,129.2,128.3,127.6,126.8,74.0,69.7,64.8,46.6$, 42.7, 42.4, 17.2, 15.7.

HRMS(ESI) m/z calcd. for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{ClNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 287.1418 , found: 287.1419.

(2-Bromophenyl)(3-(1-ethoxyethyl)bicyclo[1.1.1]pentan-1-yl)methanol (26): The product 26 was purified by column chromatography ($\mathrm{PE} / E A=7: 1$) as a colorless oil ($52 \mathrm{mg}, 80 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.48(\mathrm{dd}, J=8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{dd}, J=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.30$ (t, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{td}, J=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~s}, 1 \mathrm{H}), 3.46(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.34(\mathrm{q}$, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{brs}, 1 \mathrm{H}), 1.65-1.45(\mathrm{~m}, 6 \mathrm{H}), 1.12(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, 3H).
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 141.2,132.5,128.7,127.9,127.5,122.3,74.0,71.9,64.8,46.7$, 42.8, 42.4, 17.2, 15.7.

HRMS(ESI) m/z calcd. for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{BrNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 347.0617$, found: 347.0620.

2-((3-(1-Ethoxyethyl)bicyclo[1.1.1]pentan-1-yl)(hydroxy)methyl)benzonitrile (27): The product 27 was purified by column chromatography (PE/EA = 7:1) as a yellow oil ($43 \mathrm{mg}, 79 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.65-7.53(\mathrm{~m}, 3 \mathrm{H}), 7.33(\mathrm{td}, J=7.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~s}, 1 \mathrm{H})$, 3.44 (qd, $J=7.0,1.8 \mathrm{~Hz}, 2 \mathrm{H}$), $3.34(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.51 (brs, 1H), 1.64-1.46 (m, 6H), 1.10 (td, $J=7.0,1.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.99$ (dd, $J=6.4,2.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.7,132.9,132.5,127.7,126.7,117.8,110.3,73.8,71.6,64.9$, 46.5, 42.8, 42.7, 17.1, 15.7.

HRMS(ESI) m/z calcd. for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 294.1465, found: 294.1467.

3-(3-(1-Ethoxyethyl)bicyclo[1.1.1]pentan-1-yl)isobenzofuran-1(3H)-one (28): The product 28 was purified by column chromatography (PE/acetone $=7: 1$) as a colorless oil ($20 \mathrm{mg}, 37 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.88(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{td}, J=7.5,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{~s}, 1 \mathrm{H}), 3.51-3.42(\mathrm{~m}, 2 \mathrm{H}), 3.37(\mathrm{qd}, J=6.4,2.5$ $\mathrm{Hz}, 1 \mathrm{H}), 1.76-1.58(\mathrm{~m}, 6 \mathrm{H}), 1.16-1.09(\mathrm{~m}, 3 \mathrm{H}), 1.03(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.7,147.9,133.8,129.2,126.1,125.9,122.5,80.4,73.7,64.9$, 47.0, 44.0, 39.2, 17.1, 15.7.

HRMS(ESI) m/z calcd. for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 375.1389$, found: 375.1392.

(3-Chloro-2-fluorophenyl)(3-(1-ethoxyethyl)bicyclo[1.1.1]pentan-1-yl)methano (29): The product 29 was purified by column chromatography (PE/EA = 7:1) as a colorless oil (43 mg , 72\% yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.07(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~s}, 1 \mathrm{H}), 3.46(\mathrm{qd}$, $J=7.0,0.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.35(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{brs}, 1 \mathrm{H}), 1.61-1.45(\mathrm{~m}, 6 \mathrm{H}), 1.12(\mathrm{t}, J=7.0$ $\mathrm{Hz}, 3 \mathrm{H}), 1.01$ (d, J=6.4 Hz, 3H).
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 155.1(\mathrm{~d}, J=246.3 \mathrm{~Hz}), 130.8(\mathrm{~d}, J=13.6 \mathrm{~Hz}), 129.3,125.8(\mathrm{~d}$, $J=3.0 \mathrm{~Hz}), 125.78(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 124.6(\mathrm{~d}, J=4.4 \mathrm{~Hz}), 120.8(\mathrm{~d}, J=18.1 \mathrm{~Hz}), 73.9,67.8$, 64.9, 46.4, 42.5, 42.2, 17.1, 15.7.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-121.45(\mathrm{q}, J=6.8 \mathrm{~Hz})$.
HRMS(ESI) m/z calcd. for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{CIFNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 321.1028, found: 321.1032.

(2,6-Difluorophenyl)(3-(1-ethoxyethyl)bicyclo[1.1.1]pentan-1-yl)methanol (30): The product 30 was purified by column chromatography (PE/EA $=7: 1$) as a colorless oil (38 mg , 67\% yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.24-7.14(\mathrm{~m}, 1 \mathrm{H}), 6.85(\mathrm{t}, \mathrm{J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.06(\mathrm{~s}, 1 \mathrm{H}), 3.47(\mathrm{q}$, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.36(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{brs}, 1 \mathrm{H}), 1.72-1.49(\mathrm{~m}, 6 \mathrm{H}), 1.13(\mathrm{t}, J=7.0 \mathrm{~Hz}$, 3 H), 1.02 ($\mathrm{d}, \mathrm{J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 161.0(\mathrm{dd}, J=245.6,8.7 \mathrm{~Hz}), 129.0(\mathrm{t}, J=10.6 \mathrm{~Hz}), 117.5(\mathrm{t}, \mathrm{J}$ $=16.8 \mathrm{~Hz}$), $111.8(\mathrm{t}, \mathrm{J}=26.1 \mathrm{~Hz}), 73.9,67.3,64.9,46.8,42.0,41.9,17.1$, 15.7.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-115.29(\mathrm{q}, J=6.8 \mathrm{~Hz})$.
HRMS(ESI) m/z calcd. for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~F}_{2} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 305.1324$, found: 305.1325.

(2-Chloro-6-fluorophenyl)(3-(1-ethoxyethyl)bicyclo[1.1.1]pentan-1-yl)methanol (31): The product 31 was purified by column chromatography ($\mathrm{PE} / E A=10: 1$) as a colorless oil (47 mg , 78\% yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) б 7.23-7.07 (m, 2H), 7.01-6.89 (m, 1H), $5.24(\mathrm{~s}, 1 \mathrm{H}), 3.47(\mathrm{q}, \mathrm{J}=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.36(\mathrm{q}, \mathrm{J}=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{brs}, 1 \mathrm{H}), 1.72-1.51(\mathrm{~m}, 6 \mathrm{H}), 1.13(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, 1.02 (d, J = $6.4 \mathrm{~Hz}, 3 \mathrm{H}$).

13C NMR (100 MHz, CDCI $)^{\text {}}$) $161.8(\mathrm{~d}, J=246.1 \mathrm{~Hz}), 133.7(\mathrm{~d}, J=7.4 \mathrm{~Hz}), 129.0(\mathrm{~d}, J=10.3$ $\mathrm{Hz}), 127.2(\mathrm{~d}, J=14.3 \mathrm{~Hz}), 125.8(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 114.9(\mathrm{~d}, J=23.4 \mathrm{~Hz}), 73.9,70.7,64.9,47.1$, 42.1, 41.8, 17.1, 15.8.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-114.12(\mathrm{~d}, J=9.6 \mathrm{~Hz})$.
HRMS(ESI) m/z calcd. for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{CIFNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 321.1028 , found: 321.1032.

(4-Bromo-2-fluorophenyl)(3-(1-ethoxyethyl)bicyclo[1.1.1]pentan-1-yl)methanol (32): The product 32 was purified by column chromatography ($\mathrm{PE} / \mathrm{EA}=10: 1$) as a yellow oil ($50 \mathrm{mg}, 73 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{~d}, \mathrm{~J}=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~s}, 1 \mathrm{H}), 3.47(\mathrm{q}$, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.35(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{brs}, 1 \mathrm{H}), 1.62-1.45(\mathrm{~m}, 6 \mathrm{H}), 1.13(\mathrm{t}, J=7.0 \mathrm{~Hz}$, 3 H), 1.01 ($\mathrm{d}, \mathrm{J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.6$ (d, $J=248.4 \mathrm{~Hz}$), 128.7 (d, $J=4.7 \mathrm{~Hz}$), 128.3 (d, J=13.7 $\mathrm{Hz}), 127.5(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 120.9(\mathrm{~d}, J=9.5 \mathrm{~Hz}), 118.71(\mathrm{~d}, J=25.1 \mathrm{~Hz}), 118.7(\mathrm{~d}, J=25.1 \mathrm{~Hz})$, 73.9, 67.5, 67.4, 64.9, 46.3, 42.5, 42.47, 42.1, 17.1, 15.7.
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathrm{CDCI}_{3}$) δ-116.45- $116.70(\mathrm{~m})$.
HRMS(ESI) m/z calcd. for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{BrFNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 365.0523, found: 365.0524.

(4-Bromo-2-chlorophenyl)(3-(1-ethoxyethyl)bicyclo[1.1.1]pentan-1-yl)methanol (33): The product 33 was purified by column chromatography (PE/EA = 12:1) as a yellow oil ($53 \mathrm{mg}, 74 \%$ yield, d.r. = 3:1. The d.r. value were determined by ${ }^{1} \mathrm{H}$ NMR).
${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) mixture of diastereomers, minor diastereomer in brackets []: δ [7.84 (d, $J=2.4 \mathrm{~Hz}, 0.23 \mathrm{H})], 7.60(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 0.77 \mathrm{H}), 7.35-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=8.5 \mathrm{~Hz}$,
$0.81 \mathrm{H}),[7.10(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 0.23 \mathrm{H})],[5.20(\mathrm{~s}, 0.24 \mathrm{H})], 5.17(\mathrm{~s}, 0.76 \mathrm{H}), 3.46(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, 3.34 (d, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{brs}, 1 \mathrm{H}), 1.65-1.43(\mathrm{~m}, 6 \mathrm{H}), 1.12(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{~d}, J=$ 6.4 Hz, 3H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) mixture of diastereomers, minor diastereomer in brackets []: δ 141.6, [139.5], [132.5], [132.3], 131.4, [131.1], [130.8], 130.7, 130.61, 130.6, [128.85], 128.8, 73.9, [72.5], 69.5, 64.9, 46.6, 42.7, 42.2, 17.1, 15.7.

HRMS(ESI) m/z calcd. for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{BrClNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 381.0227, found: 381.0223.

(3-(1-Ethoxyethyl)bicyclo[1.1.1]pentan-1-yl)(3-fluorophenyl)methanol (34): The product 34 was purified by column chromatography ($\mathrm{PE} / E A=7: 1$) as a colorless oil ($39 \mathrm{mg}, 74 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) б 7.31-7.23 (m, 1H), 7.02-6.90 (m, 3H), $4.69(\mathrm{~s}, 1 \mathrm{H}), 3.46(\mathrm{q}, \mathrm{J}=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.35(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{brs}, 1 \mathrm{H}), 1.59-1.43(\mathrm{~m}, 6 \mathrm{H}), 1.12(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, 1.01 (dd, $J=6.4,1.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 162.9(\mathrm{~d}, J=244.0 \mathrm{~Hz}), 144.5(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}), 129.6(\mathrm{~d}, J=8.1$ $\mathrm{Hz}), 121.7(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 114.2(\mathrm{~d}, J=21.1 \mathrm{~Hz}), 112.9(\mathrm{~d}, J=21.8 \mathrm{~Hz}), 112.87(\mathrm{~d}, J=21.8$ $\mathrm{Hz}), 73.9,73.4,73.38,64.9,46.3,42.8,42.7,17.1,15.7$.
${ }^{19}$ F NMR (376 MHz, CDCl_{3}) δ-113.30-113.37 (m).
HRMS(ESI) m/z calcd. for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{FNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 287.1418$, found: 287.1419.

(3-Chlorophenyl)(3-(1-ethoxyethyl)bicyclo[1.1.1]pentan-1-yl)methanol (35): The product 35 was purified by column chromatography ($\mathrm{PE} / \mathrm{EA}=7: 1$) as a yellow oil ($38 \mathrm{mg}, 68 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ס 7.32-7.23 (m, 3H), 7.18-7.11 (m, 1H), $4.71(\mathrm{~s}, 1 \mathrm{H}), 3.50(\mathrm{q}, \mathrm{J}=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.38(\mathrm{q}, \mathrm{J}=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{brs}, 1 \mathrm{H}), 1.62-1.47(\mathrm{~m}, 6 \mathrm{H}), 1.16(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, 1.04 (dd, $J=6.3,0.8 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 143.9,134.2,129.5,127.52,127.5,126.14,126.1,124.3,124.2$, 73.9, 73.4, 64.9, 46.3, 42.8, 42.7, 17.1, 15.7.

HRMS(ESI) m/z calcd. for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{CINaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 303.1122, found: 303.1124.

3-((3-(1-Ethoxyethyl)bicyclo[1.1.1]pentan-1-yl)(hydroxy)methyl)benzonitrile (36): The product 36 was purified by column chromatography (PE/EA $=7: 1$) as a colorless oil (35 mg , 65\% yield).
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right)$ ס 7.62-7.53 (m, 2H), 7.52-7.40 (m, 2H), $4.76(\mathrm{~s}, 1 \mathrm{H}), 3.53-3.42(\mathrm{~m}$,

2H), $3.36(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(\mathrm{brs}, 1 \mathrm{H}), 1.59-1.44(\mathrm{~m}, 6 \mathrm{H}), 1.13(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.02$ (d, J = 6.4 Hz, 3H).
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) б 143.3, 131.0, 130.5, 129.6, 129.58, 129.0, 119.0, 112.3, 73.8, 73.0, 64.9, 46.2, 43.0, 42.6, 17.1, 15.7.

HRMS(ESI) m/z calcd. for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 294.1465$, found: 294.1466.

(3,5-Dichlorophenyl)(3-(1-ethoxyethyl)bicyclo[1.1.1]pentan-1-yl)methanol (37): The product 37 was purified by column chromatography (PE/EA $=8: 1$) as a colorless oil (41 mg , 65\% yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.26-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.13(\mathrm{~d}, \mathrm{~J}=1.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.65(\mathrm{~s}, 1 \mathrm{H}), 3.47(\mathrm{q}$, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$), $3.36(\mathrm{q}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{brs}, 1 \mathrm{H}), 1.61-1.43(\mathrm{~m}, 6 \mathrm{H}), 1.13(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}$, $3 \mathrm{H}), 1.01$ (d, J = $6.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 145.3,134.9,127.52,127.5,124.6,124.5,73.9,72.94,72.9$, 64.9, 46.3, 42.9, 42.5, 17.1, 15.7.

HRMS(ESI) m/z calcd. for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 337.0733, found: 337.0738.

(3-(1-Ethoxyethyl)bicyclo[1.1.1]pentan-1-yl)(furan-2-yl)methanol (38): The product 38 was purified by column chromatography ($\mathrm{PE} / \mathrm{EA}=8: 1$) as a yellow oil ($10 \mathrm{mg}, 21 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36(\mathrm{~s}, 1 \mathrm{H}), 6.35-6.29(\mathrm{~m}, 1 \mathrm{H}), 6.23(\mathrm{~d}, \mathrm{~J}=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~s}$, $1 \mathrm{H}), 3.51(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.39(\mathrm{q}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.74-1.59(\mathrm{~m}, 6 \mathrm{H}), 1.16(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}), 1.05$ (d, J = $6.4 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 155.1,142.1,110.2,106.4,106.3,74.0,68.0,64.9,47.1,42.6$, 41.4, 17.2, 15.8.

HRMS(ESI) m/z calcd. for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$: 259.1305 , found: 259.1307.

Benzofuran-2-yl(3-(1-ethoxyethyl)bicyclo[1.1.1]pentan-1-yl)methanol (39): The product 39 was purified by column chromatography ($\mathrm{PE} / \mathrm{EA}=7: 1$) as a yellow oil ($13 \mathrm{mg}, 23 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.18(\mathrm{~m}$, $2 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 4.84(\mathrm{~s}, 1 \mathrm{H}), 3.50(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.40(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{brs}, 1 \mathrm{H})$, $1.78-1.63(\mathrm{~m}, 6 \mathrm{H}), 1.15(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.8,157.76,154.9,128.3,124.1,122.9,121.1,111.4,103.0$, 102.9, 73.9, 68.5, 68.47, 64.9, 47.1, 42.6, 41.3, 17.2, 15.8.

HRMS(ESI) m/z calcd. for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 309.1461$, found: 309.1462.

Benzofuran-5-yl(3-(1-ethoxyethyl)bicyclo[1.1.1]pentan-1-yl)methanol (40): The product 40 was purified by column chromatography ($\mathrm{PE} / \mathrm{EA}=7: 1$) as a yellow solid ($11 \mathrm{mg}, 19 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.61(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~s}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.19 (dd, $J=8.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~s}, 1 \mathrm{H}), 3.47(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, 3.35 (q, $J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.92(\mathrm{brs}, 1 \mathrm{H}), 1.65-1.47(\mathrm{~m}, 6 \mathrm{H}), 1.12(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.01$ (dd, J $=6.4,1.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.6,145.4,136.6,127.4,122.7,122.68,118.6,118.56,111.0$, 106.8, 74.3, 74.0, 64.9, 46.4, 43.1, 42.8, 17.2, 15.8.

HRMS(ESI) m/z calcd. for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 309.1461$, found: 309.1463.
Melting point: 64-65 ${ }^{\circ} \mathrm{C}$

(3-(1-Ethoxyethyl)bicyclo[1.1.1]pentan-1-yl)(pyridin-2-yl)methanol (41): The product 41 was purified by column chromatography (PE/acetone $=10: 1$) as a colorless oil ($23 \mathrm{mg}, 47 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.51(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.10(\mathrm{~m}$, 2 H), 4.71 ($\mathrm{s}, 1 \mathrm{H}$), 4.21 (brs, 1H), 3.50-3.41 (m, 2H), 3.33 (qd, J = 6.3, 1.4 Hz, 1H), 1.60-1.47 (m, 6H), 1.11 (td, $J=7.0,2.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.00$ (dd, $J=6.3,3.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.41,159.4,148.3,136.3,122.4,121.1,74.0,72.4,64.8,46.6$, 43.0, 42.4, 17.2, 15.8.

HRMS(ESI) m/z calcd. for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 270.1465$, found: 270.1469.

(3-(1-Ethoxyethyl)bicyclo[1.1.1]pentan-1-yl)(pyridin-3-yl)methanol (42): The product 42 was purified by column chromatography (PE/acetone = 7:1) as a colorless oil ($23 \mathrm{mg}, 47 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.43(\mathrm{~s}, 2 \mathrm{H}), 7.62(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 1 \mathrm{H}), 4.74(\mathrm{~s}$, $1 \mathrm{H}), 3.45(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.34(\mathrm{q}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{brs}, 1 \mathrm{H}), 1.60-1.44(\mathrm{~m}, 6 \mathrm{H}), 1.11$ (t, J = $7.0 \mathrm{~Hz}, 3 \mathrm{H}$), 1.00 (dd, $J=6.4,0.7 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 148.6,147.8,137.5,133.9,123.4,73.9,71.7,64.9,46.3,43.1$, 42.8, 17.1, 15.7.

HRMS(ESI) m/z calcd. for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 270.1465$, found: 270.1469.

(3-(1-Ethoxyethyl)bicyclo[1.1.1]pentan-1-yl)(pyridin-4-yl)methanol (43): The product 43 was purified by column chromatography (PE/acetone $=3: 1$) as a colorless oil ($22 \mathrm{mg}, 44 \%$ yield).
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 8.46(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.69(\mathrm{~s}, 1 \mathrm{H})$, 3.45 (q, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.33(\mathrm{q}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.60-1.39(\mathrm{~m}, 6 \mathrm{H}), 1.11(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, 0.99 (d, J = $5.3 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.4,121.2,73.8,72.5,64.9,46.4,42.9,42.3,17.1,15.7$.
HRMS(ESI) m / z calcd. for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 270.1465$, found: 270.1468.

(6-Chloropyridin-3-yl)(3-(1-ethoxyethyl)bicyclo[1.1.1]pentan-1-yl)methanol (44): The product 44 was purified by column chromatography (PE/EA $=2: 1$) as a colorless oil (30 mg , 53\% yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.22(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{dd}, J=8.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J$ $=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~s}, 1 \mathrm{H}), 3.45(\mathrm{qd}, J=7.0,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.34(\mathrm{q}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{brs}$, $1 \mathrm{H}), 1.60-1.41(\mathrm{~m}, 6 \mathrm{H}), 1.11(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.4,147.6,136.7,136.3,124.0,73.8,71.1,64.9,46.2,43.1$, 42.7, 17.1, 15.7.

HRMS(ESI) m/z calcd. for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{CINNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 304.1075 , found: 304.1080.

(5-Chlorothiophen-2-yl)(3-(1-ethoxyethyl)bicyclo[1.1.1]pentan-1-yl)methanol (45): The product 45 was purified by column chromatography (PE/EA = 7:1) as a yellow oil ($12 \mathrm{mg}, 21 \%$ yield).
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 6.77(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{~s}, 1 \mathrm{H})$, $3.50(\mathrm{q}, ~ J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.39(\mathrm{q}, \mathrm{J}=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.99(\mathrm{brs}, 1 \mathrm{H}), 1.68-1.56(\mathrm{~m}, 6 \mathrm{H}), 1.15(\mathrm{t}, \mathrm{J}=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 144.3,129.1,125.6,123.3,123.26,73.9,70.7,65.0,46.6,42.5$, 42.4, 17.2, 15.8.

HRMS(ESI) m/z calcd. for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{CINaO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$: 309.0686, found: 309.0692.

Dibenzo[b,d]thiophen-4-yl(3-(1-ethoxyethyl)bicyclo[1.1.1]pentan-1-yl)methanol (46): The product 46 was purified by column chromatography (PE/acetone $=6: 1$) as a colorless oil (20 $\mathrm{mg}, 28 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) б 8.19-8.12 (m, 1H), 8.08 (dd, $\left.J=7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.88-7.82(\mathrm{~m}$, $1 \mathrm{H})$, 7.49-7.39 (m, 4H), $5.11(\mathrm{~s}, 1 \mathrm{H}), 3.48-3.40(\mathrm{~m}, 2 \mathrm{H}), 3.32(\mathrm{qd}, \mathrm{J}=6.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.18$ (brs, 1H), 1.67-1.52 (m, 6H), $1.10(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.99$ (dd, $J=6.4,1.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.8,137.2,136.5,136.2,135.6,126.9,124.6,124.4,124.1$, 122.7, 121.7, 120.7, 73.9, 73.6, 64.9, 47.0, 42.6, 42.3, 17.2, 15.8.

HRMS(ESI) m/z calcd. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{NaO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 375.1389$, found: 375.1392.

(3-(1,2-Dimethoxyethyl)bicyclo[1.1.1]pentan-1-yl)(4-(4,4,5,5-tetramethyl-1,3,2-dioxa-
borolan-2-yl)phenyl)methanol (47): The product 47 was purified by column chromatography (PE/EA $=4: 1$) as a colorless oil $(39 \mathrm{mg}, 50 \%$ yield, d.r. $=3: 1$. The d.r. value were determined by ${ }^{13} \mathrm{C}$ NMR).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.80-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.25(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.72(\mathrm{~s}, 1 \mathrm{H}), 3.59-$ 3.22 (m, 9H), 1.91 (brs, 1H), 1.64-1.51 (m, 6H), 1.34 (s, 12H).

13C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) mixture of diastereomers, minor diastereomer in brackets []: δ [144.9], 144.8, [134.8], 134.7, [125.4], 125.3, 83.9, 79.0, [74.0], 73.9, 73.8, [72.2], [71.6], [70.6], 59.25, [59.2], 58.8, [47.6], 47.3, [43.8], 43.4, 40.1, [39.0], 25.0.

HRMS(ESI) m/z calcd. for $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{BNaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}: 411.2313$, found: 411.2318.

(4-Chlorophenyl)(3-(1,2-dimethoxyethyl)bicyclo[1.1.1]pentan-1-yl)methanol (48): The product 48 was purified by column chromatography (PE/EA $=3: 1$) as a colorless oil (30 mg , 51% yield, d.r. $=3: 1$. The d.r. value were determined by ${ }^{13} \mathrm{C}$ NMR).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.67(\mathrm{~s}, 1 \mathrm{H}), 3.58-$ 3.44 (m, 2H), 3.40-3.36 (m, 2H), 3.35-3.27 (m, 5H), 2.03 (brs, 1H), 1.63-1.50 (m, 6H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) mixture of diastereomers, minor diastereomer in brackets []: δ [140.2], 140.17, [133.1], 133.07, 128.4, [128.38], [127.4], 127.36, 78.9, 73.6, [73.3], 73.2, [72.1], [71.5], [70.6], 59.2, [59.0], 58.8, [47.5], 47.2, [43.7], 43.4, 40.1, [39.0].
HRMS(ESI) m/z calcd. for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{CINaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 319.1071$, found: 319.1067.

(3-(Tetrahydrofuran-2-yl)bicyclo[1.1.1]pentan-1-yl)(4-(4,4,5,5-tetramethyl-1,3,2-dio-xaborolan-2-yl)phenyl)methanol (49): The product 49 was purified by column chromatography ($D C M / E A=8: 1$) as a white solid ($51 \mathrm{mg}, 69 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.76(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.72(\mathrm{~s}, 1 \mathrm{H})$, 3.85-3.74 (m, 2H), 3.72-3.65 (m, 1H), 1.92 (brs, 1H), 1.86-1.72 (m, 3H), 1.58-1.42 (m, 7H), 1.34 (s, 12H).
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 144.9,134.7,125.4,83.9,78.0,74.0,68.5,46.1,43.3,41.5,28.1$, 26.0, 25.0.

HRMS(ESI) m/z calcd. for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{BNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$: 393.2208, found: 393.2214.
Melting point: $118-120^{\circ} \mathrm{C}$

(4-Chlorophenyl)(3-(tetrahydrofuran-2-yl)bicyclo[1.1.1]pentan-1-yl)methanol (50): The product 50 was purified by column chromatography (PE/EA $=3: 1$) as a white solid ($40 \mathrm{mg}, 72 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.67(\mathrm{~s}, 1 \mathrm{H}), 3.85-$ 3.74 (m, 2H), 3.73-3.63 (m, 1H), 2.13 (brs, 1H), 1.87-1.73 (m, 3H), 1.58-1.39 (m, 7H).
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 140.3,133.0,128.4,127.4,77.9,73.3,68.5,46.0,43.3,41.5$, 28.1, 26.0.

HRMS(ESI) m/z calcd. for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{ClNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 301.0966, found: 301.0959.
Melting point: $81-83^{\circ} \mathrm{C}$

(2-Bromophenyl)(3-(tetrahydrofuran-2-yl)bicyclo[1.1.1]pentan-1-yl)methanol (51): The product 51 was purified by column chromatography ($D C M / E A=10: 1$) as a colorless oil (45 mg , 70\% yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.50(\mathrm{dd}, J=8.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{dd}, J=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.32$ (t, J = 7.5 Hz, 1H), $7.11(\mathrm{td}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~s}, 1 \mathrm{H}), 3.87-3.75(\mathrm{~m}, 2 \mathrm{H}), 3.74-3.66(\mathrm{~m}$, $1 \mathrm{H}), 1.87(\mathrm{~s}, 1 \mathrm{H}), 1.86-1.77(\mathrm{~m}, 3 \mathrm{H}), 1.66-1.48(\mathrm{~m}, 7 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 141.1,132.5,128.7,127.91,127.9,127.5,122.3,78.0,71.9$, 68.4, 46.4, 42.9, 41.5, 28.1, 26.0.

HRMS(ESI) m/z calcd. for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{BrNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 345.0461$, found: 345.0460.

(3-(1,4-Dioxan-2-yl)bicyclo[1.1.1]pentan-1-yl)(4-(4,4,5,5-tetramethyl-1,3,2-dioxa-borolan-2-yl)phenyl)methanol (52): The product 52 was purified by column chromatography (PE/EA = $4: 1$) as a white solid ($38 \mathrm{mg}, 49 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.76(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.70(\mathrm{~s}, 1 \mathrm{H})$, 3.74-3.57 (m, 4H), 3.54-3.43 (m, 2H), 3.23-3.14 (m, 1H), 2.01 (brs, 1H), 1.60-1.46 (m, 6H), 1.34 (s, 12H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.8,134.8,125.3,83.9,73.9,73.8,68.9,66.8,66.4,46.6,43.3$, 38.9, 25.0.

HRMS(ESI) m/z calcd. for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{BNaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}$: 409.2157, found: 409.2163.
Melting point: $97-99^{\circ} \mathrm{C}$

(3-(1,4-Dioxan-2-yl)bicyclo[1.1.1]pentan-1-yl)(4-chlorophenyl)methanol (53): The product 53 was purified by column chromatography (PE/acetone $=4: 1$) as a white solid ($35 \mathrm{mg}, 59 \%$ yield).
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\delta 7.30-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.67(\mathrm{~s}, 1 \mathrm{H}), 3.74-$ $3.59(\mathrm{~m}, 4 \mathrm{H}), 3.51(\mathrm{~m}, 2 \mathrm{H}), 3.24-3.16(\mathrm{~m}, 1 \mathrm{H}), 1.97$ (brs, 1H), 1.62-1.45 (m, 6H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.1,133.2,128.5,127.4,73.8,73.1,68.8,66.8,66.4,46.5$, 43.3, 39.0.

HRMS(ESI) m/z calcd. for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{ClNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 317.0915$, found: 317.0914 .
Melting point: $92-94{ }^{\circ} \mathrm{C}$

(3-(1,4-Dioxan-2-yl)bicyclo[1.1.1]pentan-1-yl)(2-bromophenyl)methanol (54): The product 54 was purified by column chromatography ($\mathrm{PE} / E A=5: 1$) as a colorless oil ($42 \mathrm{mg}, 62 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.48(\mathrm{dd}, J=8.0,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{dd}, J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.30$ (td, $J=7.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{td}, J=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~s}, 1 \mathrm{H}), 3.74-3.58(\mathrm{~m}, 4 \mathrm{H}), 3.54-$ $3.44(\mathrm{~m}, 2 \mathrm{H}), 3.27-3.15(\mathrm{~m}, 1 \mathrm{H}), 2.20(\mathrm{brs}, 1 \mathrm{H}), 1.66-1.52(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 141.0,132.5,128.8,127.8,127.5,122.3,73.9,71.6,68.9,66.8$, 66.4, 46.9, 42.9, 38.9.

HRMS(ESI) m/z calcd. for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{BrNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$: 361.0410, found: 361.0409.

(3-(1-Butoxybutyl)bicyclo[1.1.1]pentan-1-yl)(4-(4,4,5,5-tetramethyl-1,3,2-dioxa-borolan-2-yl)phenyl)methanol (55): The product 55 was purified by column chromatography (PE/EA = $9: 1$) as a white solid ($43 \mathrm{mg}, 50 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.77(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.71(\mathrm{~s}, 1 \mathrm{H})$, 3.55-3.45 (m, 1H), 3.36-3.28 (m, 1H), 3.13-3.07 (m, 1H), 1.97 (brs, 1H), 1.58-1.43 (m, 9H), 1.34 $(\mathrm{s}, 12 \mathrm{H}), 1.31-1.20(\mathrm{~m}, 5 \mathrm{H}), 0.92-0.82(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 145.0,134.7,125.4,125.35,83.9,78.3,74.0,70.7,46.9,43.0$, 42.4, 34.6, 32.5, 25.0, 19.5, 19.2, 14.2, 14.1.

HRMS(ESI) m/z calcd. for $\mathrm{C}_{26} \mathrm{H}_{41} \mathrm{BNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$: 451.2990, found: 451.2997.

(3-(1-Butoxybutyl)bicyclo[1.1.1]pentan-1-yl)(4-chlorophenyl)methanol (56): The product 56 was purified by column chromatography (PE/EA = 7:1) as a colorless oil ($40 \mathrm{mg}, 59 \%$ yield, d.r. > 20:1).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) б 7.31-7.27 (m, 2H), 7.17 (d, J = $\left.8.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.67(\mathrm{~s}, 1 \mathrm{H}), 3.56-$ $3.46(\mathrm{~m}, 1 \mathrm{H}), 3.37-3.29(\mathrm{~m}, 1 \mathrm{H}), 3.14-3.08(\mathrm{~m}, 1 \mathrm{H}), 1.98(\mathrm{brs}, 1 \mathrm{H}), 1.56-1.46(\mathrm{~m}, 8 \mathrm{H}), 1.37-1.23$ ($\mathrm{m}, 6 \mathrm{H}$), 0.91-0.84 (m, 6H).
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 140.3,133.1,128.4,127.4,127.38,78.3,73.4,70.7,46.8,43.0$, 42.5, 34.6, 32.5, 19.5, 19.2, 14.2, 14.1.

HRMS(ESI) m/z calcd. for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{ClNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 359.1748, found: 359.1743.

(3-(Benzo[d][1,3]dioxol-2-yl)bicyclo[1.1.1]pentan-1-yl)(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)methanol (57): The product 57 was purified by column chromatography ($D C M / E A=40: 1$) as a white solid ($38 \mathrm{mg}, 45 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ठ $7.77(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.81-6.68(\mathrm{~m}$, 4 H), $5.99(\mathrm{~s}, 1 \mathrm{H}), 4.75(\mathrm{~s}, 1 \mathrm{H}), 1.96$ (brs, 1H), $1.68(\mathrm{qd}, J=9.5,1.3 \mathrm{~Hz}, 6 \mathrm{H}), 1.34(\mathrm{~s}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.8,144.5,134.9,125.3,121.4,108.34,108.3,83.9,73.7$, 46.0, 43.9, 39.4, 25.0.

HRMS(ESI) m/z calcd. for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{BNaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}$: 443.2000, found: 443.2002.
Melting point: $110-112{ }^{\circ} \mathrm{C}$

(3-(Benzo[d][1,3]dioxol-2-yl)bicyclo[1.1.1]pentan-1-yl)(4-chlorophenyl)methanol
The product 58 was purified by column chromatography ($D C M / E A=40: 1$) as a white solid (34 $\mathrm{mg}, 52 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, 6.81-6.70 (m, 4H), $6.00(\mathrm{~s}, 1 \mathrm{H}), 4.72(\mathrm{~s}, 1 \mathrm{H}), 1.94$ (brs, 1H), $1.68(\mathrm{q}, \mathrm{J}=9.4 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.7,139.8,133.4,128.5,127.3,121.5,108.4,108.2,73.1$, 45.9, 43.9, 39.5.

HRMS(ESI) m/z calcd. for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{ClNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$: 351.0758 , found: 351.0761 .
Melting point: 79-81 ${ }^{\circ} \mathrm{C}$

4-((3-(Benzo[d][1,3]dioxol-2-yl)bicyclo[1.1.1]pentan-1-yl)(hydroxy)methyl)ben-zonitrile (59): The product 59 was purified by column chromatography (DCM/EA $=60: 1$) as a white solid ($42 \mathrm{mg}, 66 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.65-7.57(\mathrm{~m}, 2 \mathrm{H}),[7.46(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 0.18 \mathrm{H})], 7.35(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1.82 \mathrm{H}), 6.86-6.69(\mathrm{~m}, 4 \mathrm{H}), 6.00(\mathrm{~s}, 1 \mathrm{H}), 4.80(\mathrm{~s}, 1 \mathrm{H}), 2.30(\mathrm{brs}, 1 \mathrm{H}), 1.73-1.63(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) б 147.6, 146.6, 132.2, 126.7, 121.5, 118.9, 111.3, 108.4, 107.9, 72.9, 45.9, 43.7, 39.5.

HRMS(ESI) m/z calcd. for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{NNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 342.1101$, found: 342.1097.
Melting point: $110-112{ }^{\circ} \mathrm{C}$

(3-(Benzo[d][1,3]dioxol-2-yl)bicyclo[1.1.1]pentan-1-yl)(2-bromophenyl)methanol
(60):

The product 60 was purified by column chromatography (DCM/EA =100:1) as a colorless oil ($52 \mathrm{mg}, 70 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.50$ (dd, $J=8.0,0.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.45 (dd, $\left.J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.32$ (t, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{td}, J=7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.85-6.68(\mathrm{~m}, 4 \mathrm{H}), 6.00(\mathrm{~s}, 1 \mathrm{H}), 5.27(\mathrm{~s}, 1 \mathrm{H})$, $1.98(\mathrm{~s}, 1 \mathrm{H}), 1.82-1.69(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 147.7,140.7,132.67,129.0,127.8,127.6,122.3,121.4,108.3$, 108.27, 71.7, 46.3, 43.6, 39.4.

7. Synthesis and characterization of BCP aldehyde 63

To a 250 mL reaction vial equipped with a magnetic stir bar was added 4-chlorobenzaldehyde ($2.8 \mathrm{~g}, 20.0 \mathrm{mmol}, 2.0$ equiv), the tube was evacuated and backfilled with argon for three times. Then freshly prepared [1.1.1]propellane ($10.0 \mathrm{mmol}, 1.0$ equiv, $0.7-1.1 \mathrm{M}$ solution $\mathrm{in}^{\mathrm{Et}} \mathrm{E}_{2} \mathrm{O}$) and 1,3-dioxolane (100.0 mL) were added under argon atmosphere. The reaction mixture was sealed and placed in an assembled photoreactor, stirred and irradiated with two 30 W purple LEDs at $30{ }^{\circ} \mathrm{C}$ for 3 hours. After cooling to room temperature, the reaction mixture was concentrated in vacuo to afford the crude product (Note: The crude product obtained mainly contains coupled products at positions \mathbf{a} and \mathbf{b}. Due to the similar polarity of these two products, they cannot be separated by column chromatography). The crude product was crudely separated by short column chromatography. Then the separated mixture was dissolved in 30 mL of acetone and $2 \mathrm{M} \mathrm{HCl}\left(\mathrm{v}: \mathrm{v}=1: 1\right.$), and the reaction mixture was heated to $50^{\circ} \mathrm{C}$ for 4 hours. After cooling to room temperature, the reaction mixture was concentrated in vacuo to afford the crude product. The crude product was purified by column chromatography using (DCM : MeOH $=200: 1 \rightarrow 80: 1$) to afford compound 61a as a colorless oil ($258 \mathrm{mg}, 9 \%$ yield) and compound 63 as a white solid ($803 \mathrm{mg}, 34 \%$ yield).

(3-(1,3-Dioxolan-4-yl)bicyclo[1.1.1]pentan-1-yl)(4-chlorophenyl)methanol (63a):
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.16(\mathrm{~m}, 2 \mathrm{H}), 4.93(\mathrm{~s}, 1 \mathrm{H}), 4.85(\mathrm{~s}, 1 \mathrm{H})$, $4.71(\mathrm{~s}, 1 \mathrm{H}), 4.02-3.97(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.57-3.51(\mathrm{~m}, 1 \mathrm{H}), 1.89(\mathrm{brs}, 1 \mathrm{H}), 1.63-$ 1.48 ($\mathrm{m}, 6 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 140.0,133.3,128.5,127.4,127.37,95.6,74.6,73.2,66.8,46.2$, 43.9, 39.7.

HRMS(ESI) m/z calcd. for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{ClNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$: 303.0758, found: 303.0763.

3-((4-Chlorophenyl)(hydroxy)methyl)bicyclo[1.1.1]pentane-1-carbaldehyde (63):
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.56(\mathrm{~s}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$,
$4.74(\mathrm{~s}, 1 \mathrm{H}), 1.88$ (qd, $J=9.6,1.6 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.0,139.5,133.5,128.7,127.3,72.9,48.2,44.4,43.9$.
HRMS(ESI) m/z calcd. for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{CINaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 259.0496$, found: 259.0495.

8. Post-functionalizations

8.1 Further functionalization of BCP aldehyde 63

(4-Chlorophenyl)(3-ethynylbicyclo[1.1.1]pentan-1-yl)methanol (65):To an oven-dried 10 mL storage tube with a high vacuum valve, a magnetic stir bar, $\mathrm{K}_{2} \mathrm{CO}_{3}(28 \mathrm{mg}, 0.2 \mathrm{mmol}, 2.0$ equiv.), compound 63 ($24 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv.) were added. The tube was evacuated and backfilled with argon for three times. Then Ohira-Bestmann reagent 64 ($23 \mathrm{mg}, 0.12 \mathrm{mmol}$, 1.2 equiv) and $\mathrm{MeOH}(1.0 \mathrm{~mL})$ were added under argon atmosphere. And the reaction was stirred for 2 h at room temperature. TLC analysis indicated the complete conversion, the reaction mixture was concentrated under vacuum to afford the crude product. The crude product was purified by column chromatography using (PE/EA $=5: 1$) to afford compound 65 as a colorless oil ($16 \mathrm{mg}, 69 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ס 7.33-7.28(m, 1H), 7.19-7.14 (m, 1H), $4.68(\mathrm{~s}, 1 \mathrm{H}), 2.09(\mathrm{~s}, 1 \mathrm{H})$, $1.90(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.7,133.5,128.6,127.3,82.9,72.8,68.6,52.4,45.2,28.5$.
HRMS(ESI) m/z calcd. for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{ClO}[\mathrm{M}+\mathrm{H}]^{+}: 233,0728$ found: 233.0720 .

(3-((Benzylamino)methyl)bicyclo[1.1.1]pentan-1-yl)(4-chlorophenyl)methanol (66): Under nitrogen atmosphere, compound $63\left(47 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0 \mathrm{eq}\right.$.), BnNH_{2} ($32 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ eq.), $\mathrm{NaBH}(\mathrm{OAc})_{3}(212 \mathrm{mg}, 1.0 \mathrm{mmol}, 1.5 \mathrm{eq}$.) and DCE (3.0 mL) were added to a 10 mL reaction vial equipped with a magnetic stir bar. The reaction mixture was allowed to stir at room temperature for overnight. TLC analysis indicated the complete conversion, the mixture was quenched with saturated $\mathrm{NaHCO}_{3}(\mathrm{aq})$, the mixture was extracted with EtOAc. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated. The residue was purified by column chromatography using ($\mathrm{DCM} / \mathrm{MeOH}=40: 1$) to afford compound 66 as a yellow oil ($30 \mathrm{mg}, 46 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33-7.24(\mathrm{~m}, 7 \mathrm{H}), 7.16(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.65(\mathrm{~s}, 1 \mathrm{H}), 3.78(\mathrm{~s}$, $2 \mathrm{H}), 2.66(\mathrm{~s}, 2 \mathrm{H}), 2.46(\mathrm{brs}, 2 \mathrm{H}), 1.59-1.48(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 140.3,133.1,128.6,128.4,127.4,127.3,73.2,53.8,50.0,47.6$, 43.4, 39.4.

HRMS(ESI) m/z calcd. for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{CINNaO}[\mathrm{M}+\mathrm{Na}]^{+}: 350.1282$, found: 350.1288 .

(4-Chlorophenyl)(3-(hydroxymethyl)bicyclo[1.1.1]pentan-1-yl)methanol (65): To an ovendried 10 mL glass tube equipped with a Teflon septum and a magnetic stir bar were added compound 63 ($47 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0 \mathrm{eq}$.), NaBH_{4} ($16 \mathrm{mg}, 0.40 \mathrm{mmol}, 2.0 \mathrm{eq}$.) and MeOH (3.0 mL). The reaction was stirred for 2 h at room temperature. TLC analysis indicated the complete conversion, the reaction was quenched with (aq) $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$, then the aqueous phase was extracted with $(2 \times 10 \mathrm{~mL})$ EtOAc. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography using (PE/EA $=$ 2:1) to afford compound 65 as a colorless oil ($24 \mathrm{mg}, 50 \%$ yield).
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\delta 7.30(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.70(\mathrm{~s}, 1 \mathrm{H})$, 3.56 (s, 2H), 2.03 (brs, 1H), 1.58-1.48 (m, 6H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.1,133.2,128.4,127.4,73.3,63.3,46.5,43.4,40.4$.
HRMS(ESI) m/z calcd. for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{ClNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 261.0653$, found: 261.0655.

Methyl (E)-3-(3-((4-chlorophenyl)(hydroxy)methyl)bicyclo[1.1.1]pentan-1-yl)acrylate (69): To an oven-dried 10 mL glass tube equipped with a Teflon septum and a magnetic stir bar were added ethyl (triphenylphosphoranylidene)acetate 68 ($40 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.2$ equiv), compound $63(24 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{PhMe}(1.0 \mathrm{~mL})$. The reaction mixture was heated to stir at $100^{\circ} \mathrm{C}$ for overnight. TLC analysis indicated the complete conversion, the reaction mixture was concentrated under vacuum to afford the crude product. The crude product was purified by column chromatography using ($\mathrm{PE} / \mathrm{EA}=5: 1$) to afford compound 69 as a colorless oil (21 $\mathrm{mg}, 72 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=15.6$ Hz, 1H), 5.72 (d, J = $15.6 \mathrm{~Hz}, 1 \mathrm{H}$), 4.72 (s, 1H), 3.71 (s, 3H), 1.95 (brs, 1H), 1.77-1.67 (m, 6H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.1,146.6,139.9,133.4,128.6,127.4,121.3,73.0,51.7,49.7$, 43.6, 40.3.

HRMS(ESI) m/z calcd. for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{ClNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 315.0758$, found: 315.0756 .
8.2 Further functionalization of BCP benzylalcohols

Methyl4-((3-(1-ethoxyethyl)bicyclo[1.1.1]pentan-1-yl)(phenyl)methoxy)benzoate (3):

To an oven-dried 10 mL storage tube with a high vacuum valve, a magnetic stir bar, Methyl 4bromobenzoate ($44 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv), Ni catalyst ($10 \mathrm{~mol} \%, 0.02 \mathrm{mmol}$), and alcohols 3 ($98 \mathrm{mg}, 0.4 \mathrm{mmol}, 2.0$ equiv) were added. The tube was evacuated and backfilled with argon for three times. Then DBU ($0.30 \mathrm{mmol}, 1.5$ equiv,) and toluene (1.0 mL) were added under argon atmosphere. The reaction mixture was then irradiated with two purple LED lamps (1.0 cm from the tube, optical power: $200 \pm 10 \mathrm{mw} / \mathrm{cm}^{2}$) for 24 hours at $80^{\circ} \mathrm{C}$. After cooling to room temperature, the reaction mixture was concentrated under vacuum to afford the crude product. The crude product was purified by column chromatography using ($\mathrm{PE} / \mathrm{EA}=10: 1$) to afford compound 71 as a yellow solid ($35 \mathrm{mg}, 46 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.87(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.21(\mathrm{~m}, 3 \mathrm{H})$, 6.86 (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.19(\mathrm{~s}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.36(\mathrm{q}, J=6.2 \mathrm{~Hz}$, 1 H), 1.67-1.53 (m, 6H), $1.13(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{dd}, J=6.4,1.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 166.9,162.3,138.6,131.5,128.5,127.7,126.2,126.18,122.5$, 115.5, 79.5, 74.0, 64.9, 51.9, 47.0, 43.7, 41.7, 17.2, 15.8.

HRMS(ESI) m/z calcd. for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$: 403.1880, found: 403.1879.
Melting point: 84-86 ${ }^{\circ} \mathrm{C}$

(4-Chlorophenyl)(3-(1-ethoxyethyl)bicyclo[1.1.1]pentan-1-yl)methanone (72): To a 25 mL reaction vial equipped with a magnetic stir bar was added compound 12 ($83 \mathrm{mg} 0.30 \mathrm{mmol}, 1.0$ equiv.), Dess-Martin periodinane ($255 \mathrm{mg} 0.60 \mathrm{mmol}, 2.0$ equiv.) and dry DCM (5.0 mL), the reaction was stirred for 2 hours at room temperature. TLC analysis indicated the complete conversion, the reaction was quenched with (aq) $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and (aq) $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(10 \mathrm{~mL})$, then the aqueous phase was extracted with $(2 \times 10 \mathrm{~mL}) \mathrm{DCM}$. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography using ($\mathrm{PE} / \mathrm{EA}=10: 1$) to afford compound 72 as a colorless oil ($71 \mathrm{mg}, 85 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.92(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.58-3.46(\mathrm{~m}$, 2H), 3.43 ($\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.22-2.12 (m, 6H), 1.18 (t, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$), 1.09 (d, J = 6.4 Hz , 3 H).
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 196.7,139.4,134.9,130.4,128.9,73.5,65.0,51.8,43.9,43.3$, 16.9, 15.8.

HRMS(ESI) m/z calcd. for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{CINaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 301.0966$, found: 301.0964 .

1-(Azido(4-chlorophenyl)methyl)-3-(1-ethoxyethyl)bicyclo[1.1.1]pentane (73): Under nitrogen atmosphere, alcohols 12 ($120 \mathrm{mg}, 0.43 \mathrm{mmol}, 1.0$ eq.), $\mathrm{PPh}_{3}(224 \mathrm{mg}, 0.86 \mathrm{mmol}, 2.0$ eq.) and dry THF (5.0 mL) were added to a 25 mL reaction vial equipped with a magnetic stir bar and cooled to $0^{\circ} \mathrm{C}$, then DIAD ($172 \mathrm{mg}, 0.86 \mathrm{mmol}, 2.0 \mathrm{eq}$.) was added slowly added and the mixture was stirred for 20 minutes. DPPA ($244 \mathrm{mg}, 0.86 \mathrm{mmol}, 2.0 \mathrm{eq}$.) was then added by syringe, and the reaction was heated to $35^{\circ} \mathrm{C}$ for 24 hours. TLC analysis indicated the complete conversion, the reaction mixture was concentrated under vacuum to afford the crude product. The crude product was purified by column chromatography using (PE/acetone $=300: 1$) to afford compound 73 as a yellow oil ($90 \mathrm{mg}, 69 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.14(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.55(\mathrm{~s}, 1 \mathrm{H})$, $3.46(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.35(\mathrm{q}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.63-1.51(\mathrm{~m}, 6 \mathrm{H}), 1.13(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, 1.01 (dd, $J=6.4,1.1 \mathrm{~Hz}, 3 \mathrm{H}$).
 42.2, 17.1, 15.8.

HRMS(ESI) m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{CIN}_{3} \mathrm{NaO}[\mathrm{M}+\mathrm{Na}]^{+}: 328.1187$, found: 328.1195.

1-((4-Chlorophenyl)(3-(1-ethoxyethyl)bicyclo[1.1.1]pentan-1-yl)methyl)-4-phenyl-1H-

1,2,3-triazole (75): To an oven-dried 10 mL glass tube equipped with a Teflon septum and a magnetic stir bar were added Cul ($2.0 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.1 \mathrm{eq}$) The tube was evacuated and backfilled with argon for three times. Compound 73 ($31 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0 \mathrm{eq}$), Phenylacetylene 74 ($14 \mathrm{mg}, 0.13 \mathrm{mmol}, 1.3 \mathrm{eq}$), DIPEA ($26 \mathrm{mg}, 0.20 \mathrm{mmol}, 2.0 \mathrm{eq}$) and DMF $(2 \mathrm{~mL})$ were added under argon atmosphere. The reaction mixture was allowed to stir at room temperature for 12 hours. After this time, the mixture was extracted with EtOAc ($3 \times 10 \mathrm{~mL}$), and each extract was washed with water ($3 \times 10 \mathrm{~mL}$). The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated. The residue was purified by column chromatography using (PE/EA $=5: 1$) to afford compound 75 as a yellow solid ($37 \mathrm{mg}, 91 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.83(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, \mathrm{J}=7.4$ $\mathrm{Hz}, 2 \mathrm{H}$), 7.36-7.24 (m, 5H), $5.69(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.52-3.41(\mathrm{~m}, 2 \mathrm{H}), 3.38(\mathrm{q}, J=6.2 \mathrm{~Hz}$, $1 \mathrm{H}), 1.84-1.68(\mathrm{~m}, 6 \mathrm{H}), 1.13(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.02$ (dd, $J=6.3,1.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\mathbf{~} 147.5,147.45,135.5,135.4,134.51,134.5,130.6,129.1,128.94$, 128.9, 128.3, 125.8, 119.3, 73.5, 65.6, 64.9, 48.3, 43.7, 41.2, 17.1, 15.7.

HRMS(ESI) m/z calcd. for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{ClN}_{3} \mathrm{NaO}[\mathrm{M}+\mathrm{Na}]^{+}: 430.1657$, found: 430.1655 .
Melting point: 98-100 ${ }^{\circ} \mathrm{C}$

9. Calculation of Atom efficiency and EcoScale of the reaction

From the perspective of green chemistry, we evaluated the reaction for its atom economy and environmental friendliness. ${ }^{3}$ The calculation results as follows:
9.1 Calculation of atom efficiency.

Atom efficiency $=\mathbf{2 4 6 . 3 5} / \mathbf{1 0 6 . 1 2 4} \mathbf{+ 6 6 . 1 0 3 + 7 4 . 1 2 3 = 2 4 6 . 3 5 / 2 4 6 . 3 5 = 1 0 0 \%}$

9.2 Calculation of EcoScale.

Table: The penalty points to calculate the EcoScale

Parameter	Penalty	Parameter	Penalty
1. Yield (100	(100-\%yield)/2	5. Temperature/time	
2. Price of reaction components (to obtain 10 mmol of end product)		Room temperature, <1 h	0
		Room temperature, <24 h	1
Inexpensive (<\$10)	0	Heating, <1 h	2
Expensive ($\$ 10$ and $<\$ 50$)	3	Heating, > 1 h	3
Very expensive (> \$50)	5	Cooling to $0^{\circ} \mathrm{C}$	4
3. Safety ${ }^{\text {a }}$ (Cooling, $<0^{\circ} \mathrm{C}$			5
N (dangerous for environment)	5	6. Workup and purification	
T (toxic)	5		
F (highly flammable)	5	None	0
E (explosive)	10	Cooling to room temperature	0
$\mathrm{F}+$ (extremely flammable)	10	Adding solvent	0
T+ (extremely toxic)	10	Simple filtration	0
4. Technical setup		Removal of solvent with bp < $150^{\circ} \mathrm{C}$	0
Common setup Instruments for controlled addition of chemicals ${ }^{\text {b }}$	0	Crystallization and filtration	1
	0	Removal of solvent with bp $>150^{\circ} \mathrm{C}$	2
	1	Solid phase extraction	2
Unconventional activation technique ${ }^{c}$ Pressure equipment, > $1 \mathrm{~atm}^{\mathrm{d}}$	$\mathrm{e}^{\mathrm{c}} 2$	Distillation	3
	3	Sublimation	3
Any additional special glassware (Inert) gas atmosphere		Liquid-liquid extraction ${ }^{\text {e }}$	3
	1	Classical chromatography	10
Glove box	3		

${ }^{\text {a }}$ Based on the hazard warning symbols. ${ }^{\text {b }}$ Dropping funnel, syringe pump, gas pressure regulator, etc. ${ }^{\text {c }}$ Microwave irradiation, ultrasound or photochemical activation, etc. ${ }^{\mathrm{d}} \mathrm{scCO}_{2}$, high pressure hydrogenation equipment, etc. ${ }^{\text {elf }}$ applicable, the process includes drying of solvent with desiccant and filtration of desiccant.

In summary, the model reaction was calculated to have an 100% atomic efficiency and an EcoScale score of 53.5 (acceptable).

10. Diastereoisomer ratio (d.r.) determination studies

Due to the ratio of diastereoisomers in this reaction could not be determined by ${ }^{1} \mathrm{H} N \mathrm{NM}$, it was only recognized in part of the carbon in some ${ }^{13} \mathrm{C}$ NMR. Therefore, we tried to identify the ratio of diastereoisomers by the following methods.
10.1 Oxidation of BCP-benzylalcohol 3 followed by NaBH_{4} reduction.

(3-(1-ethoxyethyl)bicyclo[1.1.1]pentan-1-yl)(phenyl)methanone (3a): To a 25 mL reaction vial equipped with a magnetic stir bar was added compound 3 ($100 \mathrm{mg} 0.40 \mathrm{mmol}, 1.0$ equiv.), Dess-Martin periodinane ($340 \mathrm{mg} 0.80 \mathrm{mmol}, 2.0$ equiv.) and dry DCM (6.0 mL), the reaction was stirred for 2 hours at room temperature. TLC analysis indicated the complete conversion, the reaction was quenched with (aq) $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and (aq) $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(10 \mathrm{~mL})$, then the aqueous phase was extracted with $(2 \times 10 \mathrm{~mL})$ DCM. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography using (PE/EA = 10:1) to afford compound 3 a as a colorless oil ($75 \mathrm{mg}, 77 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.00(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=7.6$ Hz, 2H), 3.55 (qd, $J=7.0,3.7 \mathrm{~Hz}, 2 \mathrm{H}$), $3.46(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{q}, J=9.4 \mathrm{~Hz}, 6 \mathrm{H}), 1.20$ ($\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}$), $1.12(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 197.9,136.7,132.9,129.0,128.5,73.6,65.0,51.8,44.0,43.3$, 17.0, 15.8.
(3-(1-ethoxyethyl)bicyclo[1.1.1]pentan-1-yl)(phenyl)methanol (3b): To an oven-dried 10 mL glass tube equipped with a Teflon septum and a magnetic stir bar were added compound 3a ($36 \mathrm{mg}, 0.14 \mathrm{mmol}, 1.0 \mathrm{eq}$.) , $\mathrm{NaBH}_{4}(8.0 \mathrm{mg}, 0.21 \mathrm{mmol}, 2.0$ eq.) and $\mathrm{MeOH}(2.0 \mathrm{~mL})$. The reaction was stirred for 2 h at room temperature. TLC analysis indicated the complete conversion, the reaction was quenched with (aq) $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$, then the aqueous phase was extracted with $(2 \times 10 \mathrm{~mL})$ EtOAc. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography using (PE/EA = $2: 1$) to afford compound 3b as a colorless oil ($24 \mathrm{mg}, 70 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ס 7.37-7.29 (m, 2H), 7.28-7.23 (m, 3H), 4.71 (s, 1H), 3.48 (q, J = $6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.36(\mathrm{q}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{~s}, 1 \mathrm{H}), 1.64-1.43(\mathrm{~m}, 6 \mathrm{H}), 1.13(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, 1.02 (d, J = 6.2 Hz, 3H).
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 141.8,128.2,127.4,126.1,126.0,74.0,64.9,46.4,42.8,42.78$ 17.2, 15.8.

Note: We oxidized alcohol and then reduced the ketone with NaBH_{4} to form the two diastereoisomers and checked the NMR, we found only one set of peaks in ${ }^{1} \mathrm{H}$ NMR, proving that diastereoisomers are not distinguishable in the NMR. We observed that the NMR of compound $\mathbf{3}$ is as same as $\mathbf{3 b}$. Moreover, it was also difficult to distinguish the ratios of
diastereoisomers by HPLC and GC.
10.2 Esterification of BCP benzyl alcohol 3 with $[R$, (+)]-2-(Benzyloxy)propionyl chloride.

(3-(1-ethoxyethyl)bicyclo[1.1.1]pentan-1-yl)(phenyl)methyl(2R)-2-(benzyloxy) propanoate (3c) Under argon atmosphere, compound 3 ($20 \mathrm{mg}, 0.08 \mathrm{mmol}, 1.0$ equiv.), $\mathrm{Et}_{3} \mathrm{~N}$ (12 mg , $0.12 \mathrm{mmol}, 1.5$ equiv.) and DMAP ($1.0 \mathrm{mg}, 0.008 \mathrm{mmol}, 0.1$ equiv) were dissolved in 1.5 mL DCM. (R)-2-(benzyloxy)propanoyl chloride ($19 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.2$ equiv) was added, the reaction was stirred for 3 hours at room temperature. The reaction mixture was concentrated under vacuum to afford the crude product. The residue was purified by thin layer chromatography using ($\mathrm{PE} / E A=8: 1$) to afford compound 3 c as a colorless oil ($22 \mathrm{mg}, 66 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.24(\mathrm{~m}, 10 \mathrm{H}), 5.89(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{t}, J=12.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.42(\mathrm{t}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.52-3.41(\mathrm{~m}, 2 \mathrm{H}), 3.40-3.29(\mathrm{~m}, 1 \mathrm{H})$, $1.61-1.52(\mathrm{~m}, 6 \mathrm{H}), 1.48(\mathrm{dd}, J=18.0,6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.13(\mathrm{dd}, J=11.0,6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{t}, J=$ $5.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 172.53,172.5,137.9,137.8,128.6,128.4,128.38,128.1,128.05$, $1280.0,127.94,126.6,126.54,126.0,75.5,75.47,74.4,74.36,74.11,73.9,73.84,73.8,72.12$, 72.1, 64.93, 64.9, 47.2, 47.1, 43.33, 43.3, 41.2, 41.1, 19.2, 19.0, 17.2, 15.8.

Note: By esterification of BCP benzyl alcohol 3 with chiral (R)-2-(benzyloxy)propionic acid, we found that these diastereoisomers remain indistinguishable in NMR.
10.3 Benzophenone compound 3d reduced by NaBH_{4}.

Phenyl(4-(tetrahydrofuran-2-yl)phenyl)methanol (3e): To an oven-dried 10 mL glass tube equipped with a Teflon septum and a magnetic stir bar were added compound $3 \mathbf{d}$ ($25 \mathrm{mg}, 0.1$ mmol, 1.0 eq.), $\mathrm{NaBH}_{4}(6.0 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5$ eq.) and $\mathrm{MeOH}(1.0 \mathrm{~mL})$. The reaction was stirred for 2 h at room temperature. TLC analysis indicated the complete conversion, the reaction was quenched with (aq) $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$, then the aqueous phase was extracted with (2 $\times 5 \mathrm{~mL}$) EtOAc. The combined organicc phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by thin layer chromatography using (PE/EA = 3:1) to afford compound 3 e as a colorless oil ($20 \mathrm{mg}, 79 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.26(\mathrm{~m}, 9 \mathrm{H}), 5.83(\mathrm{~s}, 1 \mathrm{H}), 4.86(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.07$ (dd, $J=15.0,6.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.92 (dd, $J=14.5,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-2.25(\mathrm{~m} 2 \mathrm{H}), 2.04-1.93(\mathrm{~m}, 2 \mathrm{H})$, 1.83-1.73 (m, 1H).
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 144.0,143.97,143.0,142.93,142.9,128.6,127.7,127.65,126.7$, 126.65, 126.0, 80.6, 76.2, 68.8, 34.6, 26.2.

Compound 3d was synthesized with reference to Ruben Martin's report (J. Am. Chem. Soc. 2018, 140, 12200-12209).
In summary, we are not able to determine the ratios of diastereoisomers of reaction products in NMR using the above methods, and it was also difficult to distinguish the ratios of diastereoisomers by HPLC and GC. However, we could see the peaks of the diastereoisomers in part of the carbon in some ${ }^{13} \mathrm{C}$ NMR. Although the peaks are very close and they cannot be separated, it can be seen that the ratio is close to $1: 1$ in ${ }^{13} \mathrm{C}$ NMR. And we believe that there is no diastereoselectivity for this reaction.

11. References

1. (a) R. Gianatassio, J. M. Lopchuk, J. Wang, C.-M. Pan, L. R. Malins, L. Prieto, T. A. Brandt, M. R. Collins, G. M. Gallego, N. W. Sach, J. E. Spangler, H. Zhu, J. Zhu, P. S. Baran, Science 2016, 351, 241-246; (b) W. Dong, E. Yen-Pon, L. Li, A. Bhattacharjee, A. Jolit, G. A. Molander, Nat. Chem. 2022, 14, 1068-1077.
2. P. Kaszynski, A. C. Friedli, J. Michl, J. Am. Chem. Soc. 1992, 114, 601-620.

3 a) B. Trost, The Atom Economy—A Search for Synthetic Efficiency. Science 1991, 254, 1471-1477; b) K. V. Aken, L. Strekowski, L. Patiny, EcoScale, a Semi-Quantitative Tool to Select an Organic Preparation Based on Economical and Ecological Parameters. Beilstein J. Org. Chem. 2006, 2, 3; c) R. A. Sheldon, The E Factor: Fifteen Years On. Green Chem. 2007, 9, 1273-1283.

12. Copies of NMR spectra for products

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1a

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1a

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{1 b}$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{1 b}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound 4

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 4

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 5

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 5

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 6

\tilde{N}_{0}° $\stackrel{O}{0}$ $\stackrel{O}{1}$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 6

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound 7

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 7

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 8

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 8

${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 8

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 9

10 N
$\stackrel{N}{\sim}$
N
\sim
\sim

Me

${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) spectrum of compound 9

${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 9

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 10

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 10

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 11

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 11

${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 11

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 12

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 12

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 13

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 13

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 14

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 14

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 15

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 15

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 16

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 16

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 17
-167.1610

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 17

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 18

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 18

${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 18

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 19

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 19

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 20

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 20

${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) spectrum of compound 21

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 21

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{2 2}$

NNツNOG

${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) spectrum of compound 22

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 23

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 23

${ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）spectrum of compound 24

$$
\begin{aligned}
& \text { NNNN }
\end{aligned}
$$

$\begin{array}{lllllllllll}30 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 \\ f 1 & (\mathrm{ppm})\end{array}$
${ }^{13} \mathrm{C}$ NMR（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）spectrum of compound 24

${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 24

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound 25

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 25

${ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）spectrum of compound 26

高雚示

${ }^{13} \mathrm{C}$ NMR（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）spectrum of compound 26

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 27

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 27

${ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）spectrum of compound 28

$\stackrel{1}{\infty}$	$\begin{aligned} & \mathbb{O} \\ & \stackrel{\infty}{\infty} \\ & \stackrel{N}{\sigma} \end{aligned}$			

${ }^{13} \mathrm{C}$ NMR（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）spectrum of compound 28

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 29

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 29

[^0]${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 29

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 30

	$\stackrel{\sim}{\circ}$			
ハু	¢			¢
¢¢ ¢		ন	$\stackrel{\infty}{\infty} \stackrel{\sigma}{\sim}$	-
5	$\square 5$	NN00	V	/

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{3 0}$

${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{3 0}$

${ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）spectrum of compound 31

	 	下N゚パO	

${ }^{13} \mathrm{C}$ NMR（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）spectrum of compound 31

${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 31

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 32

EtO
$\begin{array}{llllll}119.2 & 119.0 & 118.8 & \begin{array}{ll}118.6 & 118.4 \\ & \\ \text { (ppm }) & 118.2\end{array} \\ & & & \end{array}$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 32

${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 32

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 33

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 33

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 34

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 34

${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 34

${ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）spectrum of compound 35

䄳荡茄
気范

${ }^{13} \mathrm{C}$ NMR（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）spectrum of compound 35

${ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）spectrum of compound 36

${ }^{13} \mathrm{C}$ NMR（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）spectrum of compound 36

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 37

on
No
No
ov
iv

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 37

$\begin{aligned} & \text { ON } \\ & \text { © } \\ & \text { Non } \end{aligned}$	ल్లN N్N N	$\overline{\mathrm{N}}$	「ソート゚ーデサ 	
NT	$\underbrace{000}$	$\stackrel{\square}{1}$	লimmmmmon	「－ז\％－¢

${ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）spectrum of compound 38

N 0 1 $\stackrel{\circ}{1}$ $\stackrel{1}{1}$			ANONOGO	

${ }^{13} \mathrm{C}$ NMR（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）spectrum of compound 38

${ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）spectrum of compound 39

$$
\begin{aligned}
& \text { №n } \\
& \text { 第 } \\
&
\end{aligned}
$$

${ }^{13} \mathrm{C}$ NMR（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）spectrum of compound 39

${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) spectrum of compound 40

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 40

${ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）spectrum of compound 41

天下禺符

产

${ }^{13} \mathrm{C}$ NMR（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）spectrum of compound 41

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 42

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 42

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 43

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 43

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 44

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 44

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 45

Non

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 45

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 46

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 46

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 47

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 47

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 48

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 48

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound 49

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 49

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 50

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 50

${ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）spectrum of compound 51

「人N゚が品

${ }^{13} \mathrm{C}$ NMR（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）spectrum of compound 51

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 52

			$\stackrel{\sim}{\sim}$ 엉NㅇㅇㅇㅇNNN 	

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 52

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 53

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 53

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 54

守

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 54

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 55

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 55

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 56

かNNMO

Nom

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 56

${ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）spectrum of compound 57

$\stackrel{\sim}{\sim}$	¢	$\stackrel{10}{\text { ¢ }}$	ஸ্লি		응ুু윽
が	$\stackrel{\text { ¢ }}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\infty}{\circ}$	σ のron	ooj
T	T	Ti	$\stackrel{\square}{8}$	¢ NTN	な？

${ }^{13} \mathrm{C}$ NMR（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）spectrum of compound 57

${ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）spectrum of compound 58

言会皆

${ }^{13} \mathrm{C}$ NMR（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）spectrum of compound 58

$\stackrel{+}{\circ}$ $\stackrel{y}{*}$ $\stackrel{1}{\top}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 59

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 59

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 60

N.ल欠n

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 60

${ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）spectrum of compound 63a

${ }^{13} \mathrm{C}$ NMR（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）spectrum of compound $\mathbf{6 3 a}$

Abstract

 $\stackrel{\text { N }}{\text { N }}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 63

$\begin{aligned} & \stackrel{\varrho}{\circ} \\ & \stackrel{\rightharpoonup}{\infty} \\ & \stackrel{\circ}{\Gamma} \end{aligned}$		

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 63

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 65

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 65
N

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 66

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 66
$\underset{\sim}{8}$
$\stackrel{+}{+}$
$\stackrel{+}{+}$

Y
0
in
in
i

৷

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 67

-63.3149

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{6 7}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 69

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 69

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound 71

$\stackrel{\stackrel{y}{2}}{\stackrel{n}{2}}$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 71

${ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）spectrum of compound 72
$\stackrel{\circ}{\circ}$
$\stackrel{0}{\circ}$
$\stackrel{\circ}{\circ}$
$\stackrel{\circ}{1}$

m
ふ上
ふi
$\vdots i$

${ }^{13} \mathrm{C}$ NMR（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）spectrum of compound 72

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound 73

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 73

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 75

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 75

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3a
$\stackrel{y}{\circ}$
$\stackrel{y}{*}$
$\stackrel{\rightharpoonup}{\top}$
N Nowis

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3a

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{3 b}$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{3 b}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3c

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $3 \mathbf{c}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{3 e}$

ONNツツ ©

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $3 \mathbf{e}$

[^0]:

