Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2023

Supplementary Material

Catalyst screening for dehydration of primary alcohols from renewable feedstocks under formation of alkenes at energy-saving mild reaction conditions

Adil Allahverdiyev, ${ }^{\text {a }}$ Jianing Yang ${ }^{\text {a }}$ and Harald Gröger ${ }^{\text {a,* }}$
${ }^{a}$ Industrial Organic Chemistry and Biotechnology, Chemistry Faculty, Bielefeld University, 33615 Bielefeld, Germany; E-mail: harald.groeger@uni-bielefeld.de

Experimental reagents

Chemicals were commercially bought without any further purification. Reactions were performed under atmospheric pressure or reduced pressure if noted.

Substrates: 1-Hexanol (Alfa Aesar, 99%), 1-heptanol (thermo scientific, 99%), 1-octanol (thermo SCIENTIFIC, 99%), 1-nonanol (TCI, > 99%), 1-decanol (ROTH, > 99%), 1-undecanol (TCI, > 99%), 1-dodecanol ($\mathrm{TCl},>99 \%$) and di-n-hexyl ether ($\mathrm{TCI},>98 \%$) were purchased from commercial sources.

Catalysts: $\mathrm{Yb}(\mathrm{OTf})_{3}$ (BLDPHARM, 99.3 \%), Y(OTf) $)_{3}$ (SIMA ALDRICH, 98 \%), La(OTf) $)_{3}$ (ALFA AESAR, 99%),
 (BLDPHARM, 99%), AgOTf (SIGMA ALDRICH, $>99 \%$), Cu(OTf) 2 (TCI, > 98%), Al(OTf) $)_{3}$ (SIGMA ALDRICH, 99.9%), $\mathrm{Fe}(\mathrm{OTf})_{3}$ (AlFA AESAR, 90%), Bi(OTf) $)_{3}$ (STREM, 98%), Hf(OTf) $)_{4}$ (thermos scientific, 98%), NaOTf (sigma ALDRICH, 98%) and KOTf (SIGMA ALDRICH, 98%) were also purchased. Ti(OTf) ${ }_{4}$ was produced from TiCl_{4} (SIGMA ALDRICH, > 97%) and TfOH (FLUOROCHEM, 99%) accordingly to literature. ${ }^{1}$

Synthesis of Ti(OTf)

The synthesize of Ti(OTf) $)_{4}$ was carried out under standard Schlenk conditions. A 25 mL SchLenk flask and dropping funnel were flamed out. The flask was connected to three was bottles containing CaCl_{2}, nothing or 1 M NaOH . In the Schlenk flask triflic acid ($3.3 \mathrm{~mL}, 36 \mathrm{mmol}, 4 \mathrm{eq}$.) was put. Under constant Ar-flow and ice bath cooling $\mathrm{TiCl}_{4}(1 \mathrm{~mL}, 9 \mathrm{mmol}, 1 \mathrm{eq}$.) was dripped to triflic acid for 10 min . Afterwards, the reaction mixture was brought to rt and stirred for 3 h . The reaction was quenched by the adding of $10 \mathrm{~mL} \mathrm{dH} \mathrm{H}_{2} \mathrm{O}$ and allowed to stir for 1.5 h at rt . To remove water and unreacted substrates a distillation apparatus was used at a high vacuum and up to $80^{\circ} \mathrm{C}$. The temperature was slowly heated to avoid boiling delay. Furthermore, heating to $180^{\circ} \mathrm{C}$ was done to crystallize the product. A light pinkish solid was formed. Ti(OTf) $)_{4}$ was obtained with a yield of 70%.

Dehydration using $2 \mathbf{~ m o l} \%$ metal triflates at $180^{\circ} \mathrm{C}$ oil bath temperature

1-hexanol (1) ($5 \mathrm{~mL}, 40 \mathrm{mmol}$) was put together with a catalyst ($2 \mathrm{~mol} \%$) in a 25 mL round flask and connected to a micro distillation bridge. After heating it for 1.5 hour at $150{ }^{\circ} \mathrm{C}$ the temperature was further heated to $180^{\circ} \mathrm{C}$. The reaction was done for $6-22 \mathrm{~h}$. After the distillation was finished two phases were obtained. Through a separation of the organic phase from the water phase the crude yield was obtained. The crude yield was then determined and the hexene purity determined through ${ }^{1} \mathrm{H}-$ NMR spectras. In case of $\operatorname{Sc}(\mathrm{OTf}) 3$ the ether was isolated by column chromatography with a yield of 83 \%.

Table 1: Dehydration of 1-hexanol (1) by 2 mol\% metal triflates.

Metal triflate	Weight	Reaction time	Crude yield	Hexene purity	Ether yield
Yb(III)	496 mg	22 h	0	-	-
Y(III)	429 mg	22 h	0	-	-
La(III)	469 mg	22 h	0	-	-
Dy(III)	488 mg	22 h	0	-	-
Er (III)	492 mg	22 h	0	-	-
Mn (II)	283 mg	22 h	0	-	-
Sc (III)	394 mg	22 h	-	-	83 \%
$\mathrm{Ag}(1)$	206 mg	22 h	67	94\%	-
Cu (II)	288 mg	22 h	68	95\%	-
Al(III)	380 mg	12 h	82 \%	97\%	-
Fe(III)	403 mg	12 h	83 \%	86\%	-
Bi(III)	525 mg	6 h	89 \%	92 \%	
Ti(IV)	515 mg	6 h	78 \%	90\%	-
Hf(IV)	621 mg	6 h	83 \%	90\%	-
KOTf(I)	151 mg	22 h	0	-	-
$\mathrm{Na}(1)$	140 mg	22 h	0	-	-

Figure 1: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of the dehydration of 1-hexanol by $\mathrm{Hf}(\mathrm{OTf})_{4}$ in CDCl_{3}.

1-hexene:

Figure 2: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of 1-hexene in CDCl_{3}.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=5.84\left(\mathrm{ddt}, \mathrm{J}=16.9,10.1,6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.09-4.87(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 2.10-2.00\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.45-1.26\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 0.91\left(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.

2-hexene:

Figure 3: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of trans 2-hexene in CDCl_{3}.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=5.52-5.34(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}), 2.03-1.90\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}\right), 1.65$ (d, J = $3.36 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}$), $1.42-1.28\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 0.89\left(\mathrm{t}, \mathrm{J}=7.3,1.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.

Figure 4: ${ }^{1 \mathrm{H}}$-NMR spectrum of cis 2-hexene.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=5.51-5.35(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}), 2.07-1.98\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}\right), 1.61$ (d, J = $6.72 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}$), $1.44-1.33\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 0.92\left(\mathrm{t}, \mathrm{J}=7.4,3 \mathrm{H}, \mathrm{CH}_{3}\right)$.

3-hexene:

Figure 5: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of 3-hexene.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=5.41-5.29(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}), 2.14-1.98\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 0.97(\mathrm{t}$, $\left.J=7.6,6 \mathrm{H}, \mathrm{CH}_{3}\right)$.
di-n-hexyl ether:

Figure 6: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum di-n-hexyl ether.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=3.39\left(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}\right), 1.55\left(\mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2^{-}}\right.$ $\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}$), 1.31 (dddd, $J=15.2,10.9,7.1,2.7 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}_{2}$), $0.89\left(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$).

Figure 7: ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of di-n-hexyl ether.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=71.13,31.89,29.93,26.05,22.79,14.17$.

Dehydration of $\mathrm{C}_{6}-\mathrm{C}_{12}$ primary alcohols by $\mathrm{Cu}\left(\mathrm{OTf}_{2}{ }_{2}\right.$ and $\mathrm{Hf}(\mathrm{OTf})_{4}$

The alcohol (40 mmol) was put together with a catalyst ($2-10 \mathrm{~mol} \%$) in a 25 mL round flask and connected to a micro distillation bridge. It was first heated 1.5 hour at $150{ }^{\circ} \mathrm{C}$ then to $180{ }^{\circ} \mathrm{C}$. For alcohols $\mathrm{C}_{8}-\mathrm{C}_{12}$ the pressure was reduced. After the distillation was finished after 6 h two phases were obtained. Through a separation of the organic phase from the water phase the crude yield was obtained. The crude yield and the hexene purity were then determined through ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectras.

Table 2: Dehydration of $\mathrm{C}_{6}-\mathrm{C}_{12}$ primary alcohols by $\mathrm{Cu}(\mathrm{OTf})_{2}$ and $\mathrm{Hf}(\mathrm{Otf})_{4}$ at $180^{\circ} \mathrm{C}$ oil bath temperature..

alcohol	Cat / mol\%	$\begin{aligned} & \text { Cat. / g } \\ & \text { or } \mathrm{mL} \end{aligned}$	pressure	Crude yield	Alkene yield
1-hexanol	$10 \mathrm{~mol} \%$	1.44 g		81 \%	73 \%
40 mM	$\mathrm{Cu}(\mathrm{OTf})_{2}$				
5 mL	$2 \mathrm{~mol} \%$	0.62 g	atmosph.	82 \%	75 \%
	$\mathrm{Hf}(\mathrm{OTf})_{4}$.		
	$2 \mathrm{~mol} \%$	0.52 g		79 \%	72 \%
	$\mathrm{Ti}(\mathrm{OTf})_{4}$				
1-heptanol	$10 \mathrm{~mol} \%$	1.44 g		76 \%	71 \%
40 mM	$\mathrm{Cu}(\mathrm{OTf})_{2}$				
5 mL	$2 \mathrm{~mol} \%$	0.62 g	atmosph.	88 \%	84 \%
	$\mathrm{Hf}(\mathrm{OTf})_{4}$				
	$2 \mathrm{~mol} \%$	0.52 g		76 \%	74 \%
	$\mathrm{Ti}(\mathrm{OTf})_{4}$				
1-octanol	$10 \mathrm{~mol} \%$	1.44 g		78 \%	74 \%
40 mM	$\mathrm{Cu}(\mathrm{OTf})_{2}$				
	$2 \mathrm{~mol} \%$	0.62 g	550-600 mbar	73 \%	69 \%
	$\mathrm{Hf}(\mathrm{OTf})_{4}$				
	$2 \mathrm{~mol} \%$	0.52 g		70 \%	62 \%
	$\mathrm{Ti}(\mathrm{OTf})_{4}$				
1-nonanol	$10 \mathrm{~mol} \%$	1.44 g		65 \%	65 \%
40 mmol	$\mathrm{Cu}(\mathrm{OTf})_{2}$				
	$2 \mathrm{~mol} \%$	0.62 g	350-400 mbar	62 \%	61 \%
	$\mathrm{Hf}(\mathrm{OTf})_{4}$				
	$2 \mathrm{~mol} \%$	0.52 g		72 \%	50 \%
	Ti(OTf) ${ }_{4}$				
1-decanol	$10 \mathrm{~mol} \%$	1.44 g		68 \%	64 \%
40 mmol	$\mathrm{Cu}(\mathrm{OTf})_{2}$				
	$2 \mathrm{~mol} \%$	0.62 g	250-300 mbar	70 \%	67 \%
	$\mathrm{Hf}(\mathrm{OTf})_{4}$				
	$2 \mathrm{~mol} \%$	0.52 g		64 \%	52 \%
	$\mathrm{Ti}(\mathrm{OTf})_{4}$				
1-undecanol	$10 \mathrm{~mol} \%$	1.44 g		55 \%	55 \%
40 mmol	$\mathrm{Cu}(\mathrm{OTf})_{2}$		150-200 mbar		
	$2 \mathrm{~mol} \%$	0.62 g		45 \%	45 \%
	$\mathrm{Hf}(\mathrm{OTf})_{4}$				
	$2 \mathrm{~mol} \%$	0.52 g		44 \%	28 \%
	$\mathrm{Ti}(\mathrm{OTf})_{4}$				
1-dodecanol	$10 \mathrm{~mol} \%$	1.44 g		NA	NA
40 mmol	$\mathrm{Cu}(\mathrm{OTf})_{2}$		100-120 mbar		
	$2 \mathrm{~mol} \%$	0.62 g		32 \%	32 \%
	$\mathrm{Hf}(\mathrm{OTf})_{4}$				
	$2 \mathrm{~mol} \%$	0.52 g		NA	NA
	$\mathrm{Ti}(\mathrm{OTf})_{4}$				

1-hexene:

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=5.84\left(\mathrm{ddt}, \mathrm{J}=16.9,10.1,6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.09-4.87(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 2.10-2.00\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.45-1.26\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 0.91\left(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
trans 2-hexene:
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathbf{5 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=5.52-5.34(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}), 2.03-1.90\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}\right), 1.65$ (d, J = $3.36 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}$), $1.42-1.28\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 0.89\left(\mathrm{t}, \mathrm{J}=7.3,1.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
cis 2-hexene:
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathbf{5 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=5.51-5.35(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}), 2.07-1.98\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}\right), 1.61$ (d, J = $6.72 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}$), $1.44-1.33\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 0.92\left(\mathrm{t}, \mathrm{J}=7.4,3 \mathrm{H}, \mathrm{CH}_{3}\right)$.

3-hexene:

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=5.41-5.29(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}), 2.14-1.98\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 0.97(\mathrm{t}$, $\left.J=7.6,6 \mathrm{H}, \mathrm{CH}_{3}\right)$.

1-heptene:

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathbf{5 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 5.82$ (ddt, $\left.J=17.0,10.3,6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.04-4.88(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 2.09-2.00\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}\right), 1.59-1.48\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}\right), 0.91\left(\mathrm{t}, \mathrm{J}=7.24 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
trans 2-heptene:
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathbf{5 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=5.51-5.34(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}), 1.99-1.92\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}\right), 1.64$ (d, J = 4.0 Hz, 3H, CH=CH-CH3), 1.34-1.25 (m, 4H, CH2), 0.89 (t, J=7.3, 1.1 Hz, 3H, CH3).
cis 2-heptene:
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=5.51-5.34(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}), 2.09-2.00(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}-\mathrm{CH}=\mathrm{CH}), 1.60$ (d, J = $6.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}$), $1.43-1.34\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 0.96\left(\mathrm{t}, \mathrm{J}=7.64 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.

3-heptene:
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathbf{5 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=5.41-5.29(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}), 2.14-1.98\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.34-1.25$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) 0.96\left(\mathrm{t}, \mathrm{J}=7.37 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.90\left(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.

1-octene:

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=5.82\left(\mathrm{ddt}, J=16.9,10.1,6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 4.96(\mathrm{dd}, J=32.4$, $13.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}$), $2.04\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$), $1.38\left(\mathrm{dq}, J=14.6,7.3,6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$), $1.33-1.23$ ($\mathrm{m}, 6 \mathrm{H}, \mathrm{CH}_{2}$), $0.89\left(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.

trans 2-octene:

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=5.42(\mathrm{td}, \mathrm{J}=6.6,5.8,3.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}), 2.01-1.88\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $1.64\left(\mathrm{~d}, \mathrm{~J}=4.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.40-1.15\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}\right), 0.88\left(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
cis 2-octene:
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=5.42(\mathrm{td}, \mathrm{J}=6.6,5.8,3.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}), 2.08-1.99\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $1.60\left(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.40-1.15\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}\right), 0.97\left(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.

3-octene:

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=5.53-5.34(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}), 1.99\left(\mathrm{dq}, \mathrm{J}=12.0,6.9 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}\right)$, $1.42-1.27\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 0.96\left(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.89\left(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.

4-octene:
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=5.36(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}), 2.07-1.92\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.44-1.23(\mathrm{~m}$, $\left.4 \mathrm{H}, \mathrm{CH}_{2}\right), 0.88\left(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$.

1-nonene:

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=5.81\left(\mathrm{ddt}, J=17.1,10.1,6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.04-4.89(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 2.07-2.00\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.39-1.32\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.33-1.23(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH} 2), 0.89(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}$, $3 \mathrm{H}, \mathrm{CH}_{3}$).
trans 2-nonene:
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=5.39(\mathrm{ddt}, J=17.6,15.4,5.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}), 2.00-1.92(\mathrm{~m}, 2 \mathrm{H}$, CH_{2}), $1.64\left(\mathrm{~d}, \mathrm{~J}=4.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.33-1.23\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 0.88\left(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
cis 2-nonene:
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=5.39(\mathrm{ddt}, J=17.6,15.4,5.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}), 2.07-2.0(\mathrm{~m}, 2 \mathrm{H}$, CH_{2}), $1.60\left(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.39-1.32\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 0.96\left(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.

1-decene:
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 5.91-5.75\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 4.96$ (dd, $\mathrm{J}=32.5,13.6 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 2.08-2.00\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.38-1.21\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{2}\right), 0.88\left(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
trans 2-decene:
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=5.48-5.33(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}), 2.00-1.93\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.64(\mathrm{~d}, \mathrm{~J}=$ $\left.4.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.39-1.20\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{CH}_{2}\right), 0.88\left(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
cis 2-dencene:
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=5.48-5.33(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}), 2.05-2.00\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.60(\mathrm{~d}, \mathrm{~J}=$ $\left.6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.39-1.20\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{CH}_{2}\right), 0.96\left(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.

1-undecene:
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 5.87-5.77\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 4.96$ (dd, $\mathrm{J}=29.0,17.3 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 2.08-2.00\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.40-1.29\left(\mathrm{~m}, 14 \mathrm{H}, \mathrm{CH}_{2}\right), 0.88\left(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
trans 2-undecene:
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=5.49-5.29(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}), 2.00-1.92\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.64(\mathrm{~d}, \mathrm{~J}=$ $\left.4.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.40-1.29(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH} 2), 0.89\left(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
cis 2-undecene:
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=5.49-5.29(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}), 2.08-2.00\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.60(\mathrm{~d}, \mathrm{~J}=$ $\left.6.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.40-1.29\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{2}\right), 0.96\left(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.

1-dodecene:

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 5.88-5.77\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 4.96(\mathrm{dd}, \mathrm{J}=32.3,13.4 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CH}=\mathrm{CH}_{2}$), $2.06-2.01\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.40-1.31\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CH}_{2}\right), 0.88\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.

trans 2-dodecene:

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=5.48-5.29(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}), 1.99-1.92\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.64(\mathrm{~d}, \mathrm{~J}=$ $\left.4.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.31-1.21(\mathrm{~m}, 14 \mathrm{H}, \mathrm{CH} 2), 0.88\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.

cis 2-dodecene:

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=5.48-5.29(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}), 2.06-2.01\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.60(\mathrm{~d}, \mathrm{~J}=$ $\left.6.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.40-1.31\left(\mathrm{~m}, 14 \mathrm{H}, \mathrm{CH}_{2}\right), 0.96\left(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.

Dehydration of di-n-hexyl ether:

The ether (22 mmol) was put together with a catalyst ($4-20 \mathrm{~mol} \%$) in a 25 mL round flask and connected to a micro distillation bridge. It was first heated 1.5 hour at $150^{\circ} \mathrm{C}$ then to $180^{\circ} \mathrm{C}$. After the distillation was finished after 6 h two phases were obtained. Through a separation of the organic phase from the water phase the crude yield was obtained. The crude yield and the hexene purity were then determined through ${ }^{1} \mathrm{H}$-NMR spectras.

Table 3: Dehydration of $\mathrm{C}_{6}-\mathrm{C}_{12}$ primary alcohols by $\mathrm{Cu}(\mathrm{OTf})_{2}$ and $\mathrm{Hf}(\mathrm{OTf})_{4}$ at $180^{\circ} \mathrm{C}$ oil bath temperature.

entry	catalyst	catalyst loading / mol\%	$\begin{gathered} \text { catalyst } \\ \text { loading/g } \end{gathered}$	substrate	substrate loading / mmol	substrate loading / mL	alkene yield / \%
1		10	1.44 g	1-hexanol	40	5 mL	73
2	$\mathrm{Cu}(11)$	20	1.44 g	di-n-hexyl ether	22	5 mL	68
3		20	1.44 g	di-n-hexyl ether	22	5 mL	$71^{\text {a }}$
4		2	0.62 g	1-hexanol	40	5 mL	75
5	Hf(IV)	4	0.62 g	di-n-hexyl ether	22	5 mL	66
6		4	0.62 g	di-n-hexyl ether	22	5 mL	$67^{\text {a }}$

[^0]
Synthesis of 1-hexyl triflate:

1-hexyl triflate was synthesized accordingly to literature. ${ }^{2} 160 \mathrm{~mL}$ of dry dichlormethane and triflic anhydride ($11 \mathrm{~mL}, 66 \mathrm{mmol}, 1.1 \mathrm{eq}$.) were presented in a 500 mL round flask. Afterwards 1-hexanol ($7.5 \mathrm{~mL}, 59 \mathrm{mmol}, 1 \mathrm{eq}$.) and dry pyridine ($5.4 \mathrm{~mL}, 66 \mathrm{mmol}, 1.1 \mathrm{eq}$.) in 80 mL dichlormethane were dripped to the reaction mixture under constant stirring and ice bath cooling for 1 h . Afterwards, the reaction mixture was stirred at rt for 3 h . The reaction was quenched by the adding of $120 \mathrm{~mL} \mathrm{dH}_{2} \mathrm{O}$. The organic phase was separated from the aqueous phase. Then the organic phase was washed with 120 mL water. The aqueous phase was extracted with 120 mL dichlormethane. The united organic phases were dried by $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent removed under reduced pressure. 1-hexyl triflate was obtained as a viscous dark coloured oil with a yield of 88%.

Figure 8: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of 1-hexyl triflate in CDCl_{3}.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=4.54(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.82(\mathrm{p}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.43(\mathrm{p}, J=7.1 \mathrm{~Hz}$, 2H), $1.39-1.28(m, 4 H), 1.00-0.84(m, 3 H)$.

Figure 9: ${ }^{13} \mathrm{C}$-NMR spectrum of 1-hexyl triflate.
${ }^{13} \mathrm{C}-$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=118.80,77.89,31.14,29.34,24.87,22.51,14.02$.

Reactions with 1-hexyl triflate

To investigate 1-hexyl triflate as a possible intermediate candidate in the dehydration of 1-hexanol by metal triflates different approaches were taken. In almost all approaches 1-hexyl triflate (40 mmol) was presented in a 25 mL round flask and connected to a distillation bridge. In the next step either additives or no additives (method a) were added. For method b) and c) either 10 mol\% Cu(OTf)2 or 1 eq. 1-hexanol were added, respectively. Just in case of method d) an excess of EtOH under reflux was used. For method a) - c) only decomposition products were obtained. Only for method d) the ether was formed. In neither cases a modest amount of alkene was formed.

Table 4: Elimination of 1-hexyl triflate to the ether and corresponding alkenes by: a) just heating hexyltriflate under distillation, b) adding $\mathrm{Cu}(\mathrm{OTf})_{2}$ under distillation, c) adding triflic acid under distillation, d) using same amount of 1-hexanol (1) under distillation and e) using an excess of ethanol under reflux.

Approach	Method	Additive	Oil bath temperature	Conversion to ether or alkenes	Main product
a)	just heating up	-	$110{ }^{\circ} \mathrm{C}$	no	decomposition products
b)	adding $\mathrm{Cu}(\mathrm{OTf})_{2}$	$\begin{aligned} & 10 \mathrm{~mol} \% \\ & \mathrm{Cu}(\mathrm{OTf})_{2} \end{aligned}$	$110^{\circ} \mathrm{C}$	no	decomposition products
c)	adding 1-hexanol	1 eq. 1-hexanol	$110-180{ }^{\circ} \mathrm{C}$	small amount of hexene $\text { (<<<< } 1 \text { \%) }$	decomposition products
d)	Excess EtOH under reflux	10 mL EtOH	Reflux	quant. ether formation	ethylhexylether

Dehydration of 1-hexanol by CuCl_{2}

$$
\xrightarrow[\substack{150 \rightarrow 180^{\circ} \mathrm{C} \\ 1 \mathrm{~atm}}]{\mathrm{T}_{3} \mathrm{OH}}
$$

1-hexanol ($40 \mathrm{mmol}, 5 \mathrm{~mL}$) was presented with $\mathrm{CuCl}_{2}(10 \mathrm{~mol} \%, 4 \mathrm{mmol}, 0.54 \mathrm{~g})$ in a 25 mL round flask and connected to a micro distillation bridge. It was first heated for 1.5 hours at $150^{\circ} \mathrm{C}$ then to $180^{\circ} \mathrm{C}$ for additional 4.5 h . After the reaction was terminated both, the crude mixture and the distillation flask were investigated by ${ }^{1} \mathrm{H}$-NMR. As products only hexyl chloride with a yield of 4% and di-n-hexyl ether with a yield of 19 \% were found whereby only in the distillation flask hexyl chloride was determined.

Dehydration of 1-hexanol by Brønsted acids

1-hexanol (40 mmol) was presented together with a Brønsted acid ($10 \mathrm{~mol} \%$) in a 25 mL round flask and connected to a micro distillation bridge. It was first heated 1.5 hour at $150^{\circ} \mathrm{C}$ then to $180{ }^{\circ} \mathrm{C}$. After 22 h the reaction was terminated. The crude mixture was measured by ${ }^{1} \mathrm{H}-\mathrm{NMR}$. When the ether was formed, the crude mixture was filtered using a celite column and then purified using a silica column and cyclohexene as an eluent. After evaporation of the solvent the yield and purity were determined.

Table 5: Dehydration of 1-hexanol using Brønsted acids.

entry	Brønsted acid	catalyst loading $/ \mathbf{m o l} \%$	pKa	substrate loading $/ \mathbf{m m o l}$	substrate loading $/ \mathbf{m L}$	Ether yield $/ \%$
alkene yield $/ \%$						
1	acetic acid	10	4.8	40	5	not formed
2	$\mathrm{H}_{3} \mathrm{PO}_{4}$	10	2.1	40	5	not formed
3	trifluoracetic	10	0.23	40	5	not formed
	acid					
4	tosylic acid	10	-2.8	40	5	96
5	$\mathrm{H}_{2} \mathrm{SO}_{4}$	10	-3	40	not formed	
					86	not formed

Figure 10: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of di-n-hexyl ether in CDCl_{3}. After synthesis by H 2 SO 4 and column chromatography.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=3.39\left(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 4 \mathrm{H},-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}-\right), 1.66-1.51\left(\mathrm{~m}, 4 \mathrm{H},-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{O}-\right)$, 1.31 (dddd, $\left.J=19.2,15.6,7.7,3.3 \mathrm{~Hz}, 12 \mathrm{H},-\mathrm{CH}_{2}-\right), 0.89\left(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 6 \mathrm{H},-\mathrm{CH}_{3}\right)$.

Dehydration of primary, secondary and tertiary alcohols

The alcohol (40 mmol) was presented together with a LEWIS acid ($10 \mathrm{~mol} \%$) in a 25 mL round flask and connected to a micro distillation bridge. In case of the primary alcohol tt was first heated 1.5 hour at $150^{\circ} \mathrm{C}$ then to $180^{\circ} \mathrm{C}$. In case of the secondary and tertiary alcohol the temperature was increased to $110{ }^{\circ} \mathrm{C}$ or $150^{\circ} \mathrm{C}$ and held, respectively. After the reaction finished the organic phase was separated from the water phase and then was measured by ${ }^{1} \mathrm{H}-\mathrm{NMR}$. When the ether was formed, the crude mixture was filtered using a celite column and then purified using a silica column and cyclohexene as an eluent. After evaporation of the solvent the yield and purity were determined.

In case of the tertiary alcohol 83% of SAYTZEFF and 17% of HOFMANN product was obtained.
Table 6: Dehydration of primary, secondary and tertiary alcohols by $\mathrm{Hf}(\mathrm{OTf})_{4}$ ($2 \mathrm{~mol} \%$) and $\mathrm{Cu}(\mathrm{OTf})_{2}$ ($10 \mathrm{~mol} \%$).
Substrate

Figure 11: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of 2-methyl-1-hexene and 2-methyl-2-hexene in CDCl_{3} after the dehydration of 2-methyl-2hexanol by $\mathrm{Hf}(\mathrm{OTf})_{4}$.

2-Methyl-1-hexene:

${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d): $\delta 5.12$ (t, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CH}-$), 1.95 ($\mathrm{d}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}_{2}-\mathrm{CH}$), 1.69 (s , $\left.3 \mathrm{H},-\mathrm{CH}_{3}\right), 1.60\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 1.33\left(\mathrm{p}, \mathrm{J}=8.7,8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 0.90\left(\mathrm{q}, \mathrm{J}=8.1,7.4 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{CH}_{3}\right)$.

2-Methyl-2-hexene:

${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d): $\delta 4.67$ ($\mathrm{d}, \mathrm{J}=11.2 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}_{2}=\mathrm{CH}_{2}$), $2.00\left(\mathrm{dd}, \mathrm{J}=17.4,9.6 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}_{2}=\mathrm{CH}_{2}\right.$), $1.71\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 1.42\left(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 4 \mathrm{H},-\mathrm{CH}_{2}-\right), 0.90(\mathrm{q}, \mathrm{J}=8.1,7.4 \mathrm{~Hz}, 3 \mathrm{H})$.

Calculation of Sustainability Metrics

The sustainability metrics were calculated using the following equations.

$$
\begin{align*}
& E-\text { factor }=\frac{\text { mass }_{\text {waste }}}{\text { mass }_{\text {Product }}} \cdot 100 \% \tag{1}\\
& \text { PMI }=\frac{\text { mass }_{\text {total }}}{\text { mass }_{\text {Product }}} \cdot 100 \% \tag{2}
\end{align*}
$$

with mass $_{\text {waste }}$, mass $_{\text {Product }}$ and $m_{\text {total }}$ describing the mass of the waste and product as well as the total mass.

DFT calculations

All quantum chemical calculations were generated by using the ORCA software package. ${ }^{3}$ Geometries were calculated at the PBEO D3BJ def2-TZVP def2/J level of theory in the gas phase. Frequency calculations at the same level were performed for the validation of each structure as a minimum or a transition state, followed by single-point calculations. IRC (internal reaction coordinate) calculations starting from the transition structures were performed for the verification of the reactants and products.

DFT-optimized Cartesian coordinates

Optimized Cartesian coordinates for $\mathbf{H}_{2} \mathrm{SO}_{4}$

S	-3.92760606960994	1.88363292403929	-1.73201235476062
O	-3.04314009856564	0.57425430563789	-1.77012980594888
H	-2.60930627774506	0.51373414748952	-2.63241376472721
O	-5.26869988234357	1.40165723744979	-2.41527491440351
H	-5.82081084230621	0.96859780156339	-1.74977614244221
O	-3.36846840674382	2.83633742706563	-2.61807222089260
O	-4.18158842268575	2.13265615675449	-0.36146079682497

Optimized Cartesian coordinates for $\mathrm{Cu}(\mathrm{OTf})_{2}$

```
Cu 0.54185608847571 -0.16202371587961 -0.28681962315360
O -0.91539737566553 -1.47241086312175 -0.11154702194940
```

S	-1.96930257997765	-0.39913664949371	0.02730819241750
O	-1.13386862992832	0.85430782426702	-0.08838162430720
C	-2.93913529091359	-0.46903358010437	-1.54058143872514
F	-3.52154443741183	-1.64845938973932	-1.62559337464278
F	-3.85302444906561	0.48019457657160	-1.51760212989176
O	-2.91117753965366	-0.50205149027699	1.09754324619755
F	-2.13908200366375	-0.29193479771645	-2.57791054503641
O	2.00746781859251	1.14489914679268	-0.42351685872608
S	3.06114251124113	0.06816352353609	-0.53609365263727
O	2.21574633605793	-1.18225081418076	-0.46772513757918
C	3.96621172051097	0.11197070892689	1.07175153550946
F	4.87339241749019	-0.84373089448828	1.07882612874393
F	4.55415923350927	1.28442218849986	1.19794955887652
O	4.04337523705663	0.17730303941390	-1.56888192585072
F	3.11704094334558	-0.07070881300678	2.06866467075458

Optimized Cartesian coordinates for ethanol

C	-4.88823923825288	2.94365253873076	0.05370132003692
C	-6.19447527334319	2.18057723925784	0.06541514628726
O	-7.25229664460519	3.10779627896298	0.10605144687630
H	-6.21189166892559	1.50686157615996	0.93357277247334
H	-6.24792406107720	1.54234073316632	-0.82780425546743
H	-8.08215385427094	2.62748112351342	0.11282727625201
H	-4.82555750306358	3.59910228389906	-0.81489650666602
H	-4.04600309393240	2.25301160498478	0.01622490261991
H	-4.78320866252903	3.55605662132487	0.94916789758771

Optimized Cartesian coordinates for transition state A with sulfuric acid

O	-0.36981905093363	-1.51828546486117	3.06062821541132
0	-0.02119151293001	0.62306365355366	1.88670373996050

S	-0.36492319344768	-0.78051405040654	1.84470935339019
O	0.37331170183615	-1.48503203088390	0.75756070867267
O	-1.88448112379739	-0.73432903512051	1.29884402507866
H	-1.58418082294277	0.82774577064880	-0.53806037441383
H	-2.29656902097974	-1.58663603499656	1.48778029485108
H	0.77655462774738	-0.75264532556612	-0.25266238690289
C	0.72250177704746	0.98109616199945	-1.63438258404682
H	0.04082647525671	1.03832592820203	-2.47309990130263
H	1.12791319829973	1.93211015432071	-1.31501030968038
O	-0.87802101094577	1.48112698609490	-0.45908230787201
C	1.34719750193075	-0.21183856920366	-1.29252113188977
H	2.33613866316559	-0.11805733870814	-0.84879203773666
H	-0.54667928836060	1.34167327115719	0.46633549024495
H	1.22142107905378	-1.03780407623014	-1.98895079376437

Optimized Cartesian coordinates for transition state B with cooper triflate
Cu 0.69051836027654 -1.05792347934222 1.18047098700458

O	-0.62561553712979	-1.72879387364338	0.10142816065268

S	-1.98589200533865	-1.12545010957695	0.44884291452919

O $-1.740817064543420 .07528282023021 \quad 1.24653047938227$

C $\quad-2.56650247561732 \quad-0.52708613911913-1.22083926401248$
F $-2.83443840608580-1.56817149961865 \quad-1.97066412932081$
F $\quad-3.64763961025369 \quad 0.19118073619200 \quad-1.01879812730216$
O -2.90721953808685 -2.08067132214251 0.95359999569265
$\begin{array}{llll}\text { F } & -1.61887679528799 & 0.20456748406857 & -1.76135357829594\end{array}$
O 2.08659784296513
S 2.61889238171466
0.480466760297720 .87380703844999

O 1.56854093925184
$0.02851098757211-0.10438260005036$
C 4.16467654316486
$0.46199859917653 \quad 0.44124480264565$
F 4.64189244974211
$0.01949237947700-0.67730475456034$
$\begin{array}{llll}\text { F } 5.01510344237065 & -0.30685598331763 & 1.42595341017686\end{array}$

O	2.91529422767729	1.85263975098527	0.95758622346001
F	3.84728790646833	-1.73539542191021	0.30152128192800
O	0.06542027690706	-1.94734360365308	2.59068258390491
C	-1.47504549621538	-1.14991695759482	4.32430668328156
C	-2.36238237342547	-0.15822495851484	3.94787777508578
H	-3.40895831531902	-0.43314491380378	3.83046254955925
H	-2.15122269560450	0.86153470032385	4.26174393138979
H	-1.99380484364093	-0.15821707948458	2.80507623663447
H	-1.75250298586247	-2.19753157464625	4.26949838639935
H	-0.48786500608038	-0.92543990917854	4.71202109289947
H	-0.31103122204666	-2.78011599719601	2.26962677613614

Literature

1 a) I. Hachiya, M. Moriwaki and S. Kobayashi, Tetrahedron Letters, 1995, 36, 409-412; b) J. Keskiväli, A. Parviainen, K. Lagerblom and T. Repo, RSC Adv., 2018, 8, 15111-15118;

2 T. Hartman, J. Šturala and R. Cibulka, Adv. Synth. Catal., 2015, 357, 3573-3586.
3 Calculations were carried out using the ORCA 5.3.0 software; F. Neese, The ORCA program system, Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2012, 2, 73-78.

[^0]: ${ }^{a} 0.5$ eq. of water was used to enhance the reaction

