Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2024

Supplementary Information

For

Photocatalytic organosulfur reagent-promoted selective mono-(deutero)hydrodechlorination

Junlei Wang^{1, †}, *, Guocheng Gao^{1, †}, Jiadong Cheng¹, Jintao Li¹, Xiaoshuang Chen¹, Xuemei Chen¹, Daohai Zhang¹, Hongqing Li^{1,*}, Xiaohua Cai¹ and Binbin Huang^{2, *}

 School of Chemical Engineering, Guizhou Minzu University, Guiyang 550000, China. E-mail: junleiwang@gzmu.edu.cn; lihongqing@gzmu.edu.cn
 Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China.

E-mail: binbinhuang@bnu.edu.cn.

Contents

1	General Information	S2
2	Optimization Studies	S3
3	General Procedure for (deutero)hydrodechlorination Reactions	S5
4	General procedure for the Synthesis of Substrates.	S6
5	Product Characterization	S7
6	Synthetic Applications	S16
7	Mechanistic Studies	S26
8	Reference	\$32
9	Spectra for Substrates and Products Product Characterization	S33

1. General Information

All of reactions were performed under an ambient temperature, magnetically stirred, and monitored by thin-layer chromatography (TLC) using Qingdao Puke Separation Materials Co., Ltd TLC plates precoated with 250 um thickness silica gel 60 F254 plates and visualized by fluorescence quenching under UV light. All of the manipulations were carried out using oven-dried glassware, including standard Schlenk techniques. All of the reagents were purchased from Alfa, Energy-Chemical or Sigma-Aldrich and used without further purification. Solvents were purified according to the method of Grubbs.¹ ¹H NMR, ¹³C NMR were recorded on a Bruker AV-400 (¹H NMR at 400 MHz, ¹³C NMR at 100 MHz, ¹⁹F NMR at 376 MHz) spectrometers using tetramethylsilane (TMS) as internal standard. ¹H and ¹⁹F multiplicities are indicated as follows: singlet (s), doublet (d), triplet (t), doublet of doublets (dd), quartet (q), multiplet (m), and broad resonance (br). Chemical shifts were calibrated using residual undeuterated solvent as an internal reference (CDCl₃: 7.26 ppm ¹H NMR, 77.16 ppm ¹³C NMR). High resolution masspectra (HRMS) were collected on Bruker Esquire LC mass spectrometer using electrospray ionization. Flash column chromatography was carried out on silica gel (particle size 300-400 mesh) and eluted with petroleum/ethyl acetate.

2. Optimization of reaction conditions.

2.1 Hydrodechlorination optimization.

Table S1. Sulfur reagent Screening.^{*a,b*}

		Sulfur reagent (6 mol%)			
МеС		HCO ₂ Cs (2 eq.), DMA (1 mL) blue LEDs, r. t.		MeO	
	1			2	
Entry	Sulfur reagent	Base	Solvent	Conversion(%)	Y(%) ^b
1	CySH	HCO ₂ Cs	DMA	100	70
2	4-Methoxythiophenol	HCO ₂ Cs	DMA	72	19
3	BnSH	HCO ₂ Cs	DMA	79	66
4	4-SH-Py	HCO ₂ Cs	DMA	66	3
5	ⁿ BuSH	HCO ₂ Cs	DMA	89	43

^{*a*}Reaction conditions: Sulfur reagent (6 mol%), **1a** (0.1 mmol, 1.0 equiv), HCO₂Cs (2 equiv.), DMA (1 mL), room temperature, N₂ atmosphere, 12*2 W blue LEDs. ^{*b*} isolated yields are shown.

Table S2.Solvent Screening.^{a,b}

		CySH (6 mol%)	_	
MeO	CI	HCO ₂ Cs (2 eq.), Solvent (1 n blue LEDs, r. t.	nL) MeO	H
	1			2
Entry	Sulfur reagent	Base	Solvent	Y(%) ^b
1	CySH	HCO ₂ Cs	DMSO	45
2	CySH	HCO ₂ Cs	DMF	41
3	CySH	HCO ₂ Cs	DMA	70
4	CySH	HCO ₂ Cs	CH ₃ CN	10
5	CySH	HCO ₂ Cs	CH ₃ OH	0
6	CySH	HCO ₂ Cs	EA	0
7	CySH	HCO ₂ Cs	1,4-Dioxane	0
8	CySH	HCO ₂ Cs	CF ₃ CH ₂ OH	0
9	CySH	HCO ₂ Cs	THF	0
10	CySH	HCO ₂ Cs	DCM	0
11	CySH	HCO ₂ Cs	DCE	0

^{*a*}Reaction conditions: CySH (6 mol%), **1a** (0.1 mmol, 1.0 equiv), HCO₂Cs (2 equiv.), Solvent (1 mL), room temperature, N₂ atmosphere, 12*2 W blue LEDs. ^{*b*}isolated yields are shown.

Table S3. Base Screening.^{*a,b*}

Me		CySH (6 mol%) Base (2 eq.), DMA (1 mL) LEDs, r. t.	blue MeO	
Entry	Sulfur reagent	Base	Solvent	Y(%) ^b
1	CySH	HCO ₂ Cs	DMA	70
2	CySH	HCO ₂ Na	DMA	74
3	CySH	HCO ₂ K	DMA	93
4	CySH	HCO ₂ NH ₄	DMA	84

^{*a*}Reaction conditions: Sulfur reagent (6 mol%), **1a** (0.1 mmol, 1.0 equiv), HCO₂Cs (2 equiv.), DMA (1 mL), room temperature, N₂ atmosphere, 12*2 W blue LEDs. ^{*b*}isolated yields are shown.

2.2 Deuterodechlorination optimization.

Entr	Sulfur	Base	Additive		Solvent	Y(%)	Deuterated
У	reagent					b	incorporation(%)
1	CySH	HCO ₂ K	1,3-	DTBP	DMA	80	86
			Bis(diphenylphosp				
			hino)propane				
2	CySH	HCO ₂ K	Ph ₃ P	DTBP	DMA	80	80
3	CySH	HCO ₂ K	Ph ₂ POEt	DTBP	DMA	77	64
4	CySH	HCO ₂ K	PCy ₃	DTBP	DMA	67	95
5	CySH	HCO ₂ K	ClPPh ₂	DTBP	DMA	0	0
6	CySH	HCO ₂ K	P(OMe) ₃	DTBP	DMA	43	25
7	CySH	HCO ₂ K	PCy ₃	/	DMA	58	72
8	CySH	HCO ₂ K	/	DTBP	DMA	67	72
9	CySH	/	PCy ₃	DTBP	DMA	36	85
10	/	HCO ₂ K	PCy ₃	DTBP	DMA	19	87
11	CySH	HCO ₂ K	/	/	DMA	89	65

^{*a*}Reaction conditions: CySH (6 mol%), **1a** (0.1 mmol, 1.0 equiv), HCO₂K (2 equiv.), DMA (1 mL), room temperature, N₂ atmosphere, 12*2 W blue LEDs. ^{*b*} isolated yields are shown.

3. General Procedure for (deutero)hydrodechlorination Reactions General procedure for hydrodechlorination A:

In a 10 mL Schlenk tube with a stirring bar, 1 (0.1 mmol), CySH (6.0% mmol), HCO₂K (0.2 mmol) were dissolved in DMA (1.0 mL). The Schlenk tube was cooled to -78 °C and degassed with nitrogen for 3 times. And then, the reaction system was placed to 12 W*2 blue LEDs at room temperature. The reaction time determined to be completed by the TLC analysis. After the reaction finished, the reaction solvent was distill under vacuum and purified by flash column chromatography on silica gel with petroleum ether (PE) and ethyl acetate (EA) to afford the desired products. The reaction set-up with blue LEDs (2*12 W, Manufacturer: ouying, Model: 5317 (blue), WLP: 459.1 nm, Φ : 436.9 lm, Tc: 25000 K) as the light source. The irradiation vessel was in the middle of the two spotlights, approximate 7 cm to the light source.

General procedure for deuterodechlorination B:

In a 10 mL Schlenk tube with a stirring bar, **1** (0.1 mmol), CySH (6.0% mmol), HCO₂K (0.2 mmol), Cy₃P (0.2 mmol), DTBP (1.2 eq.) were dissolved in DMA (1.0 mL), and then D₂O (50 eq.) was added to the reaction mixture. The Schlenk tube was cooled to -78 °C and degassed with nitrogen for 3 times. And then, the reaction system was placed to 12 W*2 blue LEDs at room temperature. The reaction time determined to be completed by the TLC analysis. After the reaction finished, the reaction solvent was distill under vacuum and purified by flash column chromatography on silica gel with petroleum ether (PE) and ethyl acetate (EA) to afford the desired products. The reaction set-up with blue LEDs (2*12 W, Manufacturer: ouying, Model: 5317 (blue), WLP: 459.1 nm, Φ : 436.9 lm, Tc: 25000 K) as the light source. The irradiation vessel was in the middle of the two spotlights, approximate 7 cm to the light source.

4. General procedure for the synthesis of substrates.

Amine or alcohol (1.0 equiv.), Et₃N (2 equiv.) were dissolved in DCM (0.2 M). And Trichloroacetyl chloride (1.1 equiv.) was added in dropwise at 0 °C. After addition, the reaction mixture was stirred at room temperature for 12 hours^[1]. After the material was completed consumed, 10 mL saturated NH₄Cl was added in the reaction mixture, and extracted with DCM (20 mL*3), the combine solvents was washed with brine (30 mL), dried over MgSO₄. The solvent was concentrated and purification by chromatography on silica gel to afford the desired substrates.

5. Product Characterization

The reaction was performed according to the general procedure A using 1a with DMA as the solvent. The reaction stopped until the starting material was completely consumed, the corresponding product 2a was purified by flash column chromatography with PE/EA (30:1-10:1) to provide 2a in 93% yield, colorless oil, 21.7 mg.

¹**H NMR (400 MHz,CDCl₃):** δ_H 8.08 (s, 1H), 7.48-7.43 (m, 2H), 6.93 -6.87 (m, 2H), 6.04 (s, 1H), 3.81 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ_C 161.8, 157.6, 129.3, 122.2, 114.5, 67.0, 55.6.

HRMS (ESI): calcd for C₉H₁₀Cl₂NO₂⁺, (M+H)⁺, 234.0083, found, 234.0079.

The reaction was conducted according to the general procedure A using **1b** with DMA as the solvent. The reaction stopped until the starting material was completely consumed, the corresponding product **2b** was purified by flash column chromatography with PE/EA (30:1-10:1) to provide **2b** in 50% yield, colorless oil, 18.2 mg.

¹**H NMR (400 MHz, CDCl₃):** $\delta_H 8.60$ (s, 1H), 8.13 (d, J = 8.9 Hz, 1H), 7.82 (d, J = 2.3 Hz, 1H), 7.38 (dd, J = 8.9, 2.4 Hz, 1H), 6.06 (s, 1H).

¹³C NMR (101 MHz, CDCl₃): δ_C 162.1, 138.4, 135.8, 131.5, 129.7, 122.3, 90.2, 67.0.

HRMS (ESI): calcd for C₈H₆Cl₃INO⁺, (M+H)⁺, 363.8554, found, 363.8560.

The reaction was conducted according to the general procedure A using 1c with DMA as the solvent. The reaction stopped until the starting material was completely consumed, the corresponding product 2c was purified by flash column chromatography with PE/EA (30:1-10:1) to provide 2c in 76% yield, colorless oil, 15.5 mg.

¹**H NMR (400 MHz, CDCl₃)**: δ_H 8.16 (s, 1H), 7.58- 7.53 (m, 2H), 7.42 -7.35 (m, 2H), 7.24 -7.18 (m, 1H), 6.05 (s, 1H).

¹³C NMR (101 MHz, CDCl₃):δ_C 161.9, 136.4, 129.4, 125.9, 120.4, 67.0.

HRMS (ESI): calcd for C₈H₈Cl₂NO⁺, (M+H)⁺, 203.9977, found, 203.9976.

The reaction was conducted according to the general procedure A using 1c with DMA as the solvent. The reaction stopped until the starting material was completely consumed, the corresponding product 2d was purified by flash column chromatography with PE/EA (30:1-10:1) to provide 2c in 82% yield, colorless oil, 18.9 mg.

¹H NMR (400 MHz, CDCl₃): δ_H 8.17 (s, 1H), 7.54 -7.50 (m, 2H), 7.44 - 7.39 (m, 2H), 6.69 (dd, J = 17.6, 10.9 Hz, 1H), 6.05 (s, 1H), 5.72 (dd, J = 17.6, 0.8 Hz, 1H), 5.25 (dd, J = 10.9, 0.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃): δ_C 161.8, 135.97, 135.8, 135.3, 127.1, 120.3, 114.1, 66.98.

HRMS (ESI): calcd for $C_{10}H_{10}Cl_2NO^+$, (M+H)⁺, 230.0134, found, 230.0128.

The reaction was conducted according to the general procedure A using **1e** with DMA as the solvent. The reaction stopped until the starting material was completely consumed, the corresponding product **2e** was purified by flash column chromatography with PE/EA (30:1-10:1) to provide **2e** in 74% yield, colorless oil, 19.1 mg.

¹**H** NMR (400 MHz, CDCl₃): δ_H 7.33-7.28 (m, 3H), 7.22 -7.17 (m, 1H), 6.00 (s, 1H), 4.68 (dtd, J = 13.3, 3.6, 1.3 Hz, 1H), 2.87 (ddd, J = 14.5, 12.4, 2.1 Hz, 1H), 2.78-2.71 (m, 2H), 2.06-1.94 (m, 2H), 1.87-1.80 (m, 1H), 1.47-1.36 (m, 1H).

¹³C NMR (101 MHz, CDCl₃):δ_C 162.9, 141.2, 141.17, 131.0, 129.4, 127.99, 126.7, 63.8, 48.8, 34.4, 28.6, 26.4.

HRMS (ESI): calcd for C₁₂H₁₄Cl₂NO⁺, (M+H)⁺, 258.0447, found, 258.0456.

The reaction was conducted according to the general procedure A using **1f** with DMA as the solvent. The reaction stopped until the starting material was completely consumed, the corresponding product **2e** was purified by flash column chromatography with PE/EA (30:1-10:1) to provide **2f** in 43% yield with the conversion of 69%, colorless oil, 11.6 mg (24.3 mg with the recovery of starting material, 91% brsm).

¹**H NMR (400 MHz, CDCl₃)**: δ_H 7.97-7.89 (m, 2H), 7.86 (dd, J = 6.8, 2.7 Hz, 1H), 7.60-7.52 (m, 2H), 7.49-7.43 (m, 2H), 6.75 (s, 1H), 5.98 (s, 1H), 4.96 (d, J = 5.4 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃): δ_C 163.9, 134.1, 132.0, 131.4, 129.3, 129.1, 127.1, 126.97, 126.4, 125.5, 123.2, 66.5, 42.7.

HRMS (ESI): calcd for C₁₃H₁₂Cl₂NO⁺, (M+H)⁺, 268.0290, found, 268.0285.

The reaction was conducted according to the general procedure A using 1g with DMA as the solvent. The reaction stopped until the starting material was completely consumed, the corresponding product 2g was purified by flash column chromatography with PE/EA (30:1-10:1) to provide 2g in 51% yield with the conversion of 85%, colorless oil, 11.1 mg (15.4 mg with the recovery of starting material, 71%brsm).

¹**H NMR (400 MHz, CDCl₃):** δ_H 7.41-7.28 (m, 5H), 6.77 (s, 1H), 5.98 (s, 1H), 4.52 (d, J = 5.8 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃): δ_C 164.2, 136.8, 129.1, 128.2, 127.9, 66.5, 44.4. HRMS (ESI): calcd for C₉H₁₀Cl₂NO⁺, (M+H)⁺, 218.0134, found, 218.0139.

The reaction was conducted according to the general procedure A using **1h** with DMA as the solvent. The reaction stopped until the starting material was completely consumed, the corresponding product **2h** was purified by flash column chromatography with PE/EA (30:1-10:1) to provide **2h** in 62% yield, colorless oil, 18.2 mg.

¹H NMR (400 MHz, CDCl₃): δ_H 7.39-7.31 (m, 6H), 7.26 -7.23 (m, 4H), 7.04 (d, J = 8.0 Hz, 1H), 6.19 (d, J = 8.0 Hz, 1H), 5.96 (s, 1H).

¹³C NMR (101 MHz, CDCl₃): δ_C 163.4, 140.3, 129.1, 128.1, 127.5, 66.6, 57.8.

HRMS (ESI): calcd for C₁₅H₁₄Cl₂NO⁺, (M+H)⁺, 294.0447, found, 294.0450.

The reaction was conducted according to the general procedure A using **1i** with DMA as the solvent. The reaction stopped until the starting material was completely consumed, the corresponding product **2i** was purified by flash column chromatography with PE/EA (30:1-10:1) to provide **2i** in 48% yield with the conversion of 77%, colorless oil, 14.9 mg (25.2 mg with the recovery of starting material, 82% brsm).

¹**H NMR (400 MHz, CDCl₃)**: δ_H 7.42- 7.30 (m, 6H), 7.22 -7.16 (m, 4H), 6.28 (s, 1H), 4.62 (d, J = 4.5 Hz, 4H).

¹³C NMR (101 MHz, CDCl₃): *δ*_C 164.6, 135.95, 135.2, 129.3, 128.97, 128.3, 128.0, 126.7, 65.4, 50.4, 49.4.

HRMS (ESI): calcd for C₁₆H₁₆Cl₂NO⁺, (M+H)⁺, 308.0603, found, 308.0610.

The reaction was conducted according to the general procedure A using 1j with DMA as the solvent. The reaction stopped until the starting material was completely consumed, the corresponding product 2j was purified by flash column chromatography with PE/EA (30:1-10:1) to provide 2j in 43% yield , colorless oil, 8.5 mg.

¹**H NMR (400 MHz, CDCl₃)**: δ_H 6.25 (s, 0.4H), 6.23 (s, 0.55H), 3.41 (dd, J = 15.4, 8.1 Hz, 2H), 3.17 (s, 1.75H), 2.99 (s, 1.25H), 1.68-1.60 (m, 1H), 1.59-1.51 (m, 1H), 1.34 (tt, J = 14.6, 7.3 Hz, 2H), 0.95 (dt, J = 14.5, 7.3 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃, major): major δ_C 163.2, 65.6, 49.2, 35.6, 28.8, 19.9, 13.8.
 ¹³C NMR (101 MHz, CDCl₃, minor): δ_C 163.5, 64.8, 50.1, 34.6, 30.4, 19.9, 13.8.

HRMS (ESI): calcd for C₇H₁₄Cl₂NO⁺, (M+H)⁺, 198.0447, found, 198.0456.

The reaction was conducted according to the general procedure A using 1k with DMA as the solvent. The reaction stopped until the starting material was completely consumed, the corresponding product 2k was purified by flash column chromatography with PE/EA (30:1-10:1) to provide 2k in 64% yield, colorless oil, 14.5 mg.

¹H NMR (400 MHz, CDCl₃): δ_H 6.21 (s, 1H), 3.89-3.81 (m, 1H), 3.79-3.69 (m, 1H), 3.52 (dtt, J = 20.7, 6.9, 3.6 Hz, 3H), 3.36 (s, 3H), 1.96-1.80 (m, 2H), 1.78-1.65 (m, 2H). ¹³C NMR (101 MHz, CDCl₃): δ_C 162.1, 74.5, 65.97, 55.99, 43.4, 40.5, 30.7, 29.95.

HRMS (ESI): calcd for $C_8H_{14}Cl_2NO_2^+$, (M+H)⁺, 226.0396, found, 226.0395.

The reaction was conducted according to the general procedure A using **11** with DMA as the solvent. The reaction stopped until the starting material was completely consumed, the corresponding product **21** was purified by flash column chromatography with PE/EA (30:1-10:1) to provide **21** in 18% yield, colorless oil, 3.8 mg.

¹**H** NMR (400 MHz, CDCl₃): δ_H δ 6.19 (s, 0.41H), 6.17 (s, 0.53H), 3.35 (dd, J = 15.3, 7.8 Hz, 2H), 3.11 (s, 1.77H), 2.93 (s, 1.24H), 1.64-1.54 (m, 1H), 1.53 -1.45 (m, 1H), 1.35-1.21 (m, 2H), 0.89 (dt, J = 11.1, 7.3 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) Major: δ_C 163.3, 65.7, 49.4, 35.7, 34.8, 28.9, 19.97, 13.95. ¹³C NMR (101 MHz, CDCl₃) Minor: δ_C 163.6, 64.95, 50.3, 35.7, 30.6, 20.0, 19.97, 13.9. **HRMS (ESI)**: calcd for C₈H₁₃Cl₂NNaO⁺, (M+Na)⁺, 232.0266, found, 232.0269.

The reaction was conducted according to the general procedure A using **1m** with DMA as the solvent. The reaction stopped until the starting material was completely consumed, the corresponding product **2m** was purified by flash column chromatography with PE/EA (30:1-10:1) to provide **2m** in 43% yield with the conversion of 77%, colorless oil, 10.8 mg (18.2 mg with the recovery of starting material, 73% brsm).

¹**H NMR (400 MHz, CDCl₃)**: δ_H 6.16 (s, 1H), 3.84 (d, J = 14.8 Hz, 1H), 3.31 (tt, J = 10.8, 5.4 Hz, 2H), 2.16-2.08 (m, 1H), 1.99-1.88 (m, 1H), 1.78-1.69 (m, 4H), 1.66-1.53 (m, 2H), 1.42 (qt, J = 12.3, 3.3 Hz, 1H), 1.30 (tt, J = 12.9, 3.8 Hz, 2H), 1.20-1.13 (m, 1H), 1.10-1.01 (m, 1H).

¹³C NMR (101 MHz, CDCl₃): δ_C 163.1, 66.2, 62.6, 39.97, 37.9, 32.9, 30.1, 26.2, 25.8, 25.4, 22.7. HRMS (ESI): calcd for C₁₁H₁₈Cl₂NO⁺, (M+H)⁺, 250.0760, found, 250.0761.

The reaction was conducted according to the general procedure A using 1n with DMA as the solvent. The reaction stopped until the starting material was completely consumed, the corresponding product 2n was purified by flash column chromatography with PE/EA (30:1-10:1) to provide 2n in 22% yield, colorless oil, 4.3 mg.

¹**H NMR (400 MHz,CDCl₃)**: δ_H 5.95 (s, 1H), 4.39 (t, J = 6.3 Hz, 2H), 2.33 (td, J = 6.9, 2.7 Hz, 2H), 2.00-1.97 (m, 1H), 1.96 -1.90 (m, 2H).

¹³C NMR (101 MHz,CDCl₃): δ_C 164.6, 82.5, 69.6, 66.1, 64.4, 27.3, 15.1.

HRMS (ESI): calcd for C₇H₉Cl₂O₂⁺, (M+H)⁺, 194.9974, found, 194.9971.

The reaction was conducted according to the general procedure A using **10** with DMA as the solvent. The reaction stopped until the starting material was completely consumed, the corresponding product **20** was purified by flash column chromatography with PE/EA (30:1-10:1) to provide **20** in 63% yield, colorless oil, 13.8 mg.

¹H NMR (400 MHz, CDCl₃): δ_H 7.42 -7.35 (m, 5H), 5.98 (s, 1H), 5.29 (s, 2H). ¹³C NMR (101 MHz, CDCl₃): δ_C 164.5, 134.4, 129.1, 128.9, 128.6, 69.2, 64.4. HRMS (ESI): calcd for C₉H₉Cl₂O₂⁺, (M+H)⁺, 218.9974, found, 218.9968.

The reaction was conducted according to the general procedure B using **1a** with DMA as the solvent. The reaction stopped until the starting material was completely consumed, the corresponding product **3a** was purified by flash column chromatography with PE/EA (30:1-10:1) to provide **3a** in 67% yield (95% **D**), colorless oil, 15.7 mg.

¹**H NMR (400 MHz, CDCl₃)**: δ_H 8.13 (s, 1H), 7.47-7.44 (m, 2H), 6.91-6.88 (m, 2H), 6.05 (s, 0.05H), 3.80 (s, 3H).

HRMS (ESI): calcd for C₉H₉DCl₂NO₂⁺, (M+H)⁺, 235.0146, found, 235.0155.

The reaction was conducted according to the general procedure B using **1b** with DMA as the solvent. The reaction stopped until the starting material was completely consumed, the corresponding product **3b** was purified by flash column chromatography with PE/EA (30:1-10:1) to provide **3b** in 42% yield (74% **D**), colorless oil, 15.3 mg.

¹H NMR (400 MHz, CDCl₃): δ_H 8.59 (s, 1H), 8.13 (d, J = 8.8 Hz, 1H), 7.82 (d, J = 2.3 Hz, 1H), 7.38 (dd, J = 8.9, 2.4 Hz, 1H), 6.06 (s, 0.26H). HRMS (ESI): calcd for C₈H₆DCl₃NO⁺, (M+H)⁺, 364.8617, found, 364.8610.

The reaction was conducted according to the general procedure B using 1c with DMA as the solvent. The reaction stopped until the starting material was completely consumed, the corresponding product 3c was purified by flash column chromatography with PE/EA (30:1-10:1) to provide 3c in 47% yield (89% D), colorless oil, 9.6 mg.

¹H NMR (400 MHz, CDCl₃): δ_H 8.04 (s, 1H), 7.49 (d, J = 7.7 Hz, 2H), 7.31 (t, J = 8.0 Hz, 2H), 7.13 (t, J = 7.4 Hz, 1H), 5.97 (s, 0.11H).

HRMS (ESI): calcd for $C_8H_7DCl_2NO^+$, $(M+H)^+$, 205.0040, found, 205.0037.

The reaction was conducted according to the general procedure B using 1d with DMA as the solvent. The reaction stopped until the starting material was completely consumed, the corresponding product **3b** was purified by flash column chromatography with PE/EA (30:1-10:1) to provide **3d** in 44% yield (92% **D**), colorless oil, 10.1 mg.

¹H NMR (400 MHz, CDCl₃): δ_H 8.15 (s, 1H), 7.54-7.50 (m, 2H), 7.44-7.40 (m, 2H), 6.69 (dd, J = 17.6, 10.9 Hz, 1H), 5.73 (dd, J = 17.6, 0.8 Hz, 1H), 6.05 (s, 0.08H), 5.25 (dd, J = 10.9, 0.9 Hz, 1H). HRMS (ESI): calcd for C₁₀H₉DCl₂NO⁺, (M+H)⁺, 231.0197, found, 231.0200.

The reaction was conducted according to the general procedure B using 1e with DMA as the solvent. The reaction stopped until the starting material was completely consumed, the corresponding product 3e was purified by flash column chromatography with PE/EA (30:1-10:1) to provide 3e in 33% yield (92% **D**), colorless oil, 8.5 mg.

¹**H NMR (400 MHz, CDCl₃):** δ_H 7.33-7.27 (m, 3H), 7.21-7.18 (m, 1H), 6.00 (s, 0.08H), 4.68 (dtd, J = 13.3, 3.5, 1.3 Hz, 1H), 2.86 (ddd, J = 14.5, 12.5, 2.1 Hz, 1H), 2.78-2.70 (m, 2H), 2.01 (ddt, J = 15.0, 9.4, 3.2 Hz, 2H), 1.87-1.81 (m, 1H), 1.46-1.36 (m, 1H).

HRMS (ESI): calcd for C₁₂H₁₃DCl₂NO⁺, (M+H)⁺, 259.0510, found, 259.0517.

The reaction was conducted according to the general procedure B using **1f** with DMA as the solvent. The reaction stopped until the starting material was completely consumed, the corresponding product **3e** was purified by flash column chromatography with PE/EA (30:1-10:1) to provide **3f** in 55% yield (91% **D**), colorless oil, 14.8 mg.

¹**H NMR (400 MHz, CDCl₃):** δ_H 7.96-7.84 (m, 3H), 7.60 - 7.52 (m, 2H), 7.48-7.43 (m, 2H), 6.76 (s, 1H), 6.00 (s, 0.09H), 4.95 (d, J = 5.5 Hz, 2H).

HRMS (ESI): calcd for C₁₃H₁₁DCl₂NO⁺, (M+H)⁺, 269.0353, found, 269.0351.

The reaction was conducted according to the general procedure B using 1g with DMA as the solvent. The reaction stopped until the starting material was completely consumed, the corresponding product **3e** was purified by flash column chromatography with PE/EA (30:1-10:1) to provide **3g** in 56% yield (77% **D**), colorless oil, 12.3 mg.

¹**H NMR (400 MHz, CDCl₃):** δ_H 7.39-7.27 (m, 5H), 6.84 (s, 1H), 6.00 (s, 0.23H), 4.51 (d, J = 5.8 Hz, 2H).

HRMS (ESI): calcd for C₉H₉DCl₂NO⁺, (M+H)⁺, 219.0197, found, 219.0190.

$$\begin{array}{c} H \\ Ph \\ H \\ Ph \\ Ph \\ O \\ \mathbf{3h} \end{array}$$

The reaction was conducted according to the general procedure B using **1h** with DMA as the solvent. The reaction stopped until the starting material was completely consumed, the corresponding product **3h** was purified by flash column chromatography with PE/EA (30:1-10:1) to provide **3h** in 24% yield (70% D), colorless oil, 7.1 mg.

¹**H NMR (400 MHz, CDCl₃)**: δ_H 7.41-7.29 (m, 6H), 7.27-7.20 (m, 4H), 7.00 (s, 1H), 6.19 (d, J = 8.0 Hz, 1H), 6.00 (s, 0.3H).

HRMS (ESI): calcd for C₁₅H₁₃DCl₂NO⁺, (M+H)⁺, 295.0510, found, 295.0516.

The reaction was conducted according to the general procedure B using 1i with DMA as the solvent. The reaction stopped until the starting material was completely consumed, the corresponding product 3e was purified by flash column chromatography with PE/EA (30:1-10:1) to provide 3i in 92% yield (90% **D**), colorless oil, 28.4 mg.

¹H NMR (400 MHz, CDCl₃): δ_H 7.42-7.30 (m, 6H), 7.22-7.16 (m, 4H), 6.28 (s, 0.10H), 4.62 (d, J = 4.6 Hz, 4H).

HRMS (ESI): calcd for C₁₆H₁₅DCl₂NO⁺, (M+H)⁺, 309.0666, found, 309.0670.

The reaction was conducted according to the general procedure B using 1k with DMA as the solvent. The reaction stopped until the starting material was completely consumed, the corresponding product 3j was purified by flash column chromatography with PE/EA (30:1-10:1) to provide 3j in 35% yield (91% **D**), colorless oil, 7.9 mg.

¹**H NMR (400 MHz, CDCl₃):** δ_H 6.21 (s, 0.09H), 3.83 (ddd, J = 13.8, 8.1, 3.6 Hz, 1H), 3.74 (ddd, J = 12.5, 8.2, 3.7 Hz, 1H), 3.51 (dtq, J = 20.4, 6.9, 3.6 Hz, 3H), 3.35 (s, 3H), 1.93-1.81 (m, 2H), 1.69 (dddd, J = 20.9, 13.5, 6.7, 3.5 Hz, 2H).

HRMS (ESI): calcd for C₈H₁₃DCl₂NO₂⁺, (M+H)⁺, 227.0459, found, 227.0461.

The reaction was conducted according to the general procedure B using 1m with DMA as the solvent. The reaction stopped until the starting material was completely consumed, the corresponding product 3k was purified by flash column chromatography with PE/EA (30:1-10:1) to provide 3k in 22% yield (84% **D**), colorless oil, 5.5 mg.

¹**H NMR (400 MHz, CDCl₃):** δ_H 6.16 (s, 0.16H), 3.87 (s, 1H), 3.33 (td, J = 14.1, 11.0, 3.6 Hz, 2H), 2.19-2.10 (m, 1H), 1.99-1.90 (m, 1H), 1.78-1.72 (m, 3H), 1.68-1.54 (m, 3H), 1.43 (dt, J = 12.8, 3.4 Hz, 1H), 1.28 (ddd, J = 14.2, 7.0, 2.5 Hz, 2H), 1.19-1.06 (m, 2H).

HRMS (ESI): calcd for C₁₁H₁₇DCl₂NO⁺, (M+H)⁺, 251.0823, found, 251.0832.

The reaction was conducted according to the general procedure B using **10** with DMA as the solvent. The reaction stopped until the starting material was completely consumed, the corresponding product **31** was purified by flash column chromatography with PE/EA (30:1-10:1) to provide **31** in 24% yield (87% **D**), colorless oil, 5.3 mg.

¹H NMR (400 MHz, CDCl₃): δ_H 7.39 (d, J = 2.9 Hz, 5H), 6.00 (s, 0.17H), 5.29 (s, 2H). HRMS (ESI): calcd for C₉H₈DCl₂NO₂⁺, (M+H)⁺, 220.0037, found, 220.0029.

6. Synthetic applications.

a) Gram Scale-up Reaction

In a sealed tube, **1a** (2.0 mmol), CySH (6.0 mol %), HCO_2K (4.0 mmol) were dissolved in DMA (10.0 mL). The open flask was caped and degassed with nitrogen for three times at -78 °C. Subsequently, the reaction mixture was irradiated with 12 W*2 blue LEDs at rt until the **1a** was completely consumed (monitored by TLC). The reaction solvent was distill under vacuum after the reaction finished, Finally, the residue was purified by flash column chromatography on silica gel with petroleum ether and ethyl acetate to afford the corresponding product **2a** in 86% yield.

b) Late-stage alkylation of complex molecules

Synthesis of 4a:

Synthesis of Citronellol derivative: Citronellol (468 mg, 3.0 mmol), Et_3N (606 mg, 6.0 mmol) were dissolved in DCM (20 mL) at 0-5 °C, trichloroacetyl chloride (598.3 mg, 3.3 mmol) was added with dropwise. Subsequently, the reaction mixture was removed to room temperature, and stirring overnight at the same temperature. When the starting material was completely consumed, saturated NH₄Cl (20 ml) was added, extracted with DCM (20 ml*3), the combined phase was washed with brine, dried over MgSO₄, concentrated and purified by chromatography on silica gel to give the citronellol derivative.

Characterization data of Citronellol derivative:

¹**H NMR (400 MHz, CDCl₃)**: δ_H 5.08 (t, J = 7.1 Hz, 1H), 4.46-4.33 (m, 2H), 2.12-1.92 (m, 2H), 1.81 (qd, J = 7.0, 4.6 Hz, 1H), 1.68 (s, 3H), 1.63-1.51 (m, 5H), 1.37 (ddd, J = 14.5, 8.1, 4.2 Hz, 1H), 1.26-1.18 (m, 1H), 0.95 (d, J = 6.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ_C 162.2, 131.7, 124.4, 90.1, 68.2, 36.9, 35.1, 29.4, 25.9, 25.5, 19.5, 17.8.

Synthesis of 4a: In a 10 mL Schlenk tube with a stirring bar, citronellol derivative (0.1 mmol), CySH (6.0% mmol), HCO₂K (0.2 mmol) were dissolved in DMA (1.0 mL). The Schlenk tube was cooled to - 78 °C and degassed with nitrogen for 3 times. And then, the reaction system was placed to 12 W*2 blue LEDs at room temperature. The reaction time determined to be completed by the TLC analysis. After the reaction finished, the reaction solvent was distill under vacuum and purified by flash column

chromatography on silica gel with petroleum ether (PE) and ethyl acetate (EA) to afford the desired product **4a** in 52% yield.

Characterization data of 4a:

¹**H NMR (400 MHz, CDCl₃)**: δ_H 5.93 (s, 1H), 5.08 (ddq, J = 8.6, 5.7, 1.5 Hz, 1H), 4.36-4.27 (m, 2H), 2.07-1.91 (m, 2H), 1.76 (dtd, J = 13.4, 7.2, 4.8 Hz, 1H), 1.68 (q, J = 1.4 Hz, 3H), 1.60 (d, J = 1.3 Hz, 3H), 1.57-1.48 (m, 2H), 1.36 (dddd, J = 13.4, 9.3, 6.6, 5.2 Hz, 1H), 1.25-1.17 (m, 1H), 0.93 (d, J = 6.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ_C 164.6, 131.6, 124.4, 66.2, 64.4, 36.9, 35.1, 29.2, 25.7, 25.3, 19.3, 17.7.

HRMS (ESI): calcd for C₁₂H₂₁Cl₂O₂⁺, (M+H)⁺, 267.0913, found, 267.0907.

Synthesis of 4b:

Synthesis of Perillyl alcohol derivative: Perillyl alcohol (456 mg, 3.0 mmol), Et₃N (606 mg, 6.0 mmol) were dissolved in DCM (20 mL) at 0-5 °C, trichloroacetyl chloride (598.3 mg, 3.3 mmol) was added with dropwise. Subsequently, the reaction mixture was removed to room temperature, and stirring overnight at the same temperature. When the starting material was completely consumed, saturated NH₄Cl (20 ml) was added, extracted with DCM (20 ml*3), the combined phase was washed with brine, dried over MgSO₄, concentrated and purified by chromatography on silica gel to give the Perillyl alcohol derivative.

Characterization data of Perillyl alcohol derivative:

¹H NMR (400 MHz, CDCl₃): δ_H 5.90 (s, 1H), 4.74 (t, J = 11.2 Hz, 4H), 2.17 (ddd, J = 13.7, 10.7, 4.0 Hz, 4H), 2.05-1.94 (m, 1H), 1.92-1.79 (m, 1H), 1.76-1.64 (m, 3H), 1.60-1.42 (m, 1H). ¹³C NMR (101 MHz, CDCl₃): δ_C 161.97, 149.3, 131.1, 128.4, 109.1, 90.2, 73.3, 40.7, 30.6, 27.3, 26.2, 20.9.

Synthesis of 4b: In a 10 mL Schlenk tube with a stirring bar, Perillyl alcohol derivative (0.1 mmol), CySH (6.0% mmol), HCO₂K (0.2 mmol) were dissolved in DMA (1.0 mL). The Schlenk tube was cooled to -78 °C and degassed with nitrogen for 3 times. And then, the reaction system was placed to 12 W*2 blue LEDs at room temperature. The reaction time determined to be completed by the TLC analysis. After the reaction finished, the reaction solvent was distill under vacuum and purified by flash column chromatography on silica gel with petroleum ether (PE) and ethyl acetate (EA) to afford the desired product **4b** in 36% yield.

¹H NMR (400 MHz, CDCl₃): δ_H 5.95 (s, 1H), 5.85 (dt, J = 3.6, 1.7 Hz, 1H), 4.75-4.71 (m, 2H), 4.67-4.64 (m, 2H), 2.24-2.15 (m, 2H), 2.11 (dd, J = 7.1, 3.0 Hz, 2H), 2.00 (dddd, J = 14.2, 7.3, 3.3, 1.7 Hz, 1H), 1.86 (dtt, J = 12.7, 4.2, 2.2 Hz, 1H), 1.74 (t, J = 1.1 Hz, 3H), 1.54-1.46 (m, 1H). ¹³C NMR (101 MHz, CDCl₃): δ_C 164.5, 149.3, 131.3, 127.8, 108.96, 71.4, 64.4, 40.6, 30.5, 27.2, 26.2,

¹⁵C NMR (101 MHz, CDCl₃): ∂_C 164.5, 149.3, 131.3, 127.8, 108.96, 71.4, 64.4, 40.6, 30.5, 27.2, 26.2, 20.8.

HRMS (ESI): calcd for C₁₂H₁₇Cl₂O₂⁺, (M+H)⁺, 263.0600, found, 263.0607.

Synthesis of 4c:

Synthesis of L-Menthol derivative: L-Menthol (468 mg, 3.0 mmol), Et_3N (606 mg, 6.0 mmol) were dissolved in DCM (20 mL) at 0-5 °C, trichloroacetyl chloride (598.3 mg, 3.3 mmol) was added with dropwise. Subsequently, the reaction mixture was removed to room temperature, and stirring overnight at the same temperature. When the starting material was completely consumed, saturated NH₄Cl (20 ml) was added, extracted with DCM (20 ml*3), the combined phase was washed with brine, dried over MgSO₄, concentrated and purified by chromatography on silica gel to give the L-Menthol derivative.

Characterization data of L-Menthol derivative:

¹**H NMR (400 MHz, CDCl₃)**: δ_H 4.74 (td, J = 11.0, 4.4 Hz, 1H), 2.02 (ddd, J = 9.6, 7.6, 4.9 Hz, 1H), 1.91 (dtd, J = 13.9, 7.0, 2.8 Hz, 1H), 1.67 (tdd, J = 9.0, 6.1, 3.1 Hz, 2H), 1.48 (qdd, J = 12.9, 6.4, 3.1 Hz, 2H), 1.13 -0.96 (m, 2H), 0.93-0.79 (m, 7H), 0.73 (d, J = 7.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ_C 161.6, 90.5, 80.7, 47.1, 39.9, 34.1, 31.6, 26.3, 23.4, 22.1, 20.8, 16.3.

Synthesis of 4c: In a 10 mL Schlenk tube with a stirring bar, L-Menthol derivative (0.1 mmol), CySH (6.0% mmol), HCO_2K (0.2 mmol) were dissolved in DMA (1.0 mL). The Schlenk tube was cooled to -78 °C and degassed with nitrogen for 3 times. And then, the reaction system was placed to 12 W*2 blue LEDs at room temperature. The reaction time determined to be completed by the TLC analysis. After the reaction finished, the reaction solvent was distill under vacuum and purified by flash column chromatography on silica gel with petroleum ether (PE) and ethyl acetate (EA) to afford the desired product **4c** in 65% yield.

¹H NMR (400 MHz, CDCl₃): δ_H 5.91 (s, 1H), 4.77 (dt, J = 10.9, 5.5 Hz, 1H), 2.04 (t, J = 6.1 Hz, 1H), 1.93 (d, J = 2.8 Hz, 1H), 1.75-1.66 (m, 2H), 1.56-1.46 (m, 2H), 1.13-1.03 (m, 2H), 0.94-0.92 (m, 3H), 0.92-0.89 (m, 3H), 0.88 (d, J = 3.7 Hz, 1H), 0.77 (d, J = 7.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ_C 164.3, 78.4, 64.9, 47.1, 40.2, 34.2, 31.6, 26.3, 23.5, 22.1, 20.8, 16.3.

HRMS (ESI): calcd for $C_{12}H_{21}Cl_2O_2^+$, (M+H)⁺, 267.0913, found, 267.0917.

Synthesis of 4d:

Synthesis of Diosgenin derivative: Diosgenin (1.2 g, 3.0 mmol), Et_3N (606 mg, 6.0 mmol) were dissolved in DCM (20 mL) at 0-5 °C, trichloroacetyl chloride (598.3 mg, 3.3 mmol) was added with dropwise. Subsequently, the reaction mixture was removed to room temperature, and stirring overnight at the same temperature. When the starting material was completely consumed, saturated NH₄Cl (20 ml) was added, extracted with DCM (20 ml*3), the combined phase was washed with brine, dried over MgSO₄, concentrated and purified by chromatography on silica gel to give the Diosgenin derivative.

Characterization data of Diosgenin derivative:

¹**H NMR (400 MHz, CDCl₃)**: δ_H 5.36 (d, J = 5.1 Hz, 1H), 4.77-4.62 (m, 1H), 4.35 (dd, J = 14.9, 7.5 Hz, 1H), 3.48-3.36 (m, 1H), 3.31 (t, J = 10.9 Hz, 1H), 2.46-2.34 (m, 2H), 2.03-1.86 (m, 4H), 1.79 (dd, J = 13.7, 6.9 Hz, 1H), 1.74-1.65 (m, 3H), 1.59-1.50 (m, 4H), 1.48-1.30 (m, 4H), 1.24 -1.13 (m, 6H), 1.12-1.06 (m, 2H), 1.00 (s, 3H), 0.91 (d, J = 6.9 Hz, 3H), 0.72 (d, J = 5.0 Hz, 4H).

¹³C NMR (101 MHz, CDCl₃): *δ*_C 161.4, 138.7, 123.4, 109.3, 90.2, 80.8, 79.7, 66.9, 62.1, 56.4, 49.9, 41.6, 40.3, 39.7, 37.3, 36.7, 36.7, 32.1, 31.8, 31.4, 31.4, 30.3, 28.8, 27.1, 20.9, 19.3, 17.2, 16.3, 14.5.

Synthesis of 4d: In a 10 mL Schlenk tube with a stirring bar, L-Menthol derivative (0.1 mmol), CySH (6.0% mmol), HCO₂K (0.2 mmol) were dissolved in DMA (1.0 mL). The Schlenk tube was cooled to - 78 °C and degassed with nitrogen for 3 times. And then, the reaction system was placed to 12 W*2 blue LEDs at room temperature. The reaction time determined to be completed by the TLC analysis. After the reaction finished, the reaction solvent was distill under vacuum and purified by flash column chromatography on silica gel with petroleum ether (PE) and ethyl acetate (EA) to afford the desired product 4d in 25% yield.

¹**H NMR (400 MHz, CDCl₃)**: δ_H 5.90 (s, 1H), 5.41 (d, J = 4.8 Hz, 1H), 4.71 (tdd, J = 11.8, 7.3, 4.4 Hz, 1H), 4.41 (dd, J = 14.9, 7.5 Hz, 1H), 3.51-3.43 (m, 1H), 3.37 (t, J = 10.9 Hz, 1H), 2.40 (d, J = 7.7 Hz, 2H), 2.05-1.96 (m, 2H), 1.95-1.83 (m, 3H), 1.81-1.69 (m, 3H), 1.67 (d, J = 4.7 Hz, 1H), 1.63-1.56 (m, 4H), 1.55-1.38 (m, 4H), 1.32-1.24 (m, 2H), 1.21-1.17 (m, 1H), 1.12 (dd, J = 12.2, 3.8 Hz, 2H), 1.05 (s, 3H), 0.97 (d, J = 6.9 Hz, 3H), 0.78 (t, J = 3.1 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃): δ_C 164.1, 139.0, 123.3, 109.4, 80.9, 77.7, 66.99, 64.7, 62.2, 56.5, 50.0, 41.8, 40.4, 39.8, 37.6, 36.9, 36.8, 32.2, 31.97, 31.5, 31.5, 30.4, 28.9, 27.4, 20.97, 19.5, 17.3, 16.4, 14.7. **HRMS (ESI)**: calcd for C₂₉H₄₃Cl₂O₄⁺, (M+H)⁺, 525.2533, found, 525.2531.

Synthesis of 4e:

Synthesis of Pregnenolone derivative: Pregnenolone (0.948 g, 3.0 mmol), Et₃N (606 mg, 6.0 mmol) were dissolved in DCM (20 mL) at 0-5 °C, trichloroacetyl chloride (598.3 mg, 3.3 mmol) was added with dropwise. Subsequently, the reaction mixture was removed to room temperature, and stirring overnight at the same temperature. When the starting material was completely consumed, saturated NH₄Cl (20 ml) was added, extracted with DCM (20 ml*3), the combined phase was washed with brine, dried over MgSO₄, concentrated and purified by chromatography on silica gel to give the Pregnenolone derivative.

Characterization data of Pregnenolone derivative:

¹**H NMR (400 MHz, CDCl₃)**: δ_H 5.42 (d, J = 5.1 Hz, 1H), 4.80-4.68 (m, 1H), 2.53 (t, J = 8.9 Hz, 1H), 2.49-2.37 (m, 2H), 2.19 (dd, J = 11.0, 9.4 Hz, 1H), 2.14-2.09 (m, 3H), 1.98 (dddd, J = 20.3, 13.4, 7.9, 3.2 Hz, 4H), 1.82-1.72 (m, 1H), 1.70-1.57 (m, 4H), 1.57-1.43 (m, 3H), 1.26-1.10 (m, 3H), 1.04 (s, 3H), 1.01 (dd, J = 11.1, 4.5 Hz, 1H), 0.63 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ_C 209.5, 161.5, 138.8, 123.5, 90.3, 79.7, 63.7, 56.9, 49.9, 44.1, 38.9, 37.4, 36.9, 36.7, 31.9, 31.7, 27.2, 24.6, 22.95, 21.2, 19.4, 13.3.

Synthesis of 4e: In a 10 mL Schlenk tube with a stirring bar, L-Menthol derivative (0.1 mmol), CySH (6.0% mmol), HCO₂K (0.2 mmol) were dissolved in DMA (1.0 mL). The Schlenk tube was cooled to - 78 °C and degassed with nitrogen for 3 times. And then, the reaction system was placed to 12 W*2 blue LEDs at room temperature. The reaction time determined to be completed by the TLC analysis. After the reaction finished, the reaction solvent was distill under vacuum and purified by flash column chromatography on silica gel with petroleum ether (PE) and ethyl acetate (EA) to afford the desired product 4e in 38% yield.

¹**H NMR (400 MHz, CDCl₃)**: δ_H 5.90 (s, 1H), 5.40 (dq, J = 5.1, 1.6 Hz, 1H), 4.76-4.67 (m, 1H), 2.53 (t, J = 8.9 Hz, 1H), 2.42-2.38 (m, 2H), 2.21-2.15 (m, 1H), 2.12 (s, 3H), 2.07-1.99 (m, 2H), 1.95-1.87 (m, 2H), 1.74-1.57 (m, 6H), 1.50 (d, J = 4.2 Hz, 1H), 1.44 (t, J = 1.9 Hz, 1H), 1.28-1.10 (m, 4H), 1.03 (s, 3H), 0.62 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ_C 209.5, 163.98, 138.9, 123.1, 77.5, 64.6, 63.7, 56.8, 49.8, 43.96, 38.8, 37.5, 36.8, 36.6, 31.8, 31.8, 31.6, 27.2, 24.5, 22.8, 21.1, 19.3, 13.2.

HRMS (ESI): calcd for $C_{23}H_{33}Cl_2O_3^+$, (M+H)⁺, 427.1801, found, 427.1810.

Synthesis of 4f:

Synthesis of Stigmasterol derivative: Stigmasterol (1.248 g, 3.0 mmol), Et₃N (606 mg, 6.0 mmol) were dissolved in DCM (20 mL) at 0-5 °C, trichloroacetyl chloride (598.3 mg, 3.3 mmol) was added with dropwise. Subsequently, the reaction mixture was removed to room temperature, and stirring overnight at the same temperature. When the starting material was completely consumed, saturated NH₄Cl (20 ml) was added, extracted with DCM (20 ml*3), the combined phase was washed with brine, dried over MgSO₄, concentrated and purified by chromatography on silica gel to give the Stigmasterol derivative.

Characterization data of Stigmasterol derivative:

¹**H NMR (400 MHz, CDCl₃)**: δ_H 5.36 (d, J = 5.1 Hz, 1H), 5.09 (dd, J = 15.2, 8.6 Hz, 1H), 4.95 (dd, J = 15.2, 8.7 Hz, 1H), 4.69 (tt, J = 10.9, 5.4 Hz, 1H), 2.54-2.30 (m, 2H), 2.06-1.79 (m, 5H), 1.75-1.57 (m, 2H), 1.52-1.40 (m, 6H), 1.19 (s, 6H), 1.14-1.05 (m, 4H), 0.98 (s, 3H), 0.96 (d, J = 6.7 Hz, 3H), 0.80-0.71 (m, 9H), 0.63 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ_C 161.5, 138.8, 138.4, 129.5, 123.8, 90.4, 79.9, 56.9, 56.1, 51.4, 50.1,
42.4, 40.7, 39.7, 37.5, 36.9, 36.7, 32.0, 31.97, 29.9, 29.1, 27.3, 25.6, 24.5, 21.4, 21.3, 21.2, 19.5, 19.1,
12.4, 12.2.

Synthesis of 4f: In a 10 mL Schlenk tube with a stirring bar, Stigmasterol derivative (0.1 mmol), CySH (6.0% mmol), HCO₂K (0.2 mmol) were dissolved in DMA (1.0 mL). The Schlenk tube was cooled to - 78 °C and degassed with nitrogen for 3 times. And then, the reaction system was placed to 12 W*2 blue LEDs at room temperature. The reaction time determined to be completed by the TLC analysis. After the reaction finished, the reaction solvent was distill under vacuum and purified by flash column chromatography on silica gel with petroleum ether (PE) and ethyl acetate (EA) to afford the desired product 4f in 51% yield.

¹**H NMR (400 MHz, CDCl₃)**: δ_H 5.91 (s, 1H), 5.41 (d, J = 4.9 Hz, 1H), 5.16 (dd, J = 15.2, 8.6 Hz, 1H), 5.02 (dd, J = 15.2, 8.7 Hz, 1H), 4.79-4.65 (m, 1H), 2.41 (dd, J = 8.0, 4.3 Hz, 2H), 1.96 (dddd, J = 17.8, 13.7, 6.8, 3.4 Hz, 5H), 1.70 (ddd, J = 8.2, 6.7, 3.7 Hz, 2H), 1.59-1.52 (m, 3H), 1.52-1.41 (m, 5H), 1.34-1.24 (m, 2H), 1.16 (ddd, J = 12.4, 11.2, 4.0 Hz, 4H), 1.08-0.98 (m, 8H), 0.87-0.82 (m, 4H), 0.80 (d, J = 7.0 Hz, 5H), 0.70 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ_C 164.1, 138.98, 138.4, 129.5, 123.6, 77.8, 64.7, 56.9, 56.1, 51.4, 50.2,
42.4, 40.6, 39.8, 37.7, 36.95, 36.7, 32.0, 31.98, 29.0, 27.4, 25.6, 24.5, 21.4, 21.2, 21.18, 19.4, 19.1, 12.4,
12.2.

HRMS (ESI): calcd for C₃₁H₄₉Cl₂O₂⁺, (M+H)⁺, 523.3104, found, 523.3100.

Synthesis of 4g:

Synthesis of Ergosterol derivative: Ergosterol (1.2 g, 3.0 mmol), Et_3N (606 mg, 6.0 mmol) were dissolved in DCM (20 mL) at 0-5 °C, trichloroacetyl chloride (598.3 mg, 3.3 mmol) was added with dropwise. Subsequently, the reaction mixture was removed to room temperature, and stirring overnight at the same temperature. When the starting material was completely consumed, saturated NH₄Cl (20 ml) was added, extracted with DCM (20 ml*3), the combined phase was washed with brine, dried over MgSO₄, concentrated and purified by chromatography on silica gel to give the Ergosterol derivative.

Characterization data of Ergosterol derivative:

¹**H NMR (400 MHz, CDCl₃):** δ_H 5.62 (dd, J = 5.6, 2.1 Hz, 1H), 5.40 (dt, J = 5.3, 2.4 Hz, 1H), 5.30 – 5.11 (m, 2H), 4.93 -4.77 (m, 1H), 2.71-2.41 (m, 2H), 2.12 -1.93 (m, 5H), 1.86 (dd, J = 12.9, 6.7 Hz, 1H), 1.80-1.58 (m, 5H), 1.52-1.40 (m, 2H), 1.35 (dd, J = 11.7, 4.4 Hz, 2H), 1.31-1.23 (m, 4H), 1.04 (d, J = 6.6 Hz, 3H), 0.99 (s, 3H), 0.92 (d, J = 6.8 Hz, 3H), 0.83 (t, J = 6.4 Hz, 6H), 0.64 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ_C 161.5, 142.1, 137.3, 135.7, 132.2, 121.1, 116.4, 90.4, 78.8, 55.9, 54.7, 46.1, 42.98, 40.6, 39.1, 37.8, 37.2, 36.0, 33.2, 29.9, 28.4, 27.6, 23.1, 21.3, 21.2, 20.1, 19.8, 17.8, 16.3, 12.2.

Synthesis of 4g: In a 10 mL Schlenk tube with a stirring bar, Ergosterol derivative (0.1 mmol), CySH (6.0% mmol), HCO₂K (0.2 mmol) were dissolved in DMA (1.0 mL). The Schlenk tube was cooled to - 78 °C and degassed with nitrogen for 3 times. And then, the reaction system was placed to 12 W*2 blue LEDs at room temperature. The reaction time determined to be completed by the TLC analysis. After the reaction finished, the reaction solvent was distill under vacuum and purified by flash column chromatography on silica gel with petroleum ether (PE) and ethyl acetate (EA) to afford the desired product **4f** in 60% yield.

¹**H NMR (400 MHz, CDCl₃)**: δ_H 5.84 (d, J = 2.7 Hz, 1H), 5.53 (dd, J = 5.6, 2.2 Hz, 1H), 5.33 (dd, J = 5.4, 2.6 Hz, 1H), 5.21-5.05 (m, 2H), 4.76 (tt, J = 11.4, 4.7 Hz, 1H), 2.50 (ddd, J = 14.3, 5.0, 2.2 Hz,

1H), 2.39 (t, J = 12.3 Hz, 1H), 2.03-1.95 (m, 2H), 1.95-1.89 (m, 2H), 1.86-1.74 (m, 3H), 1.71-1.67 (m, 1H), 1.61-1.50 (m, 3H), 1.40 (dd, J = 12.9, 6.6 Hz, 1H), 1.36-1.25 (m, 3H), 1.24-1.17 (m, 3H), 0.97 (d, J = 6.6 Hz, 3H), 0.90 (s, 3H), 0.85 (d, J = 6.8 Hz, 3H), 0.76 (t, J = 6.4 Hz, 6H), 0.56 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ_C 164.1, 142.0, 137.6, 135.7, 132.2, 120.97, 116.4, 76.7, 64.7, 55.9, 54.7, 46.2, 42.99, 40.6, 39.2, 37.9, 37.2, 36.2, 33.3, 28.4, 27.8, 23.1, 21.3, 21.2, 20.1, 19.8, 17.8, 16.3, 12.2.

HRMS (ESI): calcd for C₃₀H₄₅Cl₂O₂⁺, (M+H)⁺, 507.2791, found, 507.2796.

Synthesis of 4g': In a 10 mL Schlenk tube with a stirring bar, Ergosterol derivative (0.1 mmol), CySH (6.0% mmol), HCO₂K (0.2 mmol) , Cy₃P (0.2 mmol), DTBP (1.2 eq.) , D₂O (50 eq.) were dissolved in DMA (1.0 mL), and then D₂O (50 eq.) was added to the reaction mixture. The Schlenk tube was cooled to -78 °C and degassed with nitrogen for 3 times. And then, the reaction system was placed to 12 W*2 blue LEDs at room temperature. The reaction time determined to be completed by the TLC analysis. After the reaction finished, the reaction solvent was distill under vacuum and purified by flash column chromatography on silica gel with petroleum ether (PE) and ethyl acetate (EA) to afford the desired products.

¹**H NMR (400 MHz, CDCl₃):** δ_H 5.92 (s, 0.25H), 5.60 (dd, J = 5.5, 2.1 Hz, 1H), 5.44-5.35 (m, 1H), 5.27-5.14 (m, 2H), 4.83 (ddd, J = 16.1, 11.4, 4.6 Hz, 1H), 2.58 (ddd, J = 14.3, 5.0, 2.1 Hz, 1H), 2.46 (t, J = 12.8 Hz, 1H), 2.10-1.97 (m, 4H), 1.96-1.84 (m, 3H), 1.80-1.65 (m, 4H), 1.62 (dd, J = 9.6, 4.6 Hz, 1H), 1.53-1.42 (m, 2H), 1.40-1.33 (m, 2H), 1.31-1.24 (m, 3H), 1.03 (t, J = 6.6 Hz, 3H), 0.96 (d, J = 10.1 Hz, 3H), 0.92 (d, J = 6.8 Hz, 3H), 0.83 (t, J = 6.4 Hz, 6H), 0.61 (d, J = 19.7 Hz, 3H). **HRMS (ESI)**: calcd for C₃₀H₄₄DCl₂O₂⁺, (M+H)⁺, 508.2854, found, 508.2853.

Synthesis of 4h:

Synthesis of Dehydroabietylamine derivative: Desloratadine (921 mg, 3.0 mmol), Et₃N (606 mg, 6.0 mmol) were dissolved in DCM (20 mL) at 0-5 °C, trichloroacetyl chloride (598.3 mg, 3.3 mmol) was added with dropwise. Subsequently, the reaction mixture was removed to room temperature, and stirring overnight at the same temperature. When the starting material was completely consumed, saturated NH₄Cl (20 ml) was added, extracted with DCM (20 ml*3), the combined phase was washed with brine, dried over MgSO₄, concentrated and purified by chromatography on silica gel to give the Dehydroabietylamine derivative.

Characterization data of Dehydroabietylamine derivative:

¹**H NMR (400 MHz, CDCl₃):** δ_H 7.18 (d, J = 8.2 Hz, 1H), 7.01 (dd, J = 8.1, 1.4 Hz, 1H), 6.90 (s, 1H), 6.74 (s, 1H), 3.45-3.21 (m, 2H), 3.01-2.75 (m, 3H), 2.33 (d, J = 12.8 Hz, 1H), 1.96-1.66 (m, 4H), 1.54 (d, J = 12.8 Hz, 1H), 1.49-1.28 (m, 3H), 1.24 (d, J = 6.8 Hz, 9H), 1.01 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ_C 162.2, 146.8, 145.8, 134.6, 127.0, 124.4, 124.1, 93.1, 52.2, 46.4, 38.4, 38.0, 37.7, 36.4, 33.5, 30.4, 25.5, 24.1, 24.1, 19.3, 18.6, 18.5.

Synthesis of 4h: In a 10 mL Schlenk tube with a stirring bar, Dehydroabietylamine derivative (0.1 mmol), CySH (6.0% mmol), HCO₂K (0.2 mmol) were dissolved in DMA (1.0 mL). The Schlenk tube was cooled to -78 °C and degassed with nitrogen for 3 times. And then, the reaction system was placed to 12 W*2 blue LEDs at room temperature. The reaction time determined to be completed by the TLC analysis. After the reaction finished, the reaction solvent was distill under vacuum and purified by flash column chromatography on silica gel with petroleum ether (PE) and ethyl acetate (EA) to afford the desired product **4h** in 85% yield.

¹**H NMR (400 MHz, CDCl₃)**: δ_H 7.19 (d, J = 8.2 Hz, 1H), 7.02 (dd, J = 8.1, 1.5 Hz, 1H), 6.91 (s, 1H), 6.61 (s, 1H), 5.94 (s, 1H), 3.36-3.19 (m, 2H), 3.01-2.78 (m, 3H), 2.33 (d, J = 12.8 Hz, 1H), 1.96-1.67 (m, 4H), 1.40 (dddd, J = 21.7, 18.1, 17.3, 8.5 Hz, 4H), 1.25 (dd, J = 8.4, 4.7 Hz, 9H), 1.00 (s, 3H). ¹³**C NMR (101 MHz, CDCl₃)**: δ_C 164.4, 146.9, 145.8, 134.6, 127.0, 124.3, 124.0, 66.8, 50.9, 46.1, 38.4, 37.9, 37.7, 36.3, 33.5, 30.4, 25.5, 24.1, 24.1, 19.2, 18.7, 18.6.

HRMS (ESI): calcd for C₂₂H₃₂Cl₂NO₂⁺, (M+H)⁺, 396.1855, found, 396.1859.

Synthesis of 4h': In a 10 mL Schlenk tube with a stirring bar, Dehydroabietylamine derivative (0.1 mmol), CySH (6.0% mmol), HCO₂K (0.2 mmol) \cdot Cy₃P (0.2 mmol), DTBP (1.2 eq.) \cdot D₂O (50 eq.) were dissolved in DMA (1.0 mL), and then D₂O (50 eq.) was added to the reaction mixture. The Schlenk tube was cooled to -78 °C and degassed with nitrogen for 3 times. And then, the reaction system was placed to 12 W*2 blue LEDs at room temperature. The reaction time determined to be completed by the TLC analysis. After the reaction finished, the reaction solvent was distill under vacuum and purified by flash column chromatography on silica gel with petroleum ether (PE) and ethyl acetate (EA) to afford the desired products.

¹**H** NMR (400 MHz, CDCl₃): δ_H 7.18 (d, J = 8.2 Hz, 1H), 7.01 (dd, J = 8.2, 2.0 Hz, 1H), 6.90 (d, J = 2.1 Hz, 1H), 6.57 (s, 1H), 5.93 (s, 0.27H), 3.26 (dd, J = 6.6, 3.0 Hz, 2H), 3.01-2.79 (m, 3H), 2.39-2.26 (m, 1H), 1.94-1.84 (m, 1H), 1.82-1.67 (m, 3H), 1.55-1.48 (m, 1H), 1.46-1.36 (m, 2H), 1.31 (dd, J = 13.1, 4.5 Hz, 1H), 1.25 (dd, J = 8.3, 4.8 Hz, 9H), 0.99 (s, 3H).

HRMS (ESI): calcd for C₂₂H₃₁DCl₂NO⁺, (M+H)⁺, 397.1918, found, 397.1912.

Synthesis of 4i:

Synthesis of Desloratadine derivative: Desloratadine (921 mg, 3.0 mmol), Et₃N (606 mg, 6.0 mmol) were dissolved in DCM (20 mL) at 0-5 °C, trichloroacetyl chloride (598.3 mg, 3.3 mmol) was added with dropwise. Subsequently, the reaction mixture was removed to room temperature, and stirring overnight at the same temperature. When the starting material was completely consumed, saturated NH₄Cl (20 ml) was added, extracted with DCM (20 ml*3), the combined phase was washed with brine, dried over MgSO₄, concentrated and purified by chromatography on silica gel to give the Desloratadine derivative.

Characterization data of Desloratadine derivative:

¹**H NMR (400 MHz, CDCl₃)**: δ_H 8.41 (d, J = 4.0 Hz, 1H), 7.46 (d, J = 7.5 Hz, 1H), 7.30-7.00 (m, 5H), 4.15 (s, 2H), 3.57 (s, 1H), 3.43-3.28 (m, 3H), 2.94-2.77 (m, 2H), 2.68 (s, 1H), 2.48 (dd, J = 28.8, 11.5 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): *δ*_C 159.4, 146.7, 139.7, 138.1, 137.5, 136.0, 135.1, 133.6, 133.4, 130.5, 129.2, 126.5, 122.7, 93.3, 31.7, 31.7, 30.6, 30.4, 29.8.

Synthesis of 4i: In a 10 mL Schlenk tube with a stirring bar, Desloratadine derivative (0.1 mmol), CySH (6.0% mmol), HCO₂K (0.2 mmol) were dissolved in DMA (1.0 mL). The Schlenk tube was cooled to -78 °C and degassed with nitrogen for 3 times. And then, the reaction system was placed to 12 W*2 blue LEDs at room temperature. The reaction time determined to be completed by the TLC analysis. After the reaction finished, the reaction solvent was distill under vacuum and purified by flash column chromatography on silica gel with petroleum ether (PE) and ethyl acetate (EA) to afford the desired product 4i in 96% yield.

¹**H NMR (400 MHz, CDCl₃)**: δ_H 8.41 (d, J = 4.6 Hz, 1H), 7.46 (d, J = 7.6 Hz, 1H), 7.19-7.09 (m, 4H), 6.21 (d, J = 1.5 Hz, 1H), 4.06-3.85 (m, 2H), 3.46 (ddd, J = 13.1, 8.4, 3.9 Hz, 1H), 3.32 (dddd, J = 22.6, 13.4, 9.9, 5.2 Hz, 3H), 2.84 (ddt, J = 13.3, 8.7, 5.8 Hz, 2H), 2.72-2.35 (m, 4H), 1.25 (t, J = 7.1 Hz, 1H). ¹³**C NMR (101 MHz, CDCl₃)**, major: δ_C 162.1, 156.5, 146.6, 139.6, 137.9, 137.5, 137.3, 135.97, 135.0, 133.5, 133.3, 130.4, 129.1, 126.4, 122.5, 65.9, 47.0, 44.5, 31.6, 30.7, 30.2.

¹³C NMR (101 MHz, CDCl₃), minor: 162.0, 156.3, 146.6, 139.5, 137.96, 137.5, 137.3, 136.1, 135.0, 133.4, 133.3, 130.4, 129.0, 126.3, 122.5, 65.9, 47.0, 44.4, 31.6, 30.5, 29.97

7. Mechanistic Studies

a) Radical trapping experiment

The control experiment were conducted: In a dried sealed tube, **1c** (0.1 mmol), **CySH** (6.0% mmol), HCO_2K (2.0 eq.) were dissolved in DMA (1.0 mL). The flask was caped and degassed oxygen with nitrogen for three times at -78 °C. Subsequently, the reaction system was moved to 12 W*2 blue leds until completely consumed (monitored by TLC) and quenched with 4 mL saturated NH₄Cl. The mixture was extracted with DCM (5 mL*3). The combined solvent were dried over MgSO₄ and filtered. The filtrate was concentrated and purification by chromatography on silica gel with a eluent of petroleum ether and ethyl acetate to afford the hydrodechlorination product **2c** in 72% yield, while there was no radical addition product **5** was provided.

b) Radical inhibition experiment

In a dried sealed tube, **1c** (0.1 mmol), **CySH** (6.0% mmol), HCO₂K(0.2 mmol), , TEMPO (2,2,6,6tetramethyl-1-piperidinyloxy) (0.2 mmol) were dissolved in DMA (1.0 mL). The flask was caped and degassed oxygen with N₂ for three times at -78 °C. And then, the reaction flask was exposed to 12 W*2 blue LEDs at room temperature. The starting material could not completely consumed even elongation the reaction time. Subsequently, quenched with 4 mL saturated NH₄Cl. The filtrate was concentrated and purification by chromatography on silica gel with a eluent of petroleum ether and ethyl acetate to afford the hydrodechlorination product **2c** in 35% yield with the conversion of 60%, which indicate the novel transformation was radical intermediate involved through a single-electron transfer.

c) Determination the intermediate of the catalyst

In a dried sealed tube, **1c** (0.1 mmol), PhSSPh (6.0% mmol), HCO₂K (2.0 eq.) were dissolved in DMA (1.0 mL). The flask was caped and degassed oxygen with nitrogen for three times at -78 °C. Subsequently, the reaction system was moved to 12 W*2 blue leds until completely consumed (monitored by TLC) and quenched with 4 mL saturated NH₄Cl. The mixture was extracted with DCM (5 mL*3). The combined solvent were dried over MgSO₄ and filtered. The filtrate was concentrated and purification by chromatography on silica gel with a eluent of petroleum ether and ethyl acetate to afford the hydrodechlorination product **2c** in 66% yield, which indicate the reaction cycle maybe proceeded with PhSSPh as the intermediate of catalyst.

d) Deuterium experiment to confirm the origination of the deuterium atom

In a dried sealed tube, **1a** (0.1 mmol), CySH (6.0% mmol), HCO₂K (2.0 eq.), DTBP (1.2 eq.), Cy₃P (2 eq.) and D₂O (50 eq.) were dissolved in DMA (1.0 mL). The flask was caped and degassed oxygen with nitrogen for three times at -78 °C. Subsequently, the reaction system was moved to 12 W*2 blue leds until completely consumed (monitored by TLC) and quenched with 4 mL saturated NH₄Cl. The mixture was extracted with DCM (5 mL*3). The combined solvent were dried over MgSO₄ and filtered. The filtrate was concentrated and purification by chromatography on silica gel with a eluent of petroleum ether and ethyl acetate to afford the hydrodechlorination product **3a** in 67% yield (95% D), which indicate the Deuterium atom maybe originate from D₂O.

e) Deuterium labeling experiment to rule out the deuterium atom from DMF-d7

In a dried sealed tube, **1c** (0.1 mmol), CySH (6.0% mmol), HCO₂K (2.0 eq.), DTBP (1.2 eq.), Cy₃P (2 eq.) were dissolved in DMF-d₇ (1.0 mL). The flask was caped and degassed oxygen with nitrogen for three times at -78 °C. Subsequently, the reaction system was moved to 12 W*2 blue leds until completely consumed (monitored by TLC) and quenched with 4 mL saturated NH₄Cl. The mixture was extracted with DCM (5 mL*3). The combined solvent were dried over MgSO₄ and filtered. The filtrate was concentrated and purification by chromatography on silica gel with a eluent of petroleum ether and ethyl acetate to afford the hydrodechlorination product **3c** in 58% yield (0%D), which indicate the Deuterium atom maybe originate from D₂O.

f) UV-Vis Absorption Spectroscopic Measurements

The UV/Vis absorption spectra were recorded with the same concentration used in the reaction in 1 cm path quartz cuvettes by using a Thermo Nanodrop 2000 UV/Vis-spectrometer, respectively. The corrresponding charge-transfer bands in UV/vis absorption spectra were obtained were shown in Fig S1.

Figure S1. Optical absorption spectra of catalyst, substrate, and reaction mixture.

g) Stern-Volmer Quenching Study

To evaluate the role of CySH anion in this process, we conducted Stern-Volmer fluorescence quenching experiments (Fig S2, Fig S3). The samples were prepared mixing the CySH anion $(2.5 \times 10^{-3} \text{ M}, \text{ freshly prepared in situ by the deprotonation of CySH with Cs₂CO₃) with the required amount of$ **1a**in a total volume of**1**mL of dry DMA in a 10 × 10 mm light path quartz fluorescence cuvette under an argon atmosphere. The excitation wavelength was fixed at 420 nm, the emission light was acquired from 395 nm to 500 nm.

Figure S2. Quenching of the CySH anion emission (2.5×10^{-3} M in DMA) in the presence of increasing amounts of 1a.

Figure S3. Stern-Volmer quenching plot of substrate 1a.

h) Electrochemical Measurements

Tetrabutylammonium hexafluorophosphate (1161 mg, 3.0 mmol) was added to a 0.01 M solution of the CySH anion catalyst (generated in situ by the deprotonation of the CySH catalyst with 1.2 equiv. KO'Bu) in 30 mL of dry DMA and the solution was vigorously bubbled with argon for 5 minutes prior to the measurement. The oxidation/reduction potential was measured using a glassy carbon working electrode, a platinum wire counter electrode, and a saturated calomel electrode (SCE) at 0.1 V/s scan rate.

2,2,2-trichloro-N-(4-methoxyphenyl)acetamide

Figure S4. The cyclic voltammogram of the 2,2,2-trichloro-N-(4-methoxyphenyl)acetamide vs SCE in DMA at 0.1V/s.

Figure S5. The cyclic voltammogram of the CySH anions vs SCE in DMA at 0.1V/s. With this data in hand, we calculated the redox potential of the excited S1 anion employing the following equation²:

$$E_{p/2}(S^{\bullet}/S^{-*}) = E_{p/2}(S^{\bullet}/S^{-}) - E_{0-0}(S^{-*}/S^{-})$$

 $E_{p/2}(S^{-}/S^{-}) = -0.78 \text{ V vs.SCE}$, In the absence of vibrational structures, E_{0-0} can be roughly estimated from the absorption spectrum³. This corresponds to 385 nm, which translates into an $E_{0-0}(S^{-*}/S^{-})$ of 3.22 eV for the CySH anion.

 $E_{p/2}(\textbf{S'}/\textbf{S}^{\text{*}}) = E_{p/2}(\textbf{S'}/\textbf{S}^{\text{-}})$ - $E_{0\text{-}0}(\textbf{S}^{\text{-*}}/\textbf{S}^{\text{-}})$ = -0.78-3.22 = -4.00 V vs.SCE

Figure S6. UV/vis absorption spectra of CySH anions.

i) Mass Metrics.

Component		Amount'volume	Mol. wt./ p	Weight
Reactants	1a	0.1mmol	268.52	0.0268g
Catalyst	CySH	0.06mmol	116.22	0.0069g
Base	HCO ₂ K	0.2mmol	84.11	0.0168g
Solvent	DMA	1mL	0.937g/mL	0.937g
Product	2a	0.093mmol	234.07	0.0217g

Isolated Yield of 2a = 93%

Mass of waste

 $E_{\text{-factor}} = \overline{M_{\text{ass of the product}}}$

Mass of all the reaction components - Mass of the product

= Mass of the product

$$\frac{0.0268 + 0.0069 + 0.0168 - 0.0217}{0.0217} = 1.33 \text{g waste /g product}$$

$$\frac{\text{Total mass of all the reagents}}{\text{Mass Intensity}} = Mass of the product} = \text{E-factor} + 1 = 2.33 \text{g waste /g product}$$

Molecular weight of the productAtom Economy= 100%×Molecular weight of all the stoichiometric reactants $\frac{MWP}{=100\% \times 234.07}$ $=100\% \times \overline{MWA} = 100\% \times 268.52 = 87.17\%$ Mass of the productmPAtom Utilization=Total mass of all the substances produced= $100\% \times \overline{mA} = 100\% \times \frac{0.0217}{0.0234 = 92.73\%}$ Atom Effciency= Isolated Yield of product × Atom Economy= $93\% \times 87.17\% = 81.06\%$

mass of the product

Relative Mass Efficiency= $100\% \times T$ otal mass of all the stoichiometric reagents

0.0217 =100%×0.0268=80.97%

Carbon

Efficiency=100%×

Mass of the element in the product

Total mass of the element in the stoichiometric reagents

 $\frac{nP XP}{nAXA_{=100\%\times}} \underbrace{\frac{0.093 \times 9}{0.1 \times 9}}_{=93\%}$

8. Reference

- 1. T. Imanishi, Y. Fujiwara, Y. Sawama, Y. Monguchi, H. Sajiki, *Adv. Syn & Catal.* 2012, 354, 771-776.
- 2.. Silvi, M.; Arceo, E.; Jurberg, I. D.; Cassani, C.; Melchiorre, P., J. Am. Chem. Soc. 2015, 137, 6120-6123.
- 3. Buzzetti, L.; Crisenza, G. E. M.; Melchiorre, P., Angew. Chem., Int. Ed., 2019, 58, 3730 3747.

9. Spectra for Substrates and Products Product Characterization

Pregnenolone deirvative, ¹H+¹³C

Perillyl alcohol deirvative, ¹H+¹³C

L-Menthol deirvative, ¹H+¹³C

Diosgenin deirvative, ¹H+¹³C

Pregnenolone deirvative, ¹H+¹³C

Stigmasterol deirvative, ¹H+¹³C

-161.485 -161.485 -138.786 -138.414 -123.487 -133.487 -134.487 -133.487 -134.4

Ergosterol deirvative, ¹H+¹³C

Dehydroabietylamine deirvative, ¹H+¹³C

7.189 7.7169 7.7169 7.7169 6.5938 6.5938 6.5938 6.5338 3.3325 6.5938 6.5738 7.5738 7.5

Desloratadine deirvative, ¹H+¹³C

2a, ¹H+¹³C

2b, ¹H+¹³C

2c, ¹H+¹³C

2d, ¹H+¹³C

2e, ¹H+¹³C

2f, ¹H+¹³C

2g, ¹H+¹³C

2h, ¹H+¹³C

2i, ¹H+¹³C

2j, ¹H+¹³C

2k, ¹H+¹³C

2l, ¹H+¹³C

2m, ¹H+¹³C

2n, ¹H+¹³C

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

20, ¹H+¹³C

3a, ¹H+¹³C

3c, ¹H+¹³C

3d, ¹H+¹³C

3e, ¹H+¹³C

3g, ¹H+¹³C

3h, ¹H+¹³C

3i, ¹H+¹³C

3j, ¹H+¹³C

7,260 3,3845 3,3845 3,3845 3,3845 3,3845 3,3845 3,3845 3,3845 3,3845 3,3845 3,3742 3,3772 3,3

 $3k, ^{1}H+^{13}C$

4b, ¹H+¹³C

4c, ¹H+¹³C

4h´, ¹H

4i, ¹H+¹³C

