Supplementary Information

Effect of buffer/iodide electrolyte on electrochemical capacitor performance

Amelia Klimek, Maciej Tobis, Elzbieta Frackowiak*

Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology,

Berdychowo 4, Poznan 60-965, Poland

*Corresponding author

elzbieta.frackowiak@put.poznan.pl

Table S1 Specific surface area and pore volume of micro/mesoporous carbons: Kynol 5092-20 and salttemplated C-ST.

	$S_{BET} (m^2 g^{-1})$	V _{micro} (cm ³ g ⁻¹)	V _{meso} (cm ³ g ⁻¹)
Kynol 5092-20	2100	0.80	0.05
C-ST	2640	0.97	0.16

Table S2 Diameters of selected solvated ions: Na⁺, I⁻, HPO₄²⁻, CH₃COO⁻, C₃H₄(OH)(COO)₃^{3- [46-49]}

Ion	Solvated ion diameter				
1011	(nm)				
Na ⁺	0.486				
ŀ	0.600				
HPO ₄ ²⁻	0.604				
CH ₃ COO ⁻	0.706				
C ₃ H ₄ (OH)(COO) ₃ ³⁻	1.099				

Fig. S1 SEM images of a) BP2000 activated carbon; b) YP80F activated carbon; c) YP50F activated carbon.

Table S3 Conductivity (mS cm⁻¹) and pH measurements of sodium iodide (0.2 mol L⁻¹) and acetate buffer (AcB), citrate buffer (CB), phosphate buffer (PhB) with/without additive of sodium iodide (0.2, 0.5, 1, 2 mol L⁻¹).

Electrolyte	Conductivity (mS cm ⁻¹)	рН		
0.2 mol L ⁻¹ NaI	20.4	8.5		
AcB	63.3	5.08		
AcB + 0.2 mol L ⁻¹ NaI	72.2	5.05		
AcB + 0.5 mol L ⁻¹ NaI	84.5	5.24		
AcB + 1 mol L ⁻¹ NaI	102.4	4.94		
AcB + 2 mol L ⁻¹ NaI	132.4	4.94		
СВ	3.0	3.74		
CB + 0.2 mol L ⁻¹ NaI	16.5	3.58		
CB + 0.5 mol L ⁻¹ NaI	41.2	3.48		
CB + 1 mol L ⁻¹ NaI	89.0	3.30		
CB + 2 mol L ⁻¹ NaI	76.0	3.25		
PhB	6.95	7.18		
PhB + 0.2 mol L ⁻¹ NaI	25.5	6.98		
PhB + 0.5 mol L ⁻¹ NaI	51.9	6.77		
PhB + 1 mol L ⁻¹ NaI	92.1	6.55		
PhB + 2 mol L ⁻¹ NaI	154.7	6.24		

Fig. S2 a) FT-IR and b) Raman spectra for the electrolyte solutions with indicated stretching and vibrational modes.

Fig. S3 Galvanostatic charge/discharge voltage extension at 0.5 A g^{-1} for EC operating in **a**) acetate buffer; **c**) citrate buffer; **e**) phosphate buffer for various voltages. Energetic and coulombic efficiency calculated from GCD curves for EC operating in **b**) acetate buffer; **d**) citrate buffer; **f**) phosphate buffer.

Fig. S4 Cyclic voltammograms recorded at 5 mV s⁻¹ for ECs based on YP50F operating in acetate buffer without and with NaI additive of several concentrations (0.2, 0.5, 1, 2 mol L⁻¹).

Fig. S5 Electrochemical studies of three-electrode Swagelok cell with reference while monitoring the potential of positive and negative electrode operating in different electrolytes. Cyclic voltammograms of cells operating in AcB and AcB + $0.2 \text{ mol } L^{-1} \text{ NaI } \mathbf{a}$), d). Electrochemical behavior of electrodes during CV measurements b), e). Cut-off potential range for positive and negative electrodes c), f).

Fig. S6 a) Capacitance retention of different carbons micro/mesoporous carbons (YP50F, YP80F, BP2000) based ECs operating in acetate buffer with/without 0.2 mol L⁻¹ NaI additive during floating (at 1.5 V).

Fig. S7 a) Capacitance retention of YP50F based ECs operating in acetate buffer with/without 0.2, 0.5, 1, and 2 mol L⁻¹ NaI additive during floating (at 1.5 V); **b)** Nyquist plots obtained for YP50F based ECs operating in acetate buffer before and after 100 h of floating.

Fig. S8 Galvanostatic charge/discharge profiles recorded at 1 A g^{-1} for ECs based on YP50F, Kynol and C-ST carbons operating in **a**) acetate buffer; **b**) acetate buffer + 0.2 mol L⁻¹ NaI.

Fig. S9 Cyclic voltammogram at 5 mV s⁻¹ recorded for EC based on Kynol operating in **a**) acetate buffer before and after 48 h floating; **c**) acetate buffer + 0.2 mol L⁻¹ NaI before and after 115 h floating. Nyquist plots obtained for Kynol based ECs operating in **b**) acetate buffer before and after 48 h of floating and **d**) acetate buffer + 0.2 mol L⁻¹ NaI before and after 115 h floating.

Fig. S10 Cyclic voltammogram at 5 mV s⁻¹ recorded for EC based on C-ST operating in **a**) acetate buffer before and after 48 h floating; **c**) acetate buffer + 0.2 mol L⁻¹ NaI before and after 115 h floating; Nyquist plots obtained for C-ST based ECs operating in **b**) acetate buffer before and after 48 h of floating and **d**) acetate buffer + 0.2 mol L⁻¹ NaI before and after 115 h floating.

Fig. S11 Galvanostatic charge/discharge profiles before and after floating for ECs based on **a**) YP50F activated carbon operating in acetate buffer; **b**) YP50F activated carbon operating in acetate buffer + 0.2 mol L⁻¹ NaI; **c**) Kynol carbon cloth operating in acetate buffer; **d**) Kynol carbon cloth operating in acetate buffer; **d**) Kynol carbon cloth operating in acetate buffer; **f**) C-ST activated carbon operati

Fig. S12 X-ray diffraction patterns (XRD) of pristine YP50F powder and positive electrodes after floating tests conducted in AcB and AcB + $0.2 \text{ mol } L^{-1} \text{ NaI}$.

Table S4	. Surface	composition	(atomic %)	determined	by fitting	XPS	spectra	for	electrodes
after agir	ng in diffe	erent electroly	tes.						

	С					0		I		
Binding energy [eV]	284.4	285.0	286.3	287.6	288.9	290.3	532.2	533.8	618.4	620.6
Compound / Oxidation State	C=C sp ²	C-C sp³	С-О-С, С-ОН	C=O, O-C-O	0-C=0	-COOH	0-Si, 0=C, C-O-C	С-О, -ОН	Nal	CH-I
Pristine YP50F	56.9	10.4	7.0	3.2	2.6	2.7	7.7	2.2	0.0 0.0	
AcB (-)	51.6	11.8	6.1	3.1	2.6	1.9	10.6	0.8	0.0	0.0
AcB (+)	41.4	12.2	6.3	3.8	3.7	2.2	6.8	4.9	0.0	0.0
AcB+0.2M Nal (-)	51.2	12.5	5.7	2.7	2.7	2.2	8.0	1.9	0.05	0.02
AcB+0.2M Nal (+)	47.0	10.8	6.6	3.8	2.8	1.7	8.3	3.3	0.16	0.11

Fig. S13. X-ray photoelectron spectroscopy of a) C 1s region, b) O 1s region, and c) I $3d_{5/2}$ region for pristine, positive and negative YP50F electrodes after floating in different electrolytes with and without addition of iodides.