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S1. Detailed information about split data sets 

 
Fig. S1. Heat of vaporization distribution of each split data set. 
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Table S1. Detailed information about dataset splitting. 

Dataset Nmolecule Ndata 

Validationa 

Fold 1 

666 per each fold 

13,634 
Fold 2 13,796 
Fold 3 13,561 
Fold 4 13,961 
Fold 5 13,828 
Fold 6 13,728 
Fold 7 13,916 
Fold 8 13,936 
Fold 9 13,615 
Fold 10 13,749 

Test 740 15,371 
Total 7,400 153,105 

a For each fold, the remaining 5994 molecules from the other 9 folds (666 * 9) are training set molecules. 
 
S2. Distribution of uncertainties  

 
Fig. S2. Distribution of uncertainties of 153,105 heats of vaporization in the NIST WTT database. The vertical dotted line 
indicates the mean uncertainty (3.44 kJ/mol). 
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S3. Effect of the number of layers, attention heads, and loss function on model accuracy 

 

 
Fig. S3. Mean absolute errors from the 10-fold cross-validation of the models with different number of layers, attention 
heads, and loss functions. 
 

 
Fig. S4. Mean absolute error from the 10-fold cross-validation of the models with different graph neural network structures, 
and comparison with the equation-based model. 
 
The prediction based on Watson’s equation was carried out by obtaining three quantities (A, B, C) shown in Equation (S4), 
from the last readout layer from the graph attention networks depicted in Fig. 3a: 
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(S4) 
A, B, and C values for each molecule were pre-determined by non-linear regression, and these values were trained using graph 
attention networks. Since the values A, B, and C have different orders of magnitude (e.g., 400<B<1600, 0<C<1), each one was 
scaled using the standard scaler: 
 
Z = (X-µ) / s,  (S5) 
 
µ and s of A, B, and C were obtained from the training set molecules, implying that the prediction results can be biased by 
training sets. Training the reliable model without standardizing was not possible. Even though the Watson-equation-based 
model was trained under the ‘privileged’ conditions mentioned above (non-linear regression, standardization), it showed lower 
accuracy than the ‘direct’ prediction of HoV from the molecular structure. Moreover, 29 out of 7,400 molecules showed 
‘unphysical’ values (i.e., A<0 or B<0 or C<0) in the non-linear regression, which makes it impossible to train or predict their 
HoVs if Watson equation is assumed. 
 
S4. Optimization of other hyperparameters 
 
Table S2. List of other hyperparameters tested. 
 

Hyperparameter Comments 
Residual connection ‘True’ is better 
Explicit hydrogen ‘False’ is better 

Number of nodes in hidden layers Using 32 is sufficient, no significant improvement 
when 64 was used 

Dropout rate 0%, 5%, 10%, 15% were tested, 
applying no dropout is the best 

(Learning rate, batch size) (0.0005, 256), (0.01, 32) showed the best results 
for HoV and other properties, respectively 

Epochs 
200/500 is sufficient to reach 

the lowest training and validation set error  
for HoV/other properties 
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S5. Detailed analysis on the errors from HoV prediction 
 
 

 
Fig. S5. A histogram plotting the distribution of HoV prediction errors. 
 
Table S3. Mean absolute errors of HoV prediction by functional groups. 

Oxygenates Hydrocarbons 

Functional  
group 

# of 
molecules 

# of 
data 

points 

# of data 
points/ 

molecule 

Mean 
absolute 

error 
(kJ/mol) 

Functional 
group 

# of 
molecules 

# of  
data 

points 

# of data 
points/ 

molecule 

Mean 
absolute 

error 
(kJ/mol) 

Esters 1,044 21,932 21.01 3.12 Alkynes 153 3,350 21.90 2.66 

Ethers 1,928 40,846 21.19 3.31 Alkenes 1,113 23,657 21.26 2.49 

Carbonyls 2,088 43,541 20.85 3.89 Fused 
Rings 731 12,838 17.56 4.86 

Alcohols 1,623 34,991 21.56 4.26 Cyclics 1,607 29,949 18.64 4.58 

Peroxides 57 1,217 21.35 5.10 Alkane 454 9,708 21.38 2.24 

Phenolics 331 6,477 19.57 4.61      

Furanics 35 706 20.17 2.24      

Water/CO 2 9 4.50 4.44      
a If more than two functional groups co-exist in a molecule, it is counted as a duplicate in each of the functional groups that 
the molecule contains. 
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Fig. S6. Top 5 outliers of HoV prediction. Methane is an outlier because it is the only molecule containing carbon with four 
hydrogens, and there are only three data points. Including methane in the training set with more data points would significantly 
decrease the MAE (cf. water is in the training set – 5 data points, MAE of 5.92 kJ/mol). Other molecules have uncommon, 
peculiar structures. For example, 26-membered ring cycloalkane, 24-membered ring crown ether, a ketone containing the 
conjugation among one cyclopropane ring and two phenyl rings, and pentacene-like quinone structure. 
 
 

 
Fig. S7. Parity plot of the graph attention network model in which mean-squared-error loss function was used without 
uncertainty quantification. 
 
Figure S8(a) counts the number of molecules containing each functional group in the HoV database, allowing the duplicated 
count if a molecule contains more than two functional groups. As shown, the HoV database from the present study for 
oxygenates is rich in carbonyls, ethers, alcohols, and esters, while those of phenolics, peroxides, and furanics are particularly 
underrepresented. Similarly, for the hydrocarbon, the number of molecules counts is highest for cyclic, which is followed by 
alkene, fused rings, and alkyne. This inhomogeneity of functional groups in the database influences the accuracy of the HoV 
prediction models, as described in Table S3. For reference, the functional group distribution in the other database – FP, TB, TC, 
TM, and CP – are depicted in Figure S8(b) – (f). Similarly to the HoV database, the molecules included in other properties’ 
databases show a certain level of underrepresentation of some functional groups. For example, the FP database has a scarce 
amount of phenolics, peroxides, and furanics for oxygenates, while the number of hydrocarbon molecules is much smaller than 
those of oxygenates. 

CH4

O
O

O

O

O

O
O

O

O

O
O

3 data points
MAE: 81.4 kJ/mol

Test

16 data points
MAE: 45.8 kJ/mol

Test

17 data points
MAE: 43.6 kJ/mol

Test

14 data points
MAE: 46.2 kJ/mol

Train

15 data points
MAE: 43.5 kJ/mol

Train



 8 

 
Fig. S8. The number of molecules containing each functional group in the HoV database 
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S6. Supplementary data for the flash point prediction 

 
Fig. S9. Parity plot of the flash points predicted from the transfer learning model, for the (a) DIPPR database, and (b) the whole 
database obtained by collecting all the data from literature (3,282 data points – 2,626, 328, 328 for training, validation, and test 
set, respectively).  
 
S7. Evaluation of atom-wise attention weights 
 
The atom-wise attention of atom j (𝛼"!) in the 5th convolution layer was calculated by: 
 
𝛼"! = 〈𝛼〉!/max(〈𝛼〉", … , 〈𝛼〉#) ,  (S6) 
 
where 
 
〈𝛼〉! = ∑ 𝛼$!/𝑁#

$  ,       (S7) 
 
N is the number of atoms in a molecule, and aij is the element of attention matrix in Equation S1. 
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S8. Chemical interpretation of the models for predicting critical temperatures, flash points, and 
boiling points 
 

 
Fig. S10. Analysis of experimental/predicted critical temperatures (Tc), flash points (FP), boiling points (Tb), and atom-wise 
attention weights for three ethers and four esters. 
 
Fig. S10 illustrates the attention weights obtained from the predictive models for critical temperatures (Tc), flash points (FP), 
and boiling points (Tb) with experimental and predicted property values, for three ethers and four esters. The trends of attention 
scores for Tc are analogous to those for HoVs (Fig. 6), which is consistent with the high relevance of Tc with HoV; Tc is the 
temperature where HoV becomes zero. A high attention score of an atom in FP prediction can be understood as having a high 
impact on the molecules’ flammability and vaporization characteristics. For example, a high attention score for the oxygen 
atoms in the ether molecules is greatly consistent with the conventional knowledge, as the ether functional group plays an 
essential role in accelerating the low-temperature combustion by lowering the energy barrier of key reaction steps: the 
isomerization from the peroxy radical (RO2) to the hydroperoxyl-alkyl radical (QOOH).a Meanwhile, ethyl hexanoate showed 
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the highest attention score at the carbon in the carbonyl site, which can be attributed to its pivotal role in disposing of carbon 
monoxide after the initial dissociation of esters.b Attention scores for the hydroxy-substituted esters – ethyl 3-
hydroxyhexanoate, methyl 3-hydroxypropanoate, and methyl 2-hydroxypropanoate – were relatively harder to interpret from 
the existing knowledge, partially due to the limited literature on the combustion and vaporization characteristics of these distinct 
functional group. Still, the attention scores from the present study can be leveraged in future studies to understand how the 
molecular structures of hydroxyl-substituted esters affect their FP.  
 
a. Sustain. Energy Fuels, 2022, 6, 3975-3988. 
b. J. Phys. Chem. A 2023, 127, 9804-9819. 
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S9. Polymers that show the weak correlation between HoV and glass transition temperature 

 
Fig. S11. Seven polymers that were omitted from the analysis shown in Fig. 9 (Predicting polymer’s glass transition temperature 
from monomer HoVs) due to the weak correlation between HoV and glass transition temperature. Monomer structures of these 
polymers contain hydroxyl groups that cause errors in correlating monomer HoVs with glass transition temperatures. 

 
 


