Supporting Information

Light-fuelled nitro-reduction via cascaded electron donor-

acceptor complexes in aqueous media

Xiaohui Zhuang,^a Haijing Song,^a Jiayin Wang,^a Zhaokang Zhang,^a Jiayang Wang,^b Bin Sun,^{*a, c} Weike Su^{a, c} and Can Jin^{*a, c}

^a College of Pharmaceutical Sciences, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China.

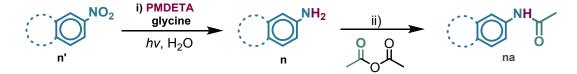
^b School of Life Sciences, HuZhou University, HuZhou, Zhejiang, PR China.

^c Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education and Key Laboratory of Pharmaceutical Engineering of Zhejiang Province.

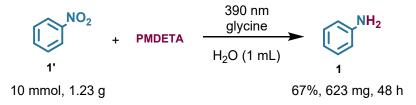
jincan@zjut.edu.cn; sunbin@zjut.edu.cn;

Table of Contents

Page S1	General Information
Page S1-S2	General procedure for the reduction of nitroarenes
Page S2-S3	Calculation of EcoScale score
Page S4-S11	Mechanism study
Page S12-S27	Characterization Data for the products
Page S27	References
Page S28-S94	NMR Spectra


I. General Information

All reactions were run in a tube under air atmosphere. All commercially available reagent grade chemicals and solvents were used as received without further purification. ¹H NMR (400 MHz), ¹³C NMR (100 MHz) and ¹⁹F NMR (376 MHz) spectra are reported relative to chemical shift of tetramethylsilane (TMS). Chemical shifts (δ) are reported in ppm and coupling constants (*J*) in hertz (Hz). The following abbreviations are used to explain the multiplicities: s = singlet, d = doublet, dd = doublet of doublet, t = triplet, q = quartet, m = multiplet. For HRMS (ESI) measurements, the mass analyzer is micrOTOF-Q.


II. General procedure for the reduction of nitroarenes

(i) A 10 mL tube was charged with nitroarenes \mathbf{n}' (0.2 mmol), pentamethyldiethylenetriamine PMDETA (3.0 equivalent), glycine (1.0 equivalent) in H₂O (0.5 mL) upon irradiation of 100 W 390 nm LEDs at room temperature under N₂ atmosphere for 24 h. (Notice: for the insoluble nitroarenes, EA may be added as appropriate to promote dissolution.) The reaction was monitored by TLC. After completion, the reaction mixture was quenched with water (10 mL) and extracted with dichloromethane for three times. The combined organic phase was dried over anhydrous Na₂SO₄, filtered, and evaporated to leave a reside, which was purified by silica gel column chromatography with petroleum ether/ ethyl acetate (from 10 :1) to give the pure desired product **38A-38B**, **39-61**. (ii) A 25 mL round bottom flask was charged with acetic anhydride (2.0 equivalent), DMAP (20% mmol) and concentrated solution, which is extracted from the previous step, in DCM (5 mL) at rt to 80 °C temperature for 30 min to 10 h. The reaction was monitored by TLC. After completion, the reaction mixture was quenched with water (10 mL) and extracted with dichloromethane for three times. The combined over anhydrous Na₂SO₄, filtered, and evaporated to leave a reside over anhydride (2.0 equivalent), DMAP (20% mmol) and concentrated solution, which is extracted from the previous step, in DCM (5 mL) at rt to 80 °C temperature for 30 min to 10 h. The reaction was monitored by TLC. After completion, the reaction mixture was quenched with water (10 mL) and extracted with dichloromethane for three times. The combined organic phase was dried over anhydrous Na₂SO₄, filtered, and evaporated to leave a reside, which was purified by silica gel column chromatography with petroleum ether/ ethyl acetate (from 5 :1) to give the pure desired product **1a-37a**.

(2) With the scale of 10 mmol (gram scale)

A 10 mL tube was charged with **1'** (10.0 mol), pentamethyldiethylenetriamine PMDETA (3.0 equivalent), glycine (1.0 equivalent) in H₂O (1 mL) upon irradiation of 100 W 390 nm LEDs at room temperature under N₂ atmosphere for 48 h. The reaction was monitored by TLC. After completion, the reaction mixture was quenched with water (15 mL) and extracted with dichloromethane for three times. The combined organic phase was dried over anhydrous Na₂SO₄, filtered, and evaporated to leave a reside, which was purified by silica gel column chromatography with petroleum ether/ ethyl acetate (from 10 :1) to give the pure desired product **1** in a yield of 67%.

III. Calculation of Ecoscale score(1) Table S1. Calculation of Ecoscale score for this work

Eco Scale = 100 -Sum of individual penalties Score on Eco Scale: >75, Excellent; >50, Accepable; <50, Inadequate culation of Penalty Points: Parameters				
 a. ethyl <i>p</i>-nitrob b. pentamethyld c. glycine = 11.7 	a components (To obtain 10 mmol of end product, 60) enzoate (60') = 11.76 mmol = 2.295 g = USD 0.6 liethylenetriamine (PMDETA) = 35.28 mmol = 6.114 g = USD 1.22 76 mmol = 0.882 g = USD 0.066 esis of 60 = (0.6 + 1.22 + 0.066) = USD 1.886			
,	since (total cost of synthesis of 10 mmol of 60) $<$ \$ 10:	0		
 Safety PMDETA (T) Technical Setup 		5		
photochemical a 5. Temperature/tin		2		
Room temperat	ure, 24 h	1		
 Workup and pur Liquid-liquid ext Classical chrom 	traction	3 10		
	Total penalty points:	28.5		

B. Ecoscale calculation:

Α.

EcoScale score: (100-28.5) = 71.5 (> 50; it is an acceptable synthesis)

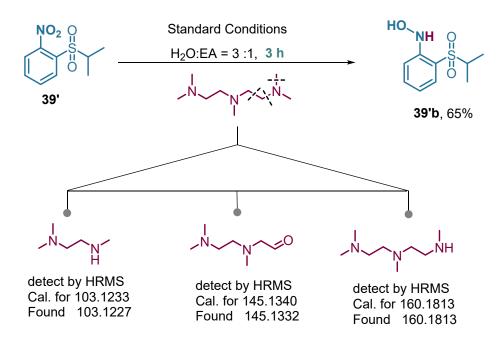
(2) Table S2. Calculation of Ecoscale score for the site-selective nitro reduction method involved metal-loaded catalysts¹

Score on Eco Scale: >75, Excellent; >50, Accepable; <50, Inadequate				
ulation of Penalt	y Points:			
Parameters		Penalty Poin		
1. Yield:	(100- % of yield)/2 = (100-99.9)/2	0.05		
a. ethyl <i>p</i> -nitrob b. catalyst (100	n components (To obtain 10 mmol of end product, 60) penzoate (60') = 11.76 mmol = 2.295 g = USD 0.6 Cu-5Ni/AISBA-R) = not considered			
c. H ₂ = not con	sidered			
	Ity of estimating the amount of hydrogen gas, the parameters for ponents are not being considered for the time being	0		
3. Safety				
Ni(NO ₃)₂·6H₂C) (N)	5		
$Na_2SiO_3(N)$		5		
Pluronic P123 ((T)	5		
$H_{2}(F^{+})$		10		
THF (F)		5		
4. Technical Setu	p			
Pressure equip	ment, 2.5 MPa	3		
5. Temperature/tii	ne			
Heating (95 °C), 3 h	3		
6. Workup and pu	rification			
Liquid-liquid ex		3		
Classical chror	natograpny	10		
	Total penalty points:	49.05		

Total penalty points:

49.05

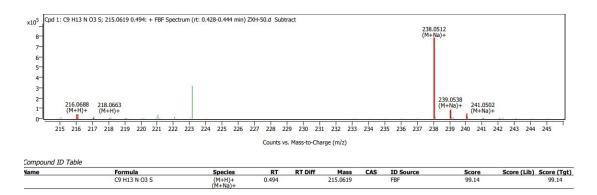
B. Ecoscale calculation:

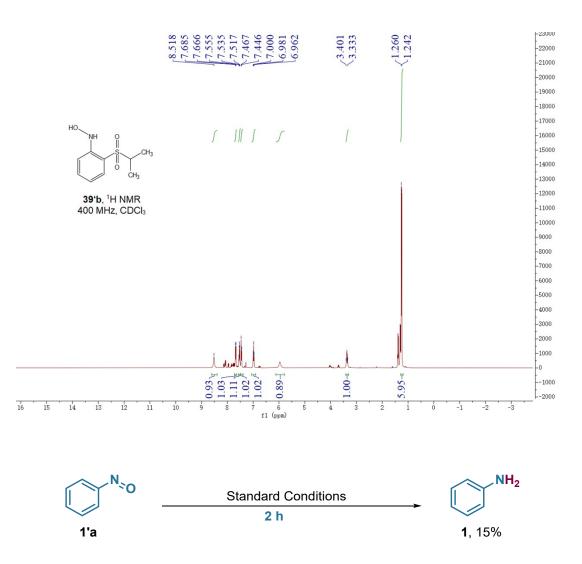

Α.

EcoScale score: (100-49.05) = 50.95 (> 50; it is an acceptable synthesis)

The result unveiled that this EDA complex-based strategy demonstrated higher economic and ecology benefits (71.5) compare to the reported metal-catalyzed hydrogenation (50.95).

IV. Mechanism study


(1) Intermediates investigation



A 10 mL tube was charged with **39'** (0.2 mol), pentamethyldiethylenetriamine PMDETA (3.0 equivalent), glycine (1.0 equialent) in mix solvent (H₂O: EA=3:1) upon irradiation of 100 W 390 nm LEDs at room temperature under N₂ atmosphere for 3 h. The reaction was monitored by TLC. After completion, the reaction mixture was quenched with water (10 mL) and extracted with dichloromethane for three times. The combined organic phase was dried over anhydrous Na₂SO₄, filtered, and evaporated to leave a reside, which was purified by silica gel column chromatography with petroleum ether/ ethyl acetate (from 10 :1) to give the pure desired product **39'b**.

Yellow solid, ¹**H NMR** (400 MHz, CDCl₃) δ 8.52 (s, 1H), 7.68 (d, J = 7.6 Hz, 1H), 7.54 (t, J = 8.0 Hz, 1H), 7.46 (d, J = 8.4 Hz, 1H), 6.98 (t, J = 7.6 Hz, 1H), 5.96 (s, 1H), 3.40-3.33 (m, 1H), 2.16 (d, J = 7.2 Hz, 6H).

HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for C₉H₁₃NO₃SNa 238.0514; Found: 238.0512.

A 10 mL tube was charged with **1'a** (0.2 mol), pentamethyldiethylenetriamine PMDETA (3.0 equivalent), glycine (1.0 equialent) in (H₂O: EA=3:1) upon irradiation of 100 W 390 nm LEDs at room temperature under N₂ atmosphere for 2 h. The reaction was monitored by TLC. After completion, the reaction mixture was quenched with water (10 mL) and extracted with dichloromethane for three times. The combined organic phase was dried over anhydrous Na₂SO₄, filtered, and evaporated to leave a reside, which was purified by silica gel column chromatography with petroleum ether/ ethyl acetate (from 10 :1) to give the pure desired product **1**.

The results indicate that hydroxylamine and nitrosoarene are potential intermediates.

(2) Triplet state quench experiment²⁻³

The triplet state quench experiments were conducted with nitrobenzene 1', PMDETA and glycine under the standard conditions using two different triplet quenchers (benzill, octafluoronaphthalene), respectly. However, these quenching studies did not reduce the reaction yield, indicating that the T_1 excited state of nitrobenzene is not the active species for triggering reaction.

The results rule out the possibility of nitroarene itself absorbing light to initiate the reaction.

(3) UV-vis experiment

UV-vis experiments were performed to analyse the potential association of PMDETA, gylcine with electron acceptors (nitroarene, nitrosoarene, or hydroxylamine compounds).

(i) Various combinations of 8', PMDETA and glycine in DMF

- a) **8'** (1 mmol) was dissolved in DMF (5 mL).
- b) 8' (1 mmol) and PMDETA (250 μ L) were dissolved in DMF (4.75 mL).
- c) 8' (1 mmol) and gylcine (250 μ L) were dissolved in DMF (4.75 mL).
- d) 8' (1 mmol), PMDETA (250 μ L) and gylcine (250 μ L) were dissolved in DMF (4.5 mL).
- (ii) Various combinations of 1'a, PMDETA and glycine in DMF
 - e) 1'a (1 mmol) was dissolved in DMF (5 mL)
 - f) 1'a (1 mmol) and PMDETA (250 μ L) were dissolved in DMF (4.75 mL)
 - g) 1'a (1 mmol) and gylcine (250 μ L) were dissolved in DMF (4.75 mL)
 - h) 1'a (1 mmol), PMDETA (250 µL) and gylcine (250 µL) were dissolved in DMF (4.5 mL)

(iii) Various combinations of 39'b, PMDETA and glycine in DMF

- i) **39'b** (1 mmol) was dissolved in DMF (5 mL)
- j) **39'b** (1 mmol) and PMDETA (250 μ L) were dissolved in DMF (4.75 mL)
- k) **39'b** (1 mmol) and gylcine (250 μ L) were dissolved in DMF (4.75 mL).
- l) **39'b** (1 mmol), PMDETA (250 μ L) and glycine (250 μ L) were dissolved in DMF (4.5 mL)
- m) PMDETA (250 μ L) and glycine (250 μ L) was dissolved in DMF (4.5 mL).
- n) PMDETA (250 μ L) was dissolved in DMF (4.75 mL)
- o) glycine (250 μ L) was dissolved in DMF (4.75 mL)

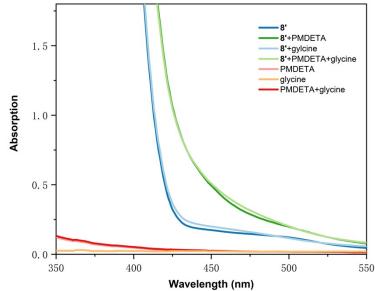


Figure S1: UV-vis spectra of various combinations of 8', PMDETA and glycine in DMF

The results revealed that PMDETA can associate with 8' to form the EDA complex *I*, resulting a bathochromic shifted compared to the spectra of the individual components.

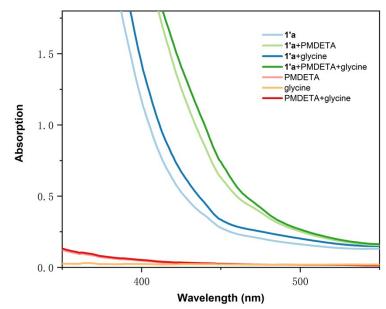
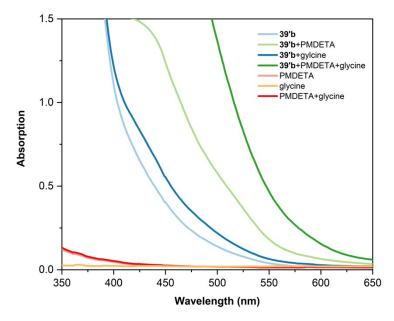
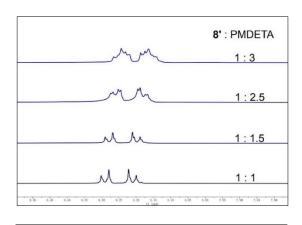
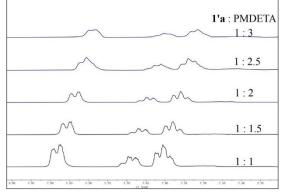


Figure S2: UV-vis spectra of various combinations of 1'a, PMDETA and glycine in DMF

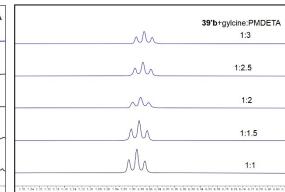
The results revealed that the addition of PMDETA resulted in a bathochromic shift in the absorbance of the nitroso compounds, with a slight modulation observed upon the addition of glycine. Based on these findings, it can be inferred that the formation of EDA complex II occurs between PMDETA and nitroso compounds.




Figure S3: UV-vis spectra of various combinations of 39'b, PMDETA and glycine in DMF


The results indicated that the absorbance of the hydroxylamine compounds underwent a bathochromic shift upon the introduction of PMDETA, while the addition of glycine further accentuated this red-shift. Based on these findings, it can be inferred that the formation of EDA complex III occurs between PMDETA, glycine and hydroxylamine compounds.

(4) NMR titration⁴⁻⁵


The NMR sample of electron acceptors (8', 1'a, and 39'b glycine adduct) with different excesses of PMDETA in CDCl₃ or DMSO-*d6* was prepared.

- (i) EDA complex I: 8' (0.25 M) with PMDETA (0.025 M to 0.075 M) in CDCl₃ (Figure S4).
- (ii) EDA complex II: 1'a (0.25 M) with PMDETA (0.025 M to 0.075 M) in CDCl₃ (Figure S5).
- (iii) EDA complex III': 39'b (0.25 M) with PMDETA (0.025 M to 0.075 M) in CDCl₃ (Figure S6).
- (iv) EDA complex III: 39'b glycine adduct (0.025 M) with PMDETA (0.025 M to 0.075 M) in DMSO-*d6* (Figure S7).

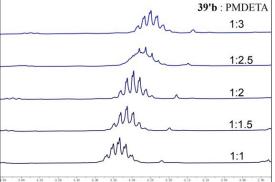


Figure S5: NMR titration of 1'a and PMDETA

Figure S6: NMR titration of 39'b and PMDETA

Figure S7: NMR titration of 39'b glycine adduct and PMDETA

The change in chemical shift (in ppm) of each peak of electron acceptor was calculated by comparing the 0.25 M electron acceptor' solution. The association constants K_{EDA} were measured from the slope and intercept of the plots.

[PMDETA](M)	1/[PMDETA](M ⁻¹)	δ_0	$\delta_{\text{EDA-I}}$	Δδ	1/Δδ
0.025	40	8.326	8.302	0.024	41.7
0.0375	26.7	8.326	8.290	0.036	27.8
0.0625	16	8.326	8.274	0.052	19.2
0.075	13.3	8.326	8.266	0.082	12.2

Table S3: Data obtained by ¹H NMR spectra for EDA complex I in CDCl₃, with 8' = 0.025 mol/L.

Table S4: Data obtained by ¹H NMR spectra for EDA complex II in CDCl₃, with 1'a = 0.025 mol/L.

[PMDETA](M)	1/[PMDETA](M ⁻¹)	δ_0	$\delta_{EDA\text{-}II}$	Δδ	$1/\Delta\delta$
0.025	40.0	7.918	7.877	0.041	24.4
0.0375	26.7	7.918	7.850	0.068	14.7
0.05	20.0	7.918	7.829	0.089	11.2
0.0625	16.0	7.918	7.805	0.113	8.4
0.075	13.3	7.918	7.778	0.140	7.1

Table S5: Data obtained by ¹H NMR spectra for EDA complex III' in CDCl₃, with 39'b = 0.025 mol/L.

[PMDETA](M)	1/[PMDETA](M ⁻¹)	δ_0	$\delta_{EDA\text{-III}'}$	Δδ	1/Δδ
0.025	40.0	7.918	7.877	0.041	24.4
0.0375	26.7	7.918	7.850	0.068	14.7
0.05	20.0	7.918	7.829	0.089	11.2
0.0625	16.0	7.918	7.805	0.113	8.4
0.075	13.3	7.918	7.778	0.140	7.1

Table S6: Data obtained by ¹H NMR spectra for EDA complex III in DMSO, with **39'b**·glycine adduct = 0.025 mol/L.

[PMDETA](M)	1/[PMDETA](M ⁻¹)	δ_0	$\delta_{EDA-III}$,	Δδ	$1/\Delta\delta$
0.025	40.0	7.001	9.9894	0.0107	93.5
0.0375	26.7	7.001	6.9840	0.0161	62.1
0.05	20.0	7.001	6.9804	0.0197	50.8
0.0625	16.0	7.001	6.9751	0.250	40
0.075	13.3	7.001	6.9721	0.0280	35.7

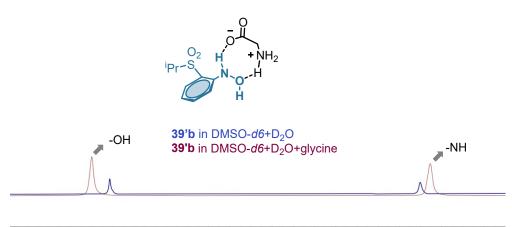



Figure S8: The association constants K_{EDA}

The results indicated that the value of K were decrease progressively in the absence of glycine ($K_{EDA I}=3.98 > K_{EDA II}=2.49 > K_{EDA III}=1.98$). Furthermore, the $K_{EDA-III}$ was mesured at 2.85, suggesting that glycine could enhance the ability of **39'b** to associate with PMDETA.

9.25 9.20 9.15 9.10 9.05 9.00 8.95 8.90 8.85 8.80 8.75 8.70 8.65 8.60 8.55 8.50 8.45 8.40 8.35 8.30 8.25 8.20 8.15 f1 (topp)

Figure S9: 1H NMR shift of 39'b and glycine

Based on the effect of electron-cloud density in chemical shift of protons, the following conclusions can be draw:

(a) the downfiled shift of -OH proton indicates a reduced electron-cloud density of hydrogen atom, which is caused by the lone pair of electrons of O (oxygen in the **39'b**) to be biased toward H of $-NH_3^+$ to form the intermolecular hydrogen bonding between $-NH_3^+$ of glycine and **39'b** (-OH).

(b) the upfiled of -NH proton suggests an increased electron-cloud density of hydrogen atom, which is caused by the presence of intermolecular hydrogen bonding between - COO⁻ of glycine and **39'b** (-NH).

(5) Preliminary kinetic investigation

(i) A 10 mL tube was charged with 1-(isopropylsulfonyl)-2-nitrobenzene **39'** (0.2 mol), pentamethyldiethylenetriamine PMDETA (3.0 equivalent) in H₂O: EA (150 μ L: 50 μ L) upon irradiation of 100 W 390 nm LEDs at room temperature under N₂ atmosphere. Five parallel reactions were respectively illumined under 390 nm for different time 1 h, 3 h, 5 h, 10 h, 24 h. The yield of **39** was obtained by ¹H NMR using 1,3,5-trimethoxybenzene (0.05 mmol) as an internal standard.

The results (blue lines) showed that in the absence of glycine, the **39'** was almost completely converted within 5 h, with 64.5% of **39'b** and 21.5% of **39** being formed, and thereafter the rate of conversion of **39'b** to **39** decreased dramatically, with only 36.5% of **39** being formed, accompanied by 55.5% of **39'b** remaining even after 24 h of reaction.

(ii) A 10 mL tube was charged with **39'** (0.2 mol), pentamethyldiethylenetriamine PMDETA (3.0 equivalent), glycine (1.0 equivalent) in H₂O: EA (150 μ L: 50 μ L) upon irradiation of 100 W 390 nm LEDs at room temperature under N₂ atmosphere. Five parallel reactions were respectively illumined under 390 nm for different time 1 h, 3 h, 5 h, 10 h, 24 h. The yield of **39** was obtained by ¹H NMR using 1,3,5-trimethoxybenzene (0.05 mmol) as an internal standard.

The results (orange lines) showed that upon addition of glycine, the **39'** was almost completely converted within 3 h, with 82% of **39'b** and 8% of **39** being formed, and the

yield of **39** after 24 hours of reaction was 78%, accompanied by 12% **39'b** remaining.

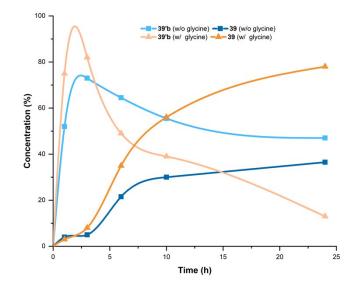
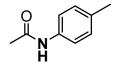


Figure S10: ¹H NMR of reaction solution

V. Characterization data for the products (reactions was conducted at 0.2 mmol scale).

N-phenylacetamide (1a)

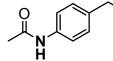

Purified by column chromatography using the mixture of petroleum ether and ethyl acetate (PE/EA = 5:1) as eluant, white solid (81% yield, 21.9 mg).

¹**H NMR** (400 MHz, CDCl₃) δ 8.17 (s, 1H), 7.53 (d, *J* = 8.2 Hz, 2H), 7.31 (t, *J* = 7.6 Hz, 2H), 7.11 (t, *J* = 7.4 Hz, 1H), 2.16 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 169.1, 138.1, 128.9, 124.3, 120.2, 24.4.

(Known compound: ACS Sustainable Chem. Eng., 2023, 11, 9047-9056.).

*N-(p-tolyl)*acetamide (2a)

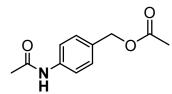

Purified by column chromatography using the mixture of petroleum ether and ethyl acetate (PE/EA = 5:1) as eluant, white solid (88% yield, 26.2 mg).

¹**H** NMR (400 MHz, CDCl₃) δ 7.63 (s, 1H), 7.39 (d, J = 8.2 Hz, 2H), 7.11 (t, J = (a, 2H), 2.16 (a, 2H)

8.1 Hz, 2H), 2.32 (s, 3H), 2.16 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.6, 135.4, 133.9, 129.4, 120.2, 24.4, 20.9.

(Known compound: ACS Sustainable Chem. Eng., 2023, 11, 9047-9056.).

N-(4-ethylphenyl)acetamide (3a)

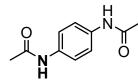


Purified by column chromatography using the mixture of petroleum ether and ethyl acetate (PE/EA = 5:1) as eluant, white solid (86% yield, 28.1 mg).

¹**H** NMR (400 MHz, CDCl₃) δ 7.46-7.41 (m, 3H), 7.15 (d, J = 8.2 Hz, 2H), 2.62 (q, J = 7.6 Hz, 2H), 2.17 (s, 3H), 1.23 (t, J = 7.6 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 168.4, 140.4, 135.5, 128.3, 120.2, 28.3, 24.6, 15.6. (Known compound: *ChemSusChem* 2022, **15**, e202200227.)

4-acetamidobenzyl acetate (4a)

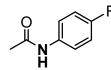


Purified by column chromatography using the mixture of petroleum ether and ethyl acetate (PE/EA = 5:1) as eluant, white solid (85% yield, 35.2 mg).

¹**H NMR** (400 MHz, CDCl₃) δ 7.55-7.51 (m, 3H), 7.32 (d, *J* = 8.3 Hz, 2H), 5.07 (s, 2H), 2.19 (s, 3H), 2.11 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 171.0, 168.5, 138.0, 131.7, 129.2, 119.9, 65.9, 24.6, 21.0. (Known compound: *Eur. J. Org. Chem.*, 2012, **2012**, 6127-6131.)

N,N'-(1,4-phenylene)diacetamide (5a)



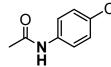
Purified by column chromatography using the mixture of petroleum ether and ethyl acetate (PE/EA = 5:1) as eluant, white solid (36% yield, 13.8 mg).

¹**H** NMR (400 MHz, DMSO-*d6*) δ 9.86 (d, J = 16.4 Hz, 2H), 7.50 (d, J =

16.8 Hz, 4H), 2.05-2.01 (m, 6H).
¹³C NMR (100 MHz, DMSO-*d6*) δ 168.4, 135.1, 119.8, 24.3.
HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₀H₁₃N₂O₂ 193.0977, Found: 193.0974.

N-(4-fluorophenyl)acetamide (6a)

Purified by column chromatography using the mixture of petroleum ether and ethyl acetate (PE/EA = 5:1) as eluant, white solid (80% yield, 24.5 mg).


¹**H NMR** (400 MHz, CDCl₃) δ 7.55 (s, 1H), 7.48 (dd, *J* = 9.0 Hz, *J* = 4.8 Hz, 2H), 7.01 (t, *J* = 8.6 Hz, 2H), 2.18 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 168.6, 159.4 (d, J_{F-C} = 242.1 Hz), 133.87, 121.9 (d, J_{F-C} = 7.4 Hz), 115.6 (d, J_{F-C} = 22.3 Hz), 24.4.

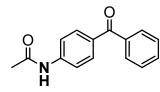
¹⁹F NMR (376 MHz, CDCl₃) δ -118.0

(Known compound: Angew. Chem. Int. Ed., 2021, 60, 7936-7940.)

N-(4-chlorophenyl)acetamide (7a)

Purified by column chromatography using the mixture of petroleum ether and ethyl acetate (PE/EA = 5:1) as eluant, white solid (81% yield, 27.4 mg).

¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, J = 8.7 Hz, 2H), 7.46-7.31 (m, 3H), 2.19 (s, 3H).
¹³C NMR (100 MHz, CDCl₃) δ 168.3, 136.4, 129.3, 129.0, 121.1, 24.6.
(Known compound: J. Am. Chem. Soc., 2022, 144, 15437-15442.)


N-(4-acetylphenyl)acetamide (8a)

Purified by column chromatography using the mixture of petroleum ether and ethyl acetate (PE/EA = 5:1) as eluant, white solid (81% yield, 28.9 mg).

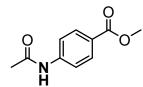
¹**H NMR** (400 MHz, CDCl₃) δ 7.95 (d, *J* = 8.0 Hz, 2H), 7.86 (s, 1H), 7.65 (d, *J* = 8.4 Hz, 2H), 2.59 (s, 3H), 2.24 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 197.2, 168.8, 142.4, 132.8, 129.8, 118.9, 26.5, 24.8. (Known compound: *J. Am. Chem. Soc.*, 2022, **144**, 15437-15442.)

N-(4-benzoylphenyl)acetamide (9a)

Purified by column chromatography using the mixture of petroleum ether and ethyl acetate (PE/EA = 5:1) as eluant, white solid (79% yield, 37.8 mg).

¹**H NMR** (400 MHz, CDCl₃) δ 8.07 (s, 1H), 7.83-7.77 (m, 4H), 7.67 (d, *J* = 8.0 Hz, 2H), 7.60 (t, *J* = 7.2 Hz, 1H), 7.49 (t, *J* = 7.2 Hz, 2H), 2.23 (s, 3H).

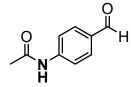

¹³C NMR (100 MHz, CDCl₃)δ 195.8, 168.8, 142.1, 137.8, 132.9, 132.3, 131.6, 129.8, 128.3, 118.8, 24.7. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₅H₁₄NO₂ 240.1028, Found: 240.1025.

N-(4-cyanophenyl)acetamide (10a)

Purified by column chromatography using the mixture of petroleum ether and ethyl acetate (PE/EA = 5:1) as eluant, white solid (81% yield, 25.9 mg).

¹H NMR (400 MHz, DMSO-*d6*) δ 10.37 (s, 1H), 7.77-7.72 (m, 4H), 2.09 (s, 3H).
 ¹³C NMR (100 MHz, DMSO-*d6*) δ 169.6, 143.9, 133.7, 119.5, 119.4, 105.1, 24.7.
 (Known compound: *ACS Sustainable Chem. Eng.*, 2023, **11**, 9047-9056.).

methyl 4-acetamidobenzoate (11a)

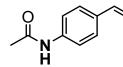


Purified by column chromatography using the mixture of petroleum ether and ethyl acetate (PE/EA = 5:1) as eluant, white solid (83% yield, 32.1 mg).

¹**H NMR** (400 MHz, CDCl₃) δ 8.02-8.00 (m, 2H), 7.67 (s, 1H), 7.61 (d, *J* = 8.4 Hz, 2H), 3.92 (s, 3H), 2.22 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 168.7, 166.7, 142.2, 130.8, 125.5, 118.8, 52.1, 24.8. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₀H₁₂NO₃ 194.0819, Found: 194.0814.

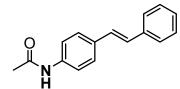
N-(4-formylphenyl)acetamide (12a)



Purified by column chromatography using the mixture of petroleum ether and ethyl acetate (PE/EA = 5:1) as eluant, white solid (79% yield, 25.8 mg).

¹**H NMR** (400 MHz, CDCl₃) δ 9.93 (s, 1H), 8.01 (s, 1H), 7.86 (d, *J* = 8.8 Hz, 2H), 7.74 (d, *J* = 8.4 Hz, 2H), 2.25 (s, 3H).

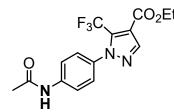
¹³C NMR (100 MHz, CDCl₃) δ 191.2, 169.0, 143.7, 132.2, 131.2, 119.3, 24.8. (Known compound: *Angew. Chem. Int. Ed.*, 2021, **60**, 7935-7940.)


N-(4-vinylphenyl)acetamide (13a)

Purified by column chromatography using the mixture of petroleum ether and ethyl acetate (PE/EA = 5:1) as eluant, white solid (80% yield, 25.8 mg).

¹**H NMR** (400 MHz, CDCl₃) δ 7.63 (s, 1H), 7.49 (d, J = 8.4 Hz, 2H), 7.37 (d, J = 8.4 Hz, 2H), 6.68 (dd, J = 17.6 Hz, J = 7.8 Hz, 1H), 6.70 (d, J = 17.6 Hz, 1H), 5.21 (d, J = 10.8 Hz, 1H), 2.19 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 168.4, 137.5, 136.1, 133.7, 126.8, 119.8, 113.1, 24.6. **HRMS** (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₀H₁₂NO 160.0921, Found: 160.0915.

(E)-N-(4-styrylphenyl)acetamide (14a)


Purified by column chromatography using the mixture of petroleum ether and ethyl acetate (PE/EA = 5:1) as eluant, white solid (82% yield, 38.9 mg).

¹**H NMR** (400 MHz, CDCl₃) δ 7.60 (s, 1H), 7.39 (d, *J* = 8.0 Hz, 2H), 7.27-7.21 (m, 7H), 6.61-6.53 (m, 2H), 2.18 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 168.4, 137.3, 136.8, 133.2, 129.9, 129.6, 129.6, 128.8, 128.3, 127.1, 119.5, 24.6

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₆H₁₆NO 238.1232, Found: 238.1230.

ethyl 1-(4-acetamidophenyl)-5-(trifluoromethyl)-1H-pyrazole-4-carboxylate (15a)

Purified by column chromatography using the mixture of petroleum ether and ethyl acetate (PE/EA = 5:1) as eluant, white solid (71% yield, 48.4 mg).

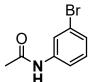
¹**H NMR** (400 MHz, CDCl₃) δ 8.12 (s, 1H), 7.68 (d, *J* = 8.7 Hz, 2H), 7.53 (s, 1H), 7.38 (d, *J* = 8.7 Hz, 2H), 4.39 (q, *J* = 7.2 Hz, 2H), 2.24 (s, 3H), 1.40 (d, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 168.8 (d, $J_{F-C} = 8.5$ Hz), 161.8, 142.4, 139.5 (d, $J_{F-C} = 4.4$ Hz), 134.8, 132.6 (q, $J_{F-C} = 39.8$ Hz), 126.5, 119.8 (d, $J_{F-C} = 2.5$ Hz), 119.1 (q, $J_{F-C} = 269.9$ Hz), 116.6, 61.4, 24.6, 14.10.

¹⁹F NMR (376 MHz, CDCl₃) δ -55.42

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₅H₁₅F₃N₃O₃ 342.1065, Found: 342.1069.

N-(3-fluorophenyl)acetamide (16a)

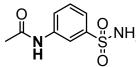


Purified by column chromatography using the mixture of petroleum ether and ethyl acetate (PE/EA = 5:1) as eluant, white solid (83% yield, 25.4 mg).

¹**H NMR** (400 MHz, CDCl₃) δ 7.69 (s, 1H), 7.50 (d, *J* = 7.2 Hz, 1H), 7.29-7.23 (s, 1H), 7.15 (d, *J* = 8.4 Hz, 1H), 6.81 (t, *J* = 8.4 Hz, 1H), 2.20 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 168.8, 162.9 (d, $J_{F-C} = 243.2$ Hz), 139.4 (d, $J_{F-C} = 10.8$ Hz), 130.0 (d, $J_{F-C} = 9.3$ Hz), 115.0 (d, $J_{F-C} = 2.8$ Hz), 110.9 (d, $J_{F-C} = 21.2$ Hz), 107.4 (d, $J_{F-C} = 26.1$ Hz), 24.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -111.52. (Known compound: *Angew. Chem. Int. Ed.*, 2021, **60**, 7935-7940.)

N-(3-bromophenyl)acetamide (17a)

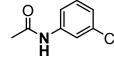

Purified by column chromatography using the mixture of petroleum ether and ethyl acetate (PE/EA = 5:1) as eluant, white solid (85% yield, 36.2 mg).

¹**H NMR** (400 MHz, CDCl₃) δ 8.17 (s, 1H), 7.79 (s, 1H), 7.41 (d, *J* = 7.9 Hz, 1H), 7.22 (d, *J* = 8.0 Hz, 1H), 7.16 (t, *J* = 8.0 Hz, 1H), 2.18 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 169.1, 139.3, 130.2, 127.3, 123.0, 122.5, 118.5, 24.5.

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₈H₉BrNO 213.9868, Found: 213.9862.

N-(3-sulfamoylphenyl)acetamide (18a)


 $\dot{P}_{\rm H}$ Purified by column chromatography using the mixture of petroleum ether and ethyl acetate (PE/EA = 5:1) as eluant, white solid (51% yield, 21.8 mg).

¹**H NMR** (400 MHz, DMSO-*d6*) δ 10.24 (s, 1H), 8.15 (s, 1H), 7.75-7.70

(m, 1H), 7.49-7.48 (m, 2H), 7.35 (s, 2H), 2.07 (s, 3H).

¹³C NMR (100 MHz, DMSO- *d6*) δ 169.2, 145.0, 140.1, 129.9, 122.2, 120.5, 116.4, 24.5. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₈H₁₁N₂O₃S 215.049; Found: 215.0501.

N-(3-cyanophenyl)acetamide (19a)

Purified by column chromatography using the mixture of petroleum ether and ethyl acetate (PE/EA = 5:1) as eluant, white solid (67% yield, 21.4 mg)

¹**H NMR** (400 MHz, CDCl₃) δ 8.11 (s, 1H), 7.97 (s, 1H), 7.74 (d, *J* = 8.0 Hz, 1H), 7.45-7.38 (m, 2H), 2.22 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 169.2, 139.0, 130.0, 127.6, 124.0, 123.0, 118.7, 112.7, 24.5. HRMS (ESI-TOF) m/z: $[M+H]^+$ Calcd for C₉H₉N₂O 161.0715, Found: 161.0708.

N,N'-(1,3-phenylene)diacetamide (20a)

Purified by column chromatography using the mixture of petroleum ether and ethyl acetate (PE/EA = 5:1) as eluant, white solid (74% yield, 28.4 mg).

¹**H NMR** (400 MHz, DMSO-*d6*) δ 9.89 (s, 2H), 7.87 (s, 1H), 7.27-7.25 (m, 2H), 7.19-7.15 (m, 1H), 2.03 (s, 6H).

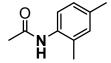
¹³C NMR (100 MHz, DMSO-*d6*) δ 168.7, 140.0, 129.2, 114.3, 110.2, 24.5. (Known compound: *Org. Chem. Front.*, 2022, **9**, 311-319.)

N-(o-tolyl)acetamide (21a)

Purified by column chromatography using the mixture of petroleum ether and ethyl acetate (PE/EA = 5:1) as eluant, white solid (82% yield, 24.4 mg).

¹**H NMR** (400 MHz, CDCl₃) δ 7.72 (s, 1H), 7.23-7.19 (m, 3H), 7.10 (t, *J* = 7.2 Hz, 1H), 2.26 (s, 3H), 2.20 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 168.6, 135.6, 130.5, 126.7, 125.4, 123.7, 123.7, 24.2, 17.8. (Known compound: *ACS Sustainable Chem. Eng.*, 2023, **11**, 9047-9056.).


N-(2,3-dimethylphenyl)acetamide (22a)

Purified by column chromatography using the mixture of petroleum ether and ethyl acetate (PE/EA = 5:1) as eluant, white solid (79% yield, 25.8mg).

¹**H NMR** (400 MHz, CDCl₃) δ 7.41 (d, *J* = 7.8 Hz, 1H), 7.15-7.09 (m, 2H), 7.03 (d, *J* = 7.4 Hz, 1H), 2.31 (s, 3H), 2.21 (s, 3H), 2.15 (s, 3H).

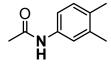
¹³C NMR (100 MHz, CDCl₃) δ 168.7, 137.5, 135.2, 129.9, 127.7, 125.9, 122.7, 24.0, 20.6, 13.9. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₀H₁₄NO 164.1075; Found: 164.1069.

N-(2,4-dimethylphenyl)acetamide (23a)

Purified by column chromatography using the mixture of petroleum ether and ethyl acetate (PE/EA = 5:1) as eluant, white solid (80% yield, 26.1 mg)

¹**H NMR** (400 MHz, CDCl₃) δ 7.53-7.51 (m, 1H), 7.10-7.02 (m, 3H), 2.30 (s, 3H), 2.22 (s, 3H), 2.19 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 168.7, 135.3, 132.9, 131.2, 130.3, 127.2, 124.1, 24.0, 20.9, 17.8. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₀H₁₄NO 164.1075; Found: 164.1070.


N-(2,6-dimethylphenyl)acetamide (24a)

Purified by column chromatography using the mixture of petroleum ether and ethyl acetate (PE/EA = 5:1) as eluant, white solid (82% yield, 26.7 mg).

¹H NMR (400 MHz, DMSO-*d6*) δ 9.23 (s, 1H), 7.06 (s, 3H), 2.14 (s, 6H), 2.05 (s, 3H).
¹³C NMR (100 MHz, DMSO *d6*) δ 168.2, 135.9, 135.6, 128.0, 126.7, 23.0, 18.6.
HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₀H₁₄NO 164.1075; Found: 164.1071.

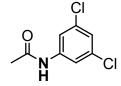
N-(3,4-dimethylphenyl)acetamide (25a)

Purified by column chromatography using the mixture of petroleum ether and ethyl acetate (PE/EA = 5:1) as eluant, white solid (90% yield, 29.4 mg).

¹**H NMR (400 MHz, CDCl₃)** δ 7.55 (s, 1H), 7.30 (s, 1H), 7.23 (d, *J* = 8.0 Hz, 1H), 7.07 (d, *J* = 8.0 Hz, 1H), 2.24 (s, 3H), 2.23 (s, 3H), 2.16 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 168.4, 137.2, 135.6, 132.7, 129.9, 121.5, 117.6, 24.5, 19.9, 19.2. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₀H₁₄NO 164.1075; Found: 164.1068.

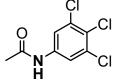
N-(2-fluoro-5-methylphenyl)acetamide (26a)



Purified by column chromatography using the mixture of petroleum ether and ethyl acetate (PE/EA = 5:1) as eluant, white solid (68% yield, 22.7 mg).

¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, J = 7.4 Hz, 1H), 7.41 (s, 1H), 6.96 (dd, J = 10.6 Hz, J = 8.4 Hz, 1H), 6.86-6.83 (m, 1H), 2.33 (s, 3H), 2.23 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.4, 150.6 (d, J_{F-C} = 238.7 Hz), 134.2 (d, J_{F-C} = 3.6 Hz), 125.8 (d, J_{F-C} = 10.5 Hz), 124.6 (d, J_{F-C} = 7.3 Hz), 122.2, 114.2 (d, J_{F-C} = 19.1 Hz), 24.7, 21.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -136.19.

HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₉H₁₁FNO 168.0824; Found: 168.0817.

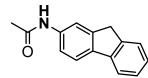

N-(3,5-dichlorophenyl)acetamide (27a)

Purified by column chromatography using the mixture of petroleum ether and ethyl acetate (PE/EA = 5:1) as eluant, white solid (79% yield, 32.1 mg).

¹H NMR (400 MHz, MeOH-*d4*) δ 7.60 (s, 2H), 7.14-7.13 (m, 1H), 2.14 (s, 3H).
¹³C NMR (100 MHz, MeOH *d4*) δ 174.4, 144.8, 138.7, 126.9, 121.4, 26.5.
HRMS (ESI) m/z: [M + H]⁺ Calcd for C₈H₈Cl₂NO 203.9983; Found: 203.9977.

N-(3,4,5-trichlorophenyl)acetamide (28a)

Purified by column chromatography using the mixture of petroleum ether and ethyl acetate (PE/EA = 5:1) as eluant, white solid (80% yield, 38.0 mg).

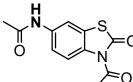

¹H NMR (400 MHz, DMSO-*d6*) δ 10.31 (s, 1H), 7.84-7.82 (m, 2H), 2.07. (s, 3H)
¹³C NMR (100 MHz, DMSO-*d6*) δ 169.6, 139.7, 133.2, 123.4, 119.3, 24.6.
HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₈H₇Cl₃NO 237.9593; Found: 237.9585.

N-(1-acetyl-*1H*-indazol-5-yl)acetamide (29a)

Purified by column chromatography using the mixture of petroleum ether and ethyl acetate (PE/EA = 5:1) as eluant, white solid (82% yield, 35.6 mg).

¹**H** NMR (400 MHz, CDCl₃) δ 8.35 (d, J = 8.8 Hz, 1H), 8.26 (s, 1H), 8.10 (s, 1H), 7.55 (s, 1H), 7.36 (dd, J = 8.8 Hz, J = 1.9 Hz, 1H), 2.80 (s, 3H), 2.25 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.0, 168.6, 139.9, 135.9, 134.5, 126.8, 122.4, 115.8, 111.6, 24.6, 22.9. **HRMS** (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₁H₁₂N₃O₂ 218.0929; Found: 218.0922.

N-(9H-fluoren-2-yl)acetamide (30a)

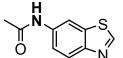

Purified by column chromatography using the mixture of petroleum ether and ethyl acetate (PE/EA = 5:1) as eluant, white solid (89% yield, 39.7 mg).

¹**H NMR** (400 MHz, CDCl₃) δ 7.88 (s, 1H), 7.72 (t, J = 8.7 Hz, 2H), 7.60-

7.49 (m, 2H), 7.36 (d, *J* = 7.8 Hz, 2H), 7.29 (d, *J* = 7.8 Hz, 2H), 3.88 (s, 2H), 2.23 (s, 3H).
¹³C NMR (100 MHz, CDCl₃) δ 168.5, 144.3, 143.2, 141.3, 138.1, 136.7, 126.8, 126.3, 125.0, 120.1, 119.5, 118.7, 117.0, 37.0, 24.7.

HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₅H₁₄NO 224.1075; Found: 224.1069.

N-(3-acetyl-2-oxo-2,3-dihydrobenzo[d]thiazol-6-yl)acetamide (31a)

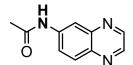


Purified by column chromatography using the mixture of petroleum ether and ethyl acetate (PE/EA = 5:1) as eluant, white solid (77% yield, 38.5 mg).

¹**H NMR** (400 MHz, CDCl₃) δ 8.25 (d, *J* = 9.2 Hz, 1H), 8.00 (d, *J* = 2.4 Hz, 1H), 7.60 (s, 1H), 7.11 (dd, *J* = 8.8 Hz, *J* = 2.4 Hz, 1H), 2.75 (s, 3H), 2.14 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 171.2, 170.8, 168.6, 135.5, 130.8, 122.6, 118.2, 118.1, 113.3, 27.3, 24.6. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₁H₁₁N₂O₃S 251.049; Found: 251.0489.

N-(benzo[d]thiazol-6-yl)acetamide (32a)

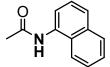


Purified by column chromatography using the mixture of petroleum ether and ethyl acetate (PE/EA = 5:1) as eluant, white solid (79% yield, 30.3 mg).

¹**H NMR** (400 MHz, CDCl₃) δ 8.92 (s, 1H), 8.54 (d, *J* = 1.6 Hz, 1H), 8.03-7.99 (m, 2H), 7.35 (dd, *J* = 8.8 Hz, *J* = 2.0 Hz, 1H), 2.23 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 168.9, 153.5, 149.8, 135.9, 134.8, 123.4, 119.1, 112.7, 24.6. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₉H₉N₂OS 193.0435; Found: 193.0430.

N-(quinoxalin-6-yl)acetamide (33a)



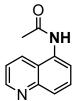
Purified by column chromatography using the mixture of petroleum ether and ethyl acetate (PE/EA = 5:1) as eluant, white solid (64% yield, 23.9 mg).

¹**H NMR** (400 MHz, MeOH-*d4*) δ 8.78 (d, J = 2.0 Hz, 1H), 8.73 (d, J = 1.6 Hz, 1H), 8.47 (d, J = 2.0 Hz, 1H), 7.96 (d, J = 8.8 Hz, 1H), 7.87 (dd, J = 9.2 Hz, J = 2.4 Hz, 1H), 2.22 (s, 3H). ¹³**C NMR** (100 MHz, MeOH-*d4*) δ 170.7, 145.3, 143.5, 143.1, 140.4, 139.5, 128.9, 123.9, 115.8, 22.7.

HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{10}H_{10}N_3O$ 188.0824; Found: 188.0818.

N-(naphthalen-1-yl)acetamide (34a)

Purified by column chromatography using the mixture of petroleum ether and ethyl acetate (PE/EA = 5:1) as eluant, white solid (81% yield, 30.0 mg)

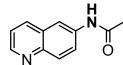

¹**H NMR** (400 MHz, DMSO-*d6*) δ 9.94 (s, 1H), 8.10 (d, *J* = 8.8 Hz, 1H), 7.95-7.93 (m, 1H), 7.75 (d, *J*

= 8.0 Hz, 1H), 7.71 (d, *J* = 7.6 Hz, 1H), 7.58-7.47 (m, 3H), 2.21 (s, 3H).

¹³**C NMR** (100 MHz, DMSO-*d6*) δ 169.4, 134.2, 128.6, 128.1, 126.4, 126.2, 126.0, 125.5, 123.2, 122.0, 24.0.

(Known compound: ACS Sustainable Chem. Eng., 2023, 11, 9047-9056.).

N-(quinolin-5-yl)acetamide (35a)

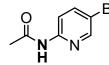

Purified by column chromatography using the mixture of petroleum ether and ethyl acetate (PE/EA = 5:1) as eluant, white solid (73% yield, 27.2 mg)

¹**H NMR** (400 MHz, DMSO-*d6*) δ 10.07 (s, 1H), 8.92 (dd, J = 4.0 Hz, J = 1.2 Hz, 1H), 8.51 (d, J = 8.4 Hz, 1H), 7.86 (d, J = 8.0 Hz, 1H), 7.80 (d, J = 7.6 Hz, 1H), 7.73 (t, J = 8.0 Hz, 1H), 7.56 (dd, J = 8.8 Hz, J = 4.0 Hz, 1H), 2.21(s, 3H).

¹³**C NMR** (100 MHz, DMSO-*d6*) δ 169.6, 150.9, 148.6, 134.5, 132.0, 129.5, 126.4, 123.2, 121.8, 121.3, 24.0.

HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{11}H_{11}N_2O$ 187.0871; Found: 187.0876.

N-(quinolin-6-yl)acetamide (36a)

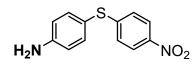

Purified by column chromatography using the mixture of petroleum ether and ethyl acetate (PE/EA = 5:1) as eluant, white solid (69% yield, 25.7 mg).

¹**H NMR** (400 MHz, DMSO-*d6*) δ 10.26 (s, 1H), 8.77 (dd, *J* = 4.0 Hz, *J* = 1.2 Hz, 1H), 8.36, 8.36 (d, *J* = 2.0 Hz, 1H), 8.26 (d, *J* = 8.4 Hz, 1H), 7.96 (d, *J* = 9.2 Hz, 1H), 7.78 (dd, *J* = 8.8 Hz, *J* = 2.0 Hz, 1H), 7.46 (dd, *J* = 8.0 Hz, *J* = 4.0 Hz, 1H), 2.13 (s, 3H).

¹³**C NMR** (100 MHz, DMSO-*d6*) δ 169.6, 150.9, 148.6, 134.6, 131.9, 129.5, 126.4, 123.2, 121.8, 121.3, 24.0.

HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{11}H_{11}N_2O$ 187.0871; Found: 187.0869.

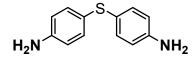
N-(5-bromopyridin-2-yl)acetamide (37a)



Purified by column chromatography using the mixture of petroleum ether and ethyl acetate (PE/EA = 5:1) as eluant, white solid (57% yield, 24.4 mg).

¹**H NMR** (400 MHz, DMSO-*d6*) δ 8.33-8.27 (m, 2H), 8.18 (d, *J* = 8.8 Hz, 1H), 7.82 (d, *J* = 8.8 Hz, 1H), 2.23 (s, 3H).

¹³C NMR (100 MHz, DMSO-*d6*) δ 168.7, 150.0, 148.4, 141.0, 115.3, 114.5, 24.8. (Known compound: *Org. Biomol. Chem.*, 2020, **18**, 9292-9299)


4-((4-nitrophenyl)thio)aniline (38A)

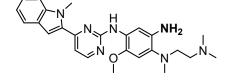
Purified by column chromatography using the mixture of petroleum ether and ethyl acetate (PE/EA = 5:1) as eluant, yellow solid (41% yield, 20.2 mg)

¹**H NMR** (400 MHz, CDCl₃) δ 8.05 (d, J = 9.2 Hz, 2H), 7.36 (d, J = 8.4 Hz, 2H), 7.11 (t, J = 9.2 Hz, 2H), 6.77 (d, J = 8.4 Hz, 2H), 3.56 (br, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 151.0, 148.3, 144.8, 137.3, 125.2, 123.9, 116.5, 116.2. **HRMS** (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₂H₁₁N₂O₂S 247.0541; Found: 247.0543

4,4'-thiodianiline (38B)¹¹

Purified by column chromatography using the mixture of petroleum ether and ethyl acetate (PE/EA = 5:1) as eluant, yellow solid (53% yield, 15.1 mg)

¹H NMR (400 MHz, CDCl₃) δ 7.18 (d, J = 8.4 Hz, 4H), 6.62 (d, J = 8.4 Hz, 4H), 3.65 (br, 4H).
¹³C NMR (100 MHz, CDCl₃) δ 145.7, 132.8, 125.0, 115.8.
(Known compound: *Org. Lett.*, 2010, **12**, 2430-2433.)


2-(isopropylsulfonyl)aniline (39)

Purified by column chromatography using the mixture of petroleum ether and ethyl acetate (PE/EA = 5:1) as eluant, white solid (78% yield, 31 mg).

¹**H** NMR (400 MHz, CDCl₃) δ 7.65 (d, *J* = 8.0 Hz, 1H), 7.36 (t, *J* = 7.2 Hz, 1H), 6.81 (t, *J* = 7.6 Hz, 1H), 6.75 (d, *J* = 8.0 Hz, 1H), 4.67 (br, 2H), 3.40-3.30 (m, 1H), 1.32 (d, *J* = 6.8 Hz, 6H). ¹³**C** NMR (100 MHz, CDCl₃) δ 147.2, 135.0, 131.2, 118.1, 117.6, 117.5, 54.1, 15.3. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₉H₁₄NO₂S 200.0745; Found: 200.0736.

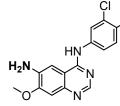
*N*¹-(2-(dimethylamino)ethyl)-5-methoxy-*N*¹-methyl-N4-(4-(1-methyl-1H-indol-2-yl)pyrimidin-2-yl)benzene-1,2,4-triamine (40)

Purified by column chromatography using the mixture of petroleum ether and ethyl acetate (DCM/MeOH = 3:1) as eluant, white solid (45% yield, 40.1 mg)

¹**H NMR** (400 MHz, DMSO-*d6*) δ 8.44 (d, *J* = 7.6 Hz, 1H), 8.30 (s, 1H), 8.28 (d, *J* = 5.6 Hz, 1H), 7.80 (s, 1H), 7.52-7.50 (m, 2H), 7.25 (t, *J* = 8.4 Hz, 1H), 7.19 (d, *J* = 8.0 Hz, 1H), 7.15 (d, *J* = 5.2 Hz, 1H), 6.77 (s, 1H), 4.58 (s, 2H), 3.87 (s, 3H), 3.75 (s, 3H), 2.89 (t, *J* = 6.8 Hz, 2H), 2.64 (s, 3H), 2.36 (t, *J* = 6.4 Hz, 2H), 2.17 (s, 6H).

¹³C NMR (100 MHz, DMSO-*d6*) δ 162.5, 160.9, 157.4, 142.2, 138.1, 137.2, 133.8, 133.3, 126.0, 125.7, 122.7, 122.6, 121.4, 112.9, 110.8, 109.5, 107.2, 105.7, 57.9, 56.9, 54.5, 46.2, 42.1, 40.6, 33.5.
HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₅H₃₂N₇O 446.2668; Found: 446.2660.

4-fluoro-2-methoxyaniline (41)


Purified by column chromatography using the mixture of petroleum ether and ethyl acetate (PE/EA = 10:1) as eluant, white solid (85% yield, 24.0 mg).

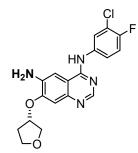
¹**H NMR** (400 MHz, CDCl₃) δ 6.64 (t, *J* = 7.6 Hz, 1H), 6.58 (dd, *J* = 10.4 Hz, *J* = 2.4 Hz, 1H), 6.53 (t, *J* = 8.4 Hz, 1H), 3.85 (s, 3H), 3.58 (br, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 156.4 (d, $J_{F-C} = 234.1$ Hz), 147.8 (d, $J_{F-C} = 9.4$ Hz), 132.0 (d, $J_{F-C} = 2.6$ Hz), 114.7 (d, $J_{F-C} = 9.1$ Hz), 106.4 (d, $J_{F-C} = 21.7$ Hz), 99.1 (d, $J_{F-C} = 16.7$ Hz), 55.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -124.19.

HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for C₇H₉FNO 142.0668; Found: 142.0662.

*N*⁴-(3-chloro-4-fluorophenyl)-7-methoxyquinazoline-4,6-diamine (42)

Purified by column chromatography using the mixture of petroleum ether and ethyl acetate (PE/EA = 5:1) as eluant, white solid (67% yield, 42.6 mg).


¹**H NMR** (400 MHz, DMSO) δ 9.40 (s, 1H), 8.39 (s, 1H), 8.21-8.19 (m, 1H), 7.83-7.80 (m, 1H), 7.42-7.38 (m, 2H), 7.11 (s, 1H), 5.40 (br, 2H), 3.97 (s, 3H).

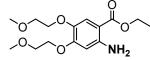
¹³**C NMR** (100 MHz, DMSO) δ 155.5, 153.1 (d, $J_{F-C} = 240.3$ Hz), 153.2, 150.7, 145.3, 139.0, 138.0, 122.9, 121.9 (d, $J_{F-C} = 6.7$ Hz), 119.0 (d, $J_{F-C} = 18.1$ Hz), 116.8 (d, $J_{F-C} = 21.4$ Hz), 110.9, 106.4, 101.3, 56.3.

 ^{19}F NMR (376 MHz, DMSO) δ -124.36.

HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{15}H_{13}ClFN_4O$ 319.0762; Found: 319.0757.

(S)-N4-(3-chloro-4-fluorophenyl)-7-((tetrahydrofuran-3-yl)oxy)quinazoline-4,6-diamine (43)

Purified by column chromatography using the mixture of petroleum ether and ethyl acetate (PE/EA = 5:1) as eluant, white solid (78% yield, 58.4 mg).

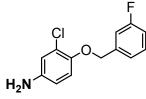

¹**H NMR** (400 MHz, CDCl₃) δ 8.58 (s, 1H), 7.92-7.90 (m, 2H), 7.52-7.48 (m, 2H), 7.36 (s, 1H), 7.14 (t, *J* = 8.4 Hz, 1H), 7.11, 7.09 (s, 1H), 7.00 (s, 1H), 5.09-5.07 (m, 1H), 4.28 (br, 2H), 4.11-4.08 (m, 1H), 4.05-4.01 (m, 2H), 3.96-3.90 (m, 1H), 2.37-2.28 (m, 1H), 2.25-2.19 (m, 1H).

¹³**C NMR** (100 MHz, CDCl₃) δ 154.5 (d, $J_{F-C} = 244.3$ Hz), 155.23, 151.9, 150.9, 145.5, 137.9, 135.5, 123.7, 121.1 (d, $J_{F-C} = 6.7$ Hz), 121.1 (d, $J_{F-C} = 18.5$ Hz), 116.5 (d, $J_{F-C} = 21.9$ Hz), 110.1, 108.1, 100.8, 78.6, 73.0, 67.3, 32.8.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -121.30.

HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{18}H_{17}ClFN_4O_2$ 375.1024; Found: 375.1021.

ethyl 2-amino-4,5-bis(2-methoxyethoxy)benzoate (44)


Purified by column chromatography using the mixture of petroleum ether and ethyl acetate (PE/EA = 5:1) as eluant, white solid (81% yield, 50.7 mg).

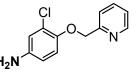
¹**H NMR** (400 MHz, CDCl₃) δ 7.45 (s, 1H), 6.17 (s, 1H), 4.30 (q, *J* = 7.2 Hz, 2H), 4.13 (t, *J* = 4.4 Hz, 2H), 4.09 (t, *J* = 4.4 Hz, 2H), 3.78 (t, *J* = 4.8 Hz, 2H), 3.74 (t, *J* = 4.8 Hz, 2H), 3.45 (d, *J* = 3.2 Hz, 6H), 1.37 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 167.7, 155.2, 147.4, 139.7, 118.2, 103.2, 100.9, 71.2, 70.7, 70.1, 68.0, 60.1, 59.2, 59.1, 14.5.

HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{15}H_{24}NO_6$ 314.1603; Found: 314.1602.

3-chloro-4-((3-fluorobenzyl)oxy)aniline (45)

Purified by column chromatography using the mixture of petroleum ether and ethyl acetate (PE/EA = 10:1) as eluant, white solid (83% yield, 41.7 mg)

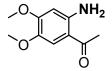

¹**H NMR** (400 MHz, CDCl₃) δ 7.38-7.33 (m, 1H), 7.24-7.20 (m, 2H), 7.04-7.00 (m, 1H), 6.81-6.78 (m, 2H), 6.52 (dd, *J* = 8.8 Hz, *J* = 2.8 Hz, 1H), 5.05 (br, 2H), 3.53 (s, 2H).

¹³**C** NMR (100 MHz, CDCl₃) δ 163.0 (d, $J_{F-C} = 244.4$ Hz), 146.9, 141.6, 139.7 (d, $J_{F-C} = 7.3$ Hz), 130.0 (d, $J_{F-C} = 8.1$ Hz), 124.5, 122.7, 122.6, 117.1 (d, $J_{F-C} = 29.7$ Hz), 114.7 (d, $J_{F-C} = 21.1$ Hz), 114.2 (d, $J_{F-C} = 21.9$ Hz), 114.2, 71.4 (d, $J_{F-C} = 1.8$ Hz).

¹⁹**F NMR** (376 MHz, CDCl₃) δ -112.93.

HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for C₁₃H₁₂ClFNO 252.0591; Found: 252.0587.

3-chloro-4-(pyridin-2-ylmethoxy)aniline (46)


Purified by column chromatography using the mixture of petroleum ether and ethyl acetate (PE/EA = 10:1) as eluant, white solid (81% yield, 37.9 mg).

¹**H NMR** (400 MHz, CDCl₃) δ 8.58 (d, *J* = 8.8 Hz, 1H), 7.74 (td, *J* = 7.6 Hz, *J* = 1.6 Hz, 1H), 7.76 (d, *J* = 7.6 Hz, 1H), 7.25-7.22 (m, 1H), 6.82 (d, *J* = 8.8 Hz, 1H), 6.78 (d, *J* = 2.8 Hz, 1H), 6.53 (dd, *J* = 8.8 Hz, *J* = 2.8 Hz, 1H), 5.20 (br, 2H), 3.27 (s, 2H).

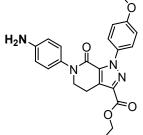
¹³C NMR (100 MHz, CDCl₃) δ 157.3, 149.0, 146.8, 141.3, 136.9, 123.9, 122.6, 121.3, 117.2, 115.9, 114.3, 72.3.

HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{12}H_{12}ClN_2O$ 235.0638; Found: 235.0633.

1-(2-amino-4,5-dimethoxyphenyl)ethan-1-one (47)

Purified by column chromatography using the mixture of petroleum ether and ethyl acetate (PE/EA = 10:1) as eluant, white solid (79% yield, 30.8 mg)

¹**H NMR** (400 MHz, CDCl₃) δ 7.12 (s, 1H), 6.47-6.14 (m, 3H), 3.89 (s, 3H), 3.86 (s, 3H), 2.54 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 198.4, 155.4, 147.5, 140.1, 114.1, 110.6, 99.3, 56.8, 55.8, 27.8. **HRMS** (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₀H₁₄NO₃ 196.0973; Found: 196.0969.


tert-butyl 4-(6-aminopyridin-3-yl)piperazine-1-carboxylate (48)

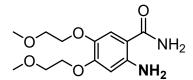
Purified by column chromatography using the mixture of petroleum ether and ethyl acetate (PE/EA = 10:1) as eluant, white solid (73% yield, 40.6 mg)

¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, *J* = 2.8 Hz, 1H), 7.19 (dd, *J* = 8.8 Hz, *J* = 2.4 Hz, 1H), 6.51 (d, *J* = 8.8 Hz, 1H), 4.29 (s, 2H), 3.58 (t, *J* = 4.8 Hz, 4H), 2.97 (t, *J* = 4.4 Hz, 4H), 1.49 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 154.7, 153.3, 140.6, 137.2, 129.8, 109.3, 80.0, 51.0, 28.4. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₄H₂₃N₄O₂ 279.1821; Found: 279.1817.

Ethyl6-(4-aminophenyl)-1-(4-methoxyphenyl)-7-oxo-4,5,6,7-tetrahydro-1H-pyrazolo[3,4c]pyridine-3-carboxylate (49)

Purified by column chromatography using the mixture of petroleum ether and ethyl acetate (PE/EA = 10:1) as eluant, white solid (61% yield, 49.6 mg)

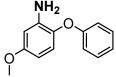

¹**H** NMR (400 MHz, CDCl₃) δ 7.50 (d, *J* = 4.8 Hz, 2H), 7.09 (d, *J* = 8.8 Hz, 2H), 6.91 (d, *J* = 9.2 Hz, 2H), 6.68 (d, *J* = 8.8 Hz, 2H), 4.50 (q, *J* = 7.2 Hz, 2H), 4.05 (t, *J* = 6.4 Hz, 2H),

3.82 (s, 3H), 3.32-3.19 (m, 4H), 1.45 (t, <math>J = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 162.2, 159.8, 157.4, 144.7, 138.9, 133.3, 132.9, 132.6, 127.0, 126.7, 126.6, 115.5, 113.6, 61.2, 55.5, 51.4, 21.5, 14.4.

HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₂H₂₃N₄O₄ 407.1719; Found: 407.1716.

2-amino-4,5-bis(2-methoxyethoxy)benzamide (50)


Purified by column chromatography using the mixture of petroleum ether and ethyl acetate (PE/EA = 10:1) as eluant, white solid (75% yield, 42.6 mg).

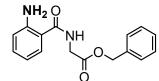
¹**H NMR** (400 MHz, CDCl₃) δ 7.05 (s, 1H), 6.40-6.02 (m, 3H), 5.28 (br, 2H), 4.05-4.01 (m, 4H), 3.72 (t, *J* = 5.2 Hz, 2H), 3.64 (t, *J* = 4.8 Hz, 2H), 3.38 (d, *J* = 7.2 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 171.5, 154.2, 146.8, 139.1, 117.3, 105.8, 101.6, 71.29, 70.7, 70.6, 67.8, 59.1, 58.9.

HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{13}H_{21}N_2O_5$ 285.1450; Found: 285.1461.

5-methoxy-2-phenoxyaniline (51)

Purified by column chromatography using the mixture of petroleum ether and ethyl acetate (PE/EA = 15:1) as eluant, white solid (75% yield, 32.3 mg).

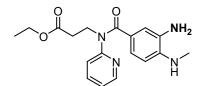

¹**H NMR** (400 MHz, CDCl₃) δ 7.31 (t, *J* = 8.0 Hz, 2H), 7.05 (t, *J* = 7.2 Hz, 1H), 6.96 (d, *J* = 8.0 Hz, 2H), 6.87 (d, *J* = 8.8 Hz, 1H), 6.42 (d, *J* = 2.8 Hz, 1H), 6.31 (dd, *J* = 8.8 Hz, *J* = 2.8 Hz, 1H), 3.80 (s, 3H),

3.62 (br, 2H).

¹³**C NMR** (100 MHz, CDCl₃) δ 158.3, 157.2, 139.8, 136.5, 129.7, 122.2, 121.9, 116.1, 103.7, 102.2, 55.5.

HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₃H₁₄NO₂ 216.1024; Found: 216.1020.

benzyl (2-aminobenzoyl)glycinate (52)

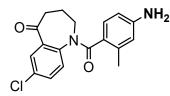

Purified by column chromatography using the mixture of petroleum ether and ethyl acetate (PE/EA = 5:1) as eluant, white solid (80% yield, 45.5 mg).

¹**H NMR** (400 MHz, CDCl₃) δ 7.44-7.37 (m, 6H), 7.26-7.22 (m, 1H), 6.71-6.65 (m, 3H), 5.25-5.03 (m, 4H), 4.25 (d, *J* = 4.8 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 170.1, 169.2, 148.6, 135.2, 132.7, 128.7, 128.6, 128.4, 127.5, 117.4, 116.8, 115.2, 67.3, 41.6.

HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{16}H_{17}N_2O_3$ 285.1239; Found: 285.1237.

ethyl 3-(3-amino-4-(methylamino)-N-(pyridin-2-yl)benzamido)propanoate (53)

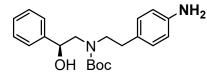

Purified by column chromatography using the mixture of petroleum ether and ethyl acetate (PE/EA = 5:1) as eluant, white solid (62% yield, 42.4 mg).

¹**H NMR** (400 MHz, CDCl₃) δ 8.43 (s, 1H), 7.42-7.36 (m, 1H), 7.03-6.98 (m, 1H), 6.86-6.82 (m, 1H), 6.76-6.70 (m, 2H), 6.35-6.28 (m, 1H), 4.41-4.35 (m, 2H), 4.10-4.03 (m, 2H), 3.46 (s, 3H), 2.81-2.73 (m, 5H), 1.23-1.17 (m, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 171.9, 171.0, 156.8, 148.6, 141.6, 137.0, 132.5, 124.2, 123.4, 122.5, 120.5, 117.5, 108.3, 60.4, 44.5, 33.5, 30.5, 14.1.

HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₈H₂₃N₄O₃ 343.1770; Found: 343.1773

1-(4-amino-2-methylbenzoyl)-7-chloro-1,2,3,4-tetrahydro-5H-benzo[b]azepin-5-one (54)

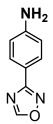

Purified by column chromatography using the mixture of petroleum ether and ethyl acetate (PE/EA = 10:1) as eluant, white solid (77% yield, 50.5 mg).

¹**H NMR** (400 MHz, CDCl₃) δ 7.78 (d, *J* = 2.4 Hz, 1H), 7.21 (d, *J* = 7.2 Hz, 1H), 6.77 (s, 1H), 6.64 (d, *J* = 6.0 Hz, 1H), 6.45 (d, *J* = 1.6 Hz, 1H), 6.24 (d, *J* = 7.6, 1H), 3.99-3.63 (m, 4H), 2.89 (t, *J* = 6.8 Hz, 2H), 2.34 (s, 3H), 2.14 (s, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 200.5, 171.2, 147.4, 141.8, 138.0, 135.1, 132.6, 129.9, 129.2, 129.0, 125.1, 116.8, 111.7, 47.4, 40.1, 23.1, 20.0.

HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₈H₁₈ClN₂O₂ 329.1057; Found: 329.1054.

tert-butyl (S)-(4-aminophenethyl)(2-hydroxy-2-phenylethyl)carbamate (55)


Purified by column chromatography using the mixture of petroleum ether and ethyl acetate (PE/EA = 3:1) as eluant, white solid (85% yield, 60.6 mg)

¹**H NMR** (400 MHz, CDCl₃) δ 7.37-7.36 (m, 5H), 6.92 (d, *J* = 6.8 Hz, 2H), 6.63 (d, *J* = 8.0 Hz, 2H), 4.89 (d, *J* = 6.4 Hz, 1H), 3.54-3.21 (m, 7H), 2.70-2.56 (m, 2H), 1.49 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 158.1, 144.7, 142.5, 129.6, 128.9, 128.4, 127.5, 125.9, 115.4, 80.5, 74.4, 56.7, 51.7, 34.1, 28.4.

HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{21}H_{29}N_2O_3$ 357.2178; Found: 357.2165.

4-(1,2,4-oxadiazol-3-yl)aniline (56)

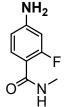
Purified by column chromatography using the mixture of petroleum ether and ethyl acetate (PE/EA = 10:1) as eluant, white solid (67% yield, 21.6 mg).

¹**H NMR** (400 MHz, CDCl₃) δ 8.69 (s, 1H), 7.93 (d, *J* = 8.8 Hz, 2H), 6.76 (d, *J* = 8.4 Hz, 2H), 4.02 (br, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 167.6, 164.2, 149.4, 129.1, 116.0, 114.8.

HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_8H_8N_3O$ 162.0667; Found: 162.0662.

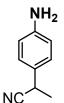
3-bromo-2-methoxyaniline (57)


Purified by column chromatography using the mixture of petroleum ether and ethyl acetate (PE/EA = 15:1) as eluant, white solid (79% yield, 31.8 mg)

¹**H NMR** (400 MHz, CDCl₃) δ 6.93 (d, *J* = 8.0 Hz, 1H), 6.80 (t, *J* = 8.0 Hz, 1H), 6.70 (d, *J* = 7.6 Hz, 1H), 3.85 (s, 3H), 3.73 (br, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 144.2, 141.3, 125.8, 122.5, 117.1, 115.1, 59.6.

HRMS (ESI-TOF) m/z: [M - H]⁺ Calcd for C₇H₇BrNO 199.9703; Found: 199.9708.


4-amino-2-fluoro-N-methylbenzamide (58)

Purified by column chromatography using the mixture of petroleum ether and ethyl acetate (PE/EA = 5:1) as eluant, white solid (66% yield, 22.2 mg).

¹**H NMR** (400 MHz, CDCl₃) δ 7.91 (t, *J* = 8.8 Hz, 1H), 6.63 (s, 1H), 6.49 (dd, *J* = 8.4 Hz, *J* = 2.0 Hz, 1H), 6.33 (dd, *J* = 14.4 Hz, *J* = 2.0 Hz, 1H), 4.18 (br, 2H), 3.00 (dd, *J* = 4.8 Hz, *J* = 0.8 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 164.4 (d, *J*_{F-C} = 3.7 Hz), 162.2 (d, *J*_{F-C} = 243.1 Hz), 151.4 (d, *J*_{F-C} = 12.7 Hz), 133.3 (d, *J*_{F-C} = 4.3 Hz), 110.8 (d, *J*_{F-C} = 1.8 Hz), 110.2 (d, *J*_{F-C} = 1.7 Hz), 100.8 (d, *J*_{F-C} = 28.5 Hz), 26.6 ¹⁹F NMR (376 MHz, CDCl₃) δ -112.86. HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for C₈H₁₀FN₂O 169.0778; Found: 169.0771.

2-(4-aminophenyl)propanenitrile (59)

Purified by column chromatography using the mixture of petroleum ether and ethyl acetate (PE/EA = 10:1) as eluant, white solid (76% yield, 22.2 mg).

¹H NMR (400 MHz, CDCl₃) δ 7.14 (d, *J* = 8.4 Hz, 2H), 6.71-6.68 (m, 2H), 3.84-3.78 (m, 2H), 1.61 (d, *J* = 7.6 Hz, 3H).
¹³C NMR (100 MHz, CDCl₃) δ 146.2, 127.7, 126.8, 122.2, 115.4, 30.5, 21.5.

HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_9H_{11}N_2$ 147.0922; Found: 147.0917.

ethyl 4-aminobenzoate (60)

Purified by column chromatography using the mixture of petroleum ether and ethyl acetate (PE/EA = 10:1) as eluant, white solid (85% yield, 28.1 mg).

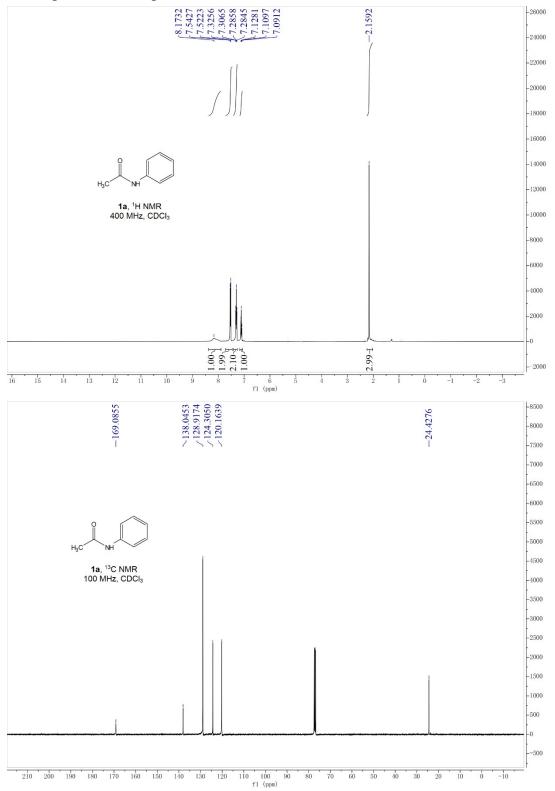
¹**H NMR** (400 MHz, CDCl₃) δ 7.88 (d, J = 8.8 Hz, 2H), 6.66 (d, J = 8.4 Hz, 2H), 4.36 (br, 2H), 4.32 (q, J = 7.2 Hz, 2H), 1.38 (t, J = 7.2 Hz, 3H).

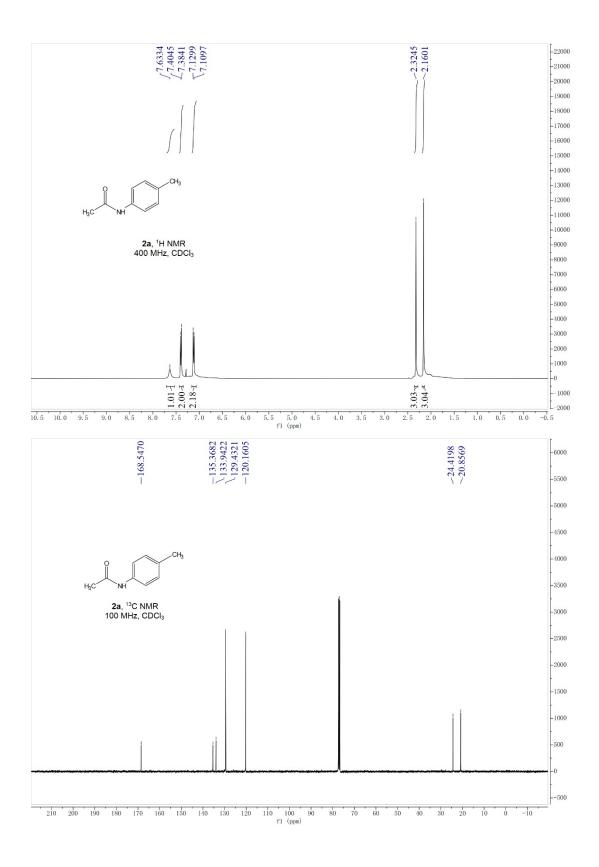
¹³C NMR (100 MHz, CDCl₃) δ 166.8, 150.8, 131.6, 120.0, 113.8, 60.3, 14.4.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_9H_{12}NO_2$ 166.0868; Found: 166.0863.

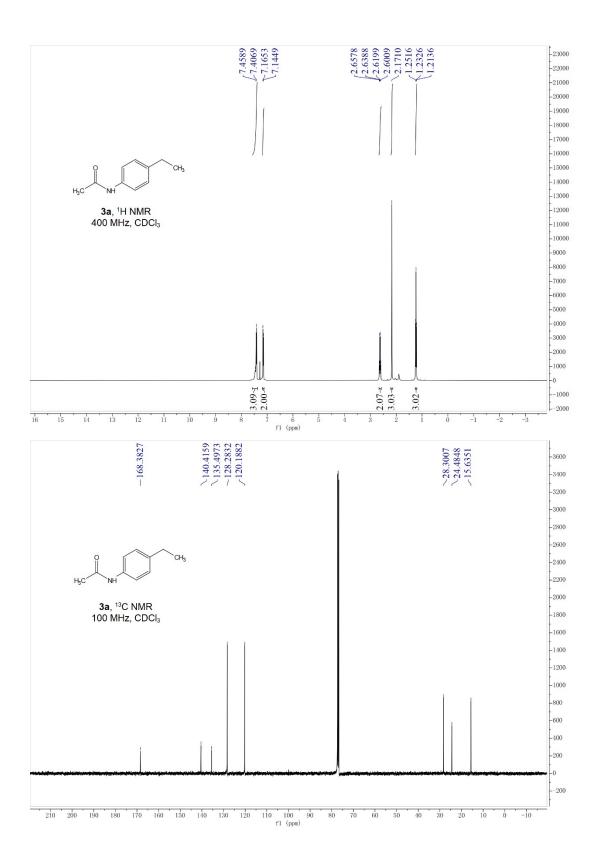
butyl 4-aminobenzoate (61)

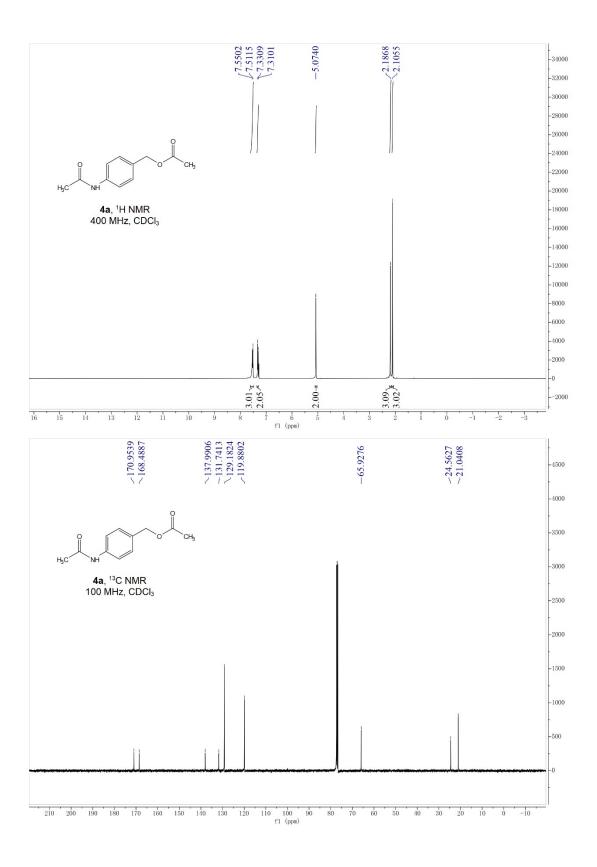
Purified by column chromatography using the mixture of petroleum ether and ethyl acetate (PE/EA = 10:1) as eluant, white solid (81% yield, 31.3 mg).

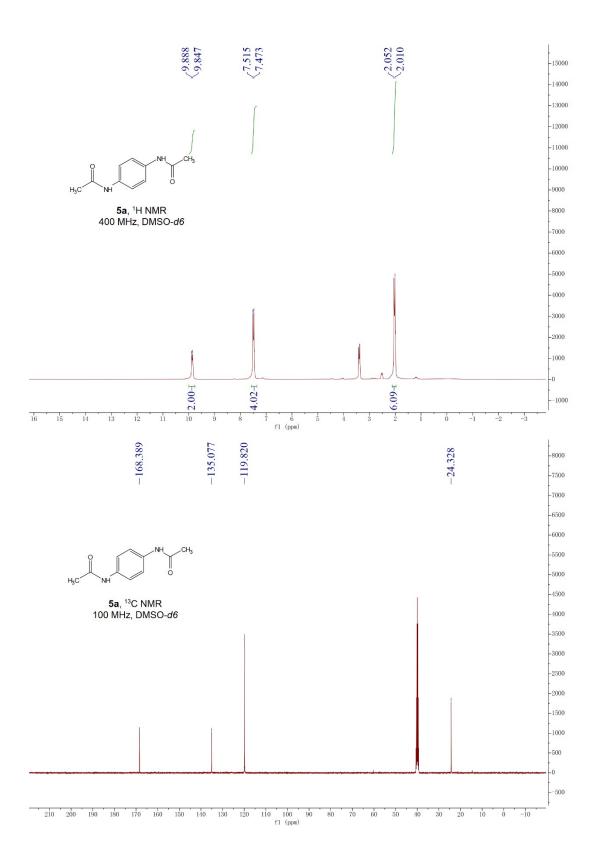

ĊO₂ⁿBu

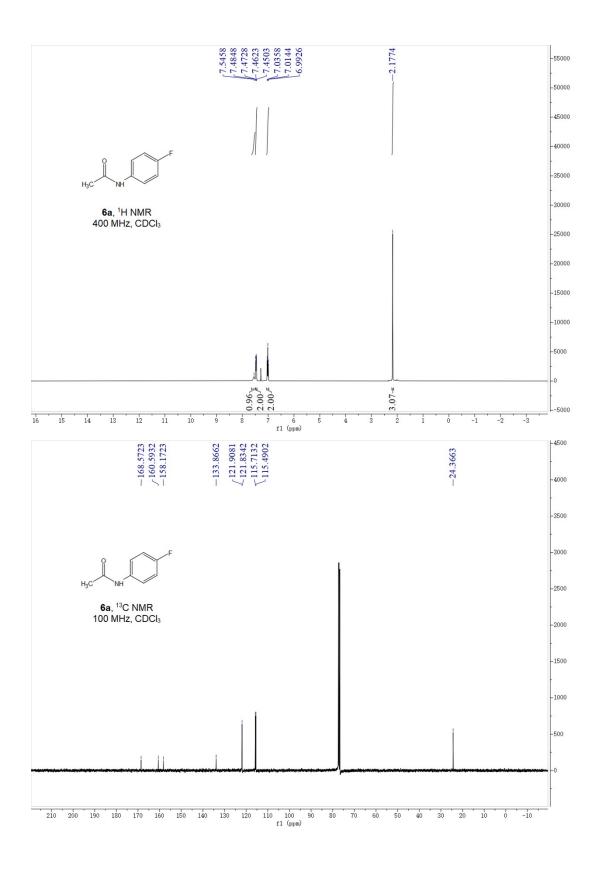

¹**H NMR** (400 MHz, CDCl₃) δ 7.88 (d, J = 8.4 Hz, 2H), 6.67 (d, J = 8.8 Hz, 2H), 4.28 (t, J = 6.8 Hz, 2H), 4.00 (br, 2H), 1.78-1.71 (m, 2H), 1.53-1.44 (m, 2H), 0.99 (t, J = 7.6 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 166.8, 150.5, 131.6, 120.3, 113.9, 64.3, 30.9, 19.3, 13.8. **HRMS** (ESI) m/z: [M + H]⁺ Calcd for C₁₁H₁₆NO₂ 194.1182; Found: 194.1177.

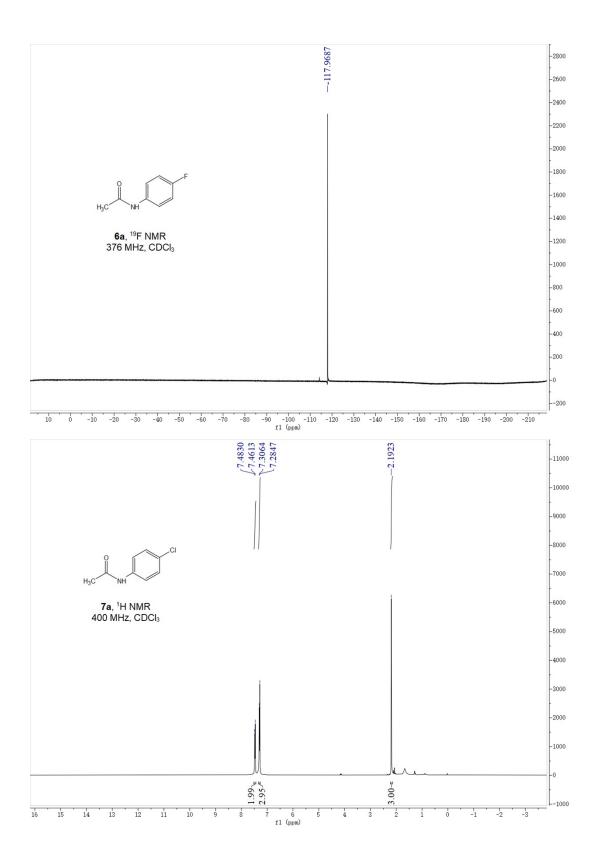
Reference

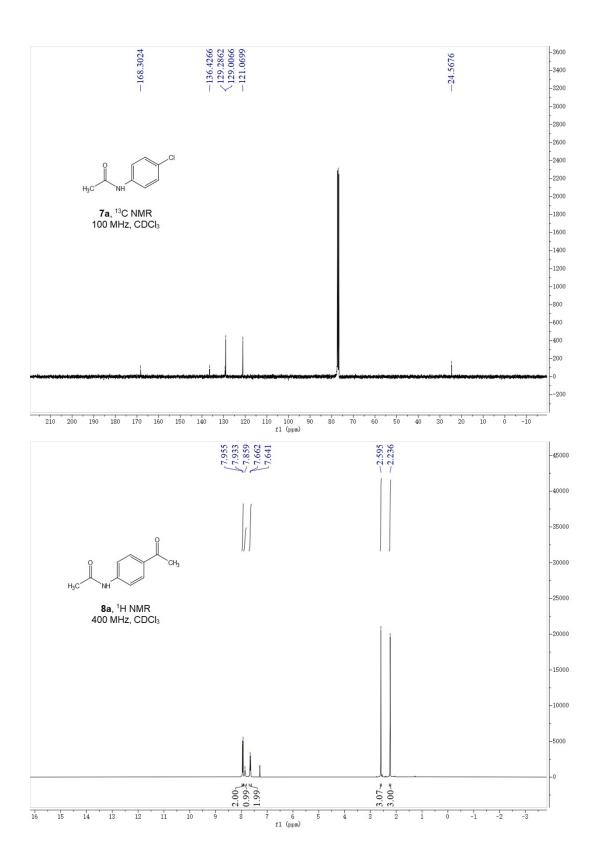

- [1] X. Li, Y. Tan, Z. Liu, J. Su, Y. Xiao, B. Qiao, Y. Ding, J. Catal., 2022, 416, 332-343.
- [2] D. E. Wise, E. S. Gogarnoiu, A. D. Duke, J. M. Paolillo, T. L. Vacala, W. A. Hussain and M. Parasram, J. Am. Chem. Soc., 2022, 144, 15437-15442.
- [3] R. Hurley and A. C. Testa, J. Am. Chem. Soc., 1966, 88, 4330-4332.
- [4] R. S. Macomber, J. Chem. Educ., 1992, 69, 375-378.
- [5] R. Foeter and C. A. Fyfe, *Trans. Faraday Soc.*, 1965, **61**, 1626-1631.

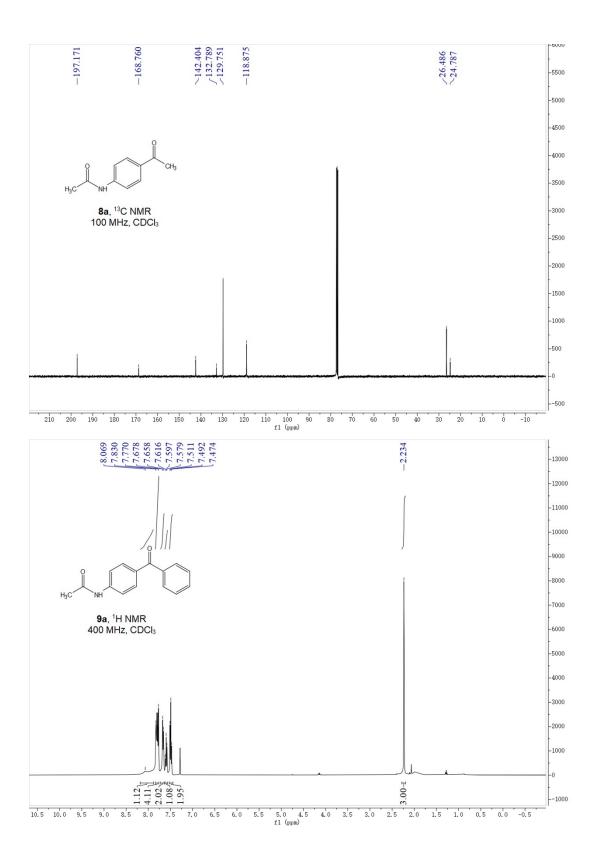

VI. Copies of NMR Spectra

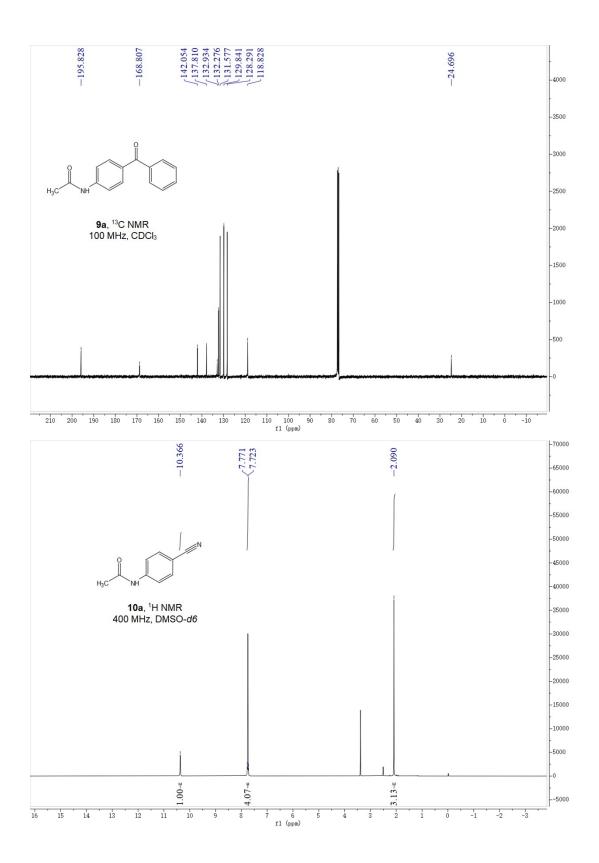



S30








S33

