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S.1. Catalyst Characterization

Table S.1. Metal weight loading and average patrticle size for each catalyst used in this
study.

Catalyst Metal weight loading / %
MgO/SiO2 3.6
CaO/SiO2 5.2
BaO/SiO2 3.9




Imaging of Supported Catalysts

Figure S.1 presents a high-angle annular dark-field scanning transmission electron
microscopy (STEM-HAADF) image of the CaO, MgO and BaO over SiO: catalyst,
captured at a high resolution of 2048x2048 scan points with a magnification of 2.80
million times. On Figure S.1c, barium atoms are distinctly visible as bright white spots,
indicating their dispersion across the amorphous silica support without any discernible
aggregation into particles. In contrast, for the CaO and MgO catalysts, the metal atoms
are not discernible against the SiO2 background, as shown in Figure S.1a and S.1b.
This is attributed to the atomic numbers (Z) of calcium and magnesium being relatively
close to that of silicon, which results in insufficient contrast for clear visualization.
Among all the collected STEM-HAADF images for the three catalyst samples, only one
image, presented in Figure S.1a, reveals the presence of a visible crystalline particle.
This particle, identified as a CaO crystal, measures approximately 5 nm in size.
Aggregated particles contrasting with SiO2 were also not observed in TEM (Figures S.2-
S.4), precluding rigorous particle size distribution determinations.



Figure S.1. STEM-HAADF images of SiO2 supported (a) MgO, (b) CaO, and (c) BaO.



TEM Images of Supported Catalysts

Figure S.2. Representative TEM images of the 5 wt% MgO/SiO2 sample. Smaller dark
points are MgO nanopatrticles, while larger dark spots are stacked layers of SiO2 support.



Figure S.3. Representative TEM images of the 5 wt% CaO/SiO2 sample. Smaller dark
points are CaO nanopatrticles, while larger dark spots are stacked layers of SiO2 support.



Figure S.4. Representative TEM images of the 5 wt% BaO/SiO2 sample. Smaller dark
points are BaO nanoparticles, while larger dark spots are stacked layers of SiO2 support.



XRD Patterns of Supported Catalysts
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Figure S.5. XRD patterns of (a) MgO/SiOz2, (b) CaO/SiO2, and (c) BaO/SiO2. The only
observable feature is a broad peak near 22° that comes from SiOz2.

CO2 TPD of Supported Catalysts

CO:z is able to bind to lattice oxygens on alkaline earth oxides, and the desorption
temperature can be used to qualitatively determine the strength of these basic sites,
where higher desorption temperatures correspond to more basic oxygens. Figure S.6
shows CO2 TPD curves for each of the three catalysts used for this study. All three
catalysts have weaker sites present with desorption temperatures at 400-450 K. On MgO,
this is followed by one additional desorption peak at approximately 570 K. CaO shows a
pair of overlapping peaks are centered near 570 K and 650 K, with an additional peak at
890 K. BaO shows a similar broad or overlapping set of peaks between 550 K and 700
K, similar to CaO. No further peaks were detected up to 1073 K.
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Figure S.6. CO2 TPD of the three catalysts used in this study.



S.2. Supplemental Reactivity Data
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Figure S.7. Sample GC chromatogram from a typical gas-phase injection (0.1 g CaO,
613 K, 0.4 kPa DVL, 1.2 kPa FA, contact time of 0.60 h) showing the compounds and

their retention times.
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Figure S.8. HNMR of product mixture from CaO flow reaction in region of interest taken
in deuterated acetone solvent. Labeled MVL molecule shows predicted chemical shifts
from ChemDraw, which are consistent with the observed singlets at ~5.5 ppm and 6.3
ppm. One set of triplets near 4.4 ppm corresponds to protons from unreacted DVL.
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Figure S.9. GC-MS spectra of product observed at a retention time of 5.7 min, determined
to be a-methylene-&-valerolactone (MVL).
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Figure S.10. GC-MS spectra of product observed at a retention time of 3.9 min,
determined to be y-valerolactone (GVL).
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Figure S.11. GC-MS spectra of product observed at a retention time of 5.4 min,
suspected to be a-methyl-6-valerolactone (methyl-DVL).



Table S.2. Product distributions and DVL conversions, presented in tabulated form, as
functions of contact time for the three catalysts studied in this work. Conditions: 613 K,

0.1 g catalyst, 0.4 kPa DVL, 1.2 kPa FA, 101 kPa, balance N2.

Catalyst Contact DVL MVL GVL Methyl-DVL | Solids/Lost
Time Conversion / | Selectivity / | Selectivity / | Selectivity / Carbon
% % % % Selectivity /
%
MgO/SiO2 0.15 29.81 75.14 24.85 0 0.01
0.30 45.53 50.18 17.92 0 31.91
0.42 61.38 40.08 15.52 0 44.40
0.64 73.61 27.56 12.11 0 60.33
CaO/SiO2 0.14 19.10 100 0 0 0
0.27 40.32 96.56 0 0 3.44
0.60 58.74 86.55 2.44 0.35 10.65
0.79 71.07 80.45 2.52 2.30 14.73
BaO/SiO; 0.06 24.18 100 0 0 0
0.16 42.71 95.28 0 0 4.72
0.29 61.49 83.11 0 0.60 16.29
0.78 68.13 76.70 0 1.89 21.41




Characterization of Spent Catalysts and Non-Volatiles
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Figure S.12. TGA analysis (45 mL min? air, 5 cm?® mint N2, 1 K/min ramp) of spent

catalysts after 6-8 h on stream (reaction conditions: 613 K, 0.4 kPa DVL, 1.2 kPa FA, 101
kPa).
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Figure S.13. Representative GC-MS spectra of product eluting at >10 min retention times
that persist even in the absence of vaporized liquid feeds, indicating that they are
significantly less volatile than any other compounds in the reaction system. Due to the
similar features at m/z<100 with DVL alongside the presence of larger peaks, these

products are suspected to be dimers that are likely formed from the aldol condensation
of DVL or MVL with other compounds.



Table S.3. Product distribution and DVL conversion over CaO/SiO2 as a function of
reaction temperature, presented in tabulated form. Conditions: contact time of 0.27 h, 0.4

kPa DVL, 1.2 kPa FA, 0.1 g catalyst, 101 kPa.

Temperature DVL MVL GVL Methyl-DVL Solids/Lost
Conversion/ | Selectivity / Selectivity / Selectivity / Carbon
% % % % Selectivity /
%
573 23.72 100 0 0 0
613 40.32 96.56 0 0 3.44
653 54.25 73.72 3.90 0 22.38

Table S.4. Product distribution and DVL conversion over CaO/SiO2 as a function of
FA:DVL ratio, presented in tabulated form. Conditions: 613 K, contact time of 0.27 h, 0.4
kPa DVL, 100 mg catalyst, 101 kPa.

FA:DVL DVL MVL GVL Methyl-DVL Solids/Lost
Molar Ratio Conversion/ | Selectivity / Selectivity / Selectivity / Carbon
% % % % Selectivity /
%
1.1 24.55 80.14 0 0 19.86
31 40.32 96.56 0 0 3.44
5:1 41.34 97.45 0 0 2.55




S.3. Polymer Characterization
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Figure S.14. 'H NMR spectrum (CDCls, 23 °C) of initial monomer mixture of 30 wt% MVL
in DVL used for polymerization studies.
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Figure S.15. 'H NMR spectrum (CeDs, 23 °C) of purified Al(Bu)2BHT. Equivalent
hydrogens are omitted from the structure for clarity.
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Figure S.16. 'H NMR spectrum (CDCl3, 23 °C) of crude VAP reaction mixture
([MVL]:[AI(Bu)2BHT] = 100:1) at -30 °C prior to distillation, showing P(MVL)var produced
in DVL. P(MVL)var peaks are seen as broad signals overlapping DVL monomer signals.
Integrations omitted.
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Figure S.17. *H NMR spectrum (CDCls 23 °C) of P(MVL)vap post-distillation from the VAP
in a ratio of [MVL]:[Al(Bu)2BHT] = 100:1 at -30 °C (Mn = 25.3 kDa, D = 1.54).
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Figure S.18. 'H NMR spectrum (CDCls, 23 °C) of the recovered DVL post-distillation from
the VAP reaction mixture. Peaks at 3.49 and 1.56 ppm are for MeOH and water,
respectively. Peak around 1.00 ppm is unidentified. All residual peaks were removed
after drying.
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Figure S.19. SEC trace of P(MVL)var produced from a ratio of [MVL]:[Al(Bu).BHT] = 100:1 at
-30 °C (Mn = 25.3 kDa, b = 1.54).
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Figure S.20. DSC curve of P(MVL)vap produced from a ratio of [MVL]:[AI(Bu)2BHT] =
100:1 at -30 °C (Mn = 25.3 kDa, D = 1.54).
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Figure S.21. TGA and DTA curves of P(MVL)var produced from a ratio of
[MVL]:[AI(Bu)2BHT] = 100:1 at -30 °C (Mn = 25.3 kDa, D = 1.54).
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Figure S.22. *H NMR spectrum (CsDs, 23 °C) of purified [La(OBn)s]x. Residual peaks
between 1.5 and 0.0 ppm attributed to hexanes and grease.
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Figure S.23. *H NMR spectrum (CDCls, 23 °C) of crude polyester reaction mixture of the
polymerization in toluene at the ratio [M]:{[La(OBn)s]x} = 1500:1 containing PVL,
P(MVL)rop, P(MVL)vap, MVL, and DVL. Zoomed region depicts the initial ratio of
products, with P(MVL)vap visible as a broad peak around 4.36 ppm. Final product
distributions and conversions were calculated accounting for the overlapping peaks of
P(MVL)vapr and the two monomers but are not indicated in this figure.
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Figure S.24. 'H NMR spectrum (CDClIs, 23 °C) of purified P(MVL-co-VL) produced from

a ratio of [M]: {[La(OBn)3]x} = 1500:1 (Mn = 124 kDa, B = 1.39). Asteriks indicate water
and grease at 1.56 and 1.24 ppm, respectively.
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Figure S.25. 3C NMR spectrum (CDCIs, 23 °C) of purified P(MVL-co-VL) produced from
a ratio of [M]: {[La(OBn)3]x} = 1500:1 (Mn = 124 kDa, D = 1.39).
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Figure S.26. 3C NMR spectrum (CDCIs, 23 °C) of purified P(MVL-co-VL) produced from
a ratio of [M]: {[La(OBn)s]x} = 1500:1 (Mn = 124 kDa, D = 1.39). Zoomed region of signal
adjacent to linking oxygen groups. As expected, the main signal is attributed to
homopolymer linkages between DVL units (DVL-DVL). DVL-MVL and MVL-DVL signals
indicate DVL to MVL and MVL to DVL linkages, respectively. Assignments were made
based on a report of a similar copolymer product.® These data support the conclusion that
MVL units are incorporated randomly throughout PVL.
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Figure S.27. SEC trace of P(MVL-co-VL) produced from a ratio of [M]:{[La(OBnN)3]x} =
1500:1 (M = 30 wt% MVL in DVL) (Mn = 124 kDa, D = 1.39).
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Figure S.28. DSC curve of P(MVL-co-VL) produced from a ratio of [M]:{[La(OBn)s]x} =
1500:1 (M = 124 kDa, B = 1.39, 4H;= 51.50 J/g).
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Figure S.29. TGA and DTA curves of P(MVL-co-VL) produced from a ratio of
[M]:{[La(OBn)s]x} = 1500:1 (M, = 124 kDa, D = 1.39).
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