Supplementary Information For

Visible Light Induced Photocatalytic Deoxyfluorination of Benzyl Alcohol Using SF₆ as Fluorinating Reagent

 Yi-Fan Zhang^a, Shan Zhu^b, Ya-Wen Zuo^c, Hang Liu^c, Ruo-Xing Jin^{*a,c}, and Xi-Sheng Wang^{*a,c}
^a Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
^b State Grid Anhui Electric Power Research Institute, Hefei, Anhui 230601, China

^c Institution of Advanced Technology, University of Science and Technology of China,

Hefei, Anhui 230031, China

Corresponding author: xx520@mail.ustc.edu.cn; xswang77@ustc.edu.cn

Table of o	contents
------------	----------

1. General Information	. 3
1.1 Instrumentation and methods	. 3
1.2 Reagents	. 3
1.3 Information of the photocatalytic reactor	. 3
2. Supplementary Methods	. 4
2.1 Preparation of substrates	. 4
Commercial available substrates	. 4
General procedure A	. 4
General procedure B	. 5
General procedure C	. 5
Synthesis of 1-(2,5-dimethylphenyl)-3-phenylpropan-1-ol (1ab)	. 6
2.2 General procedure for dehydroxyfluorination of benzyl alcohol	. 6
2.3 Dual-step flash column chromatography purification of benzyl fluorides	. 7
2.4 Characterization data for substrates and isolated products	. 7
3. Additional experiments	20
3.1 Condition screening	20
3.2 Synthetic Utility	21
1 mmol scale reaction	21
3.3 Mechanistic study	21
Radical trapping with TEMPO	21
Hydroxyl protection	22
Fluorination reagent capture	22
Radical clock experiment	24
Regioselectivity experiment	26
Chiral substitution experiment	27
3.4 Photochemistry experiments	30
Light on/off experiment	30
Luminescence quenching experiments	30
4. By-product salt preparation and analysis	33
4.1 Preparation and NMR analysis	33
4.2 XPS analysis detail of by-product salt	35
5. Additional information	36
6. NMR Spectrum	36

1. General Information

1.1 Instrumentation and methods

NMR spectra were recorded on Bruker-400 MHz, Bruker-500 MHz or Bruker-600 MHz NMR spectrometer (400 MHz, 500 MHz or 600 MHz for ¹H; 126 MHz or 151 MHz for ¹³C and 376 MHz, 471 MHz or 565 MHz for ¹⁹F {¹H, ¹³C decoupled}). ¹H NMR spectra were referenced relative to internal Si(Me)₄(TMS) at δ 0.00 ppm or CDCl₃ at δ 7.26 ppm. ¹³C NMR spectra were recorded at ambient temperature on Bruker-400 (101 MHz) or Bruker-500 (126 MHz) spectrometers and are referenced relative to CDCl₃ at δ 77.36 ppm. The ¹³C NMR spectra were obtained with ¹H decoupling. Data for ¹H, ¹³C, ¹⁹F NMR are recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, q = quartet, quint = quintet, br = broad), integration, and coupling constant (Hz). High resolution mass spectra were recorded on P-SIMSGly of BrukerDaltonics Inc. using ESI-TOF (electrospray ionization-time of flight). Luminescence quenching experiments were done by Hitachi Fluorescence Spectrophotometer F-4600.

1.2 Reagents

Sulfur hexafluoride (SF₆) was purchased from Nanjing Special Gas Plant Co., Ltd., 4CzIPN was purchased from Leyan.com, N,N-diisopropylethylamine (DIPEA) was purchased from Aladdin and all solvents were purchased from J&K Chemical. benzyl alcohol derivants were commercially available or synthesized via following methods described in this supplementary information.

1.3 Information of the photocatalytic reactor

Photosyn-10TM Parallel Light Reaction Instrument

Parameters:

Peak wavelength: 448.1 nm

Half-peak breadth: 19.5 nm

Light output: 1.5 W * 12 blue LED, central-convergent removable lamp cup

Photoelectric efficiency: 76.262 %, 67.631 % at 988.1, 2066 mW input

Detailed information of the light source used in this work can be found on the website:

http://en.hsly-greenlab.com/products_details/210.html

2. Supplementary Methods

2.1 Preparation of substrates

Commercial available substrates

The substrates **1a** and **1r** were commercially available and used without further purification. Other substrates were prepared according to General procedure A, General procedure B and General procedure C.

General procedure A

Substrates **1b-1ah** were prepared through the General procedure A. An oven-dried, argon purged round bottom flask containing the aldehyde (5 mmol) in THF (20 mL) was cooled to 0 °C and stirred for 10 minutes. Then Grignard reagent (6 mL, 6 mmol, 1.2 equiv., 1.0 M solution in THF) was added dropwise over 5 minutes. The reaction was then allowed to warm to room temperature and left to stir for 6 hours. After completion, the reaction was cooled to 0 °C and water (1 mL) was then added dropwise in 2 minutes. The mixture was extracted with ethyl acetate and water for 3 times. The organic layer was washed with brine, dried over Na₂SO₄, filtered and concentrated *in vacuo*. The crude mixture was purified by column chromatography on silica gel to give the desired product ($R_f = 0.2-0.6$, PE/EA = 1/1).

General procedure B

Substrates in **1f-1aa** were prepared through the General procedure B. An oven-dried, argon purged round bottom flask containing the aryl halide (5 mmol) in THF (15 mL) was cooled to -78 °C and stirred for 1 hour. n-butyllithium (2.5 mL, 6 mmol, 1.2 equiv., 2.4 M solution in hexane) was added to the reaction tube dropwise. After that, the reaction was stirred at -78 °C for 1 hour. Then the solution of alkyl aldehyde (7.5 mmol, 1.5 equiv.) in THF (10 mL) was added dropwise. The resulting mixture was warmed to room temperature and stirred for 6 hours. The mixture was quenched with NH₄Cl (saturated solution) and extracted with ethyl acetate and water for 3 times. The organic layer was washed with brine, dried over Na₂SO₄, filtered and concentrated *in vacuo*. The residue was purified by chromatography on silica gel to give the desired product (Rf = 0.2-0.6, PE/EA = 1/1).

General procedure C

Substrates in **1h-1am** were prepared through the General procedure C. An oven-dried, argon purged round bottom flask containing the aryl halide (5 mmol) in THF (10 mL) was cooled to 0 °C and stirred for 10 minutes. NaBH₄ (0.2270 g, 6 mmol, 1.2 equiv.) was dissolved in MeOH (10 mL) and then cooled to 0 °C, added dropwise into aryl halide solution over 2 minutes, and the mixture was stirred at 0 °C for 30 minutes and allowed to warm up to room temperature and stirred for 6 hours. The resulting mixture was cooled to 0 °C before quenched with water (5 mL) added dropwise. The mixture was extracted with ethyl acetate for three time and water for 3 times. The organic layer was washed with brine, dried over Na₂SO₄, filtered and concentrated *in vacuo*. The residue was purified by chromatography on silica gel to give the desired product (Rf = 0.2-0.6, PE/EA = 1/1).

Synthesis of 1-(2,5-dimethylphenyl)-3-phenylpropan-1-ol (1af)

An oven-dried, argon purged round bottom flask containing phenylpropyl aldehyde (5 mmol) in THF (20 mL) was cooled to 0 °C and stirred for 10 minutes. Then (2,5-dimethylphenyl)magnesium bromide (6 mL, 6 mmol, 1.2 equiv., 1.0 M solution in THF) was added dropwise over 5 minutes. The reaction was then allowed to warm to room temperature and left to stir for 6 hours. At completion, the reaction was cooled to 0 °C and water (1 mL) was then added dropwise in 2 minutes. The mixture was extracted with ethyl acetate and water for 3 times. The organic layer was washed with brine, dried over Na₂SO₄, filtered and concentrated *in vacuo*. The crude mixture was purified by column chromatography on silica gel to give the desired product (Rf = 0.4, PE/EA = 1/1).

2.2 General procedure for dehydroxyfluorination of benzyl alcohol

Products **2a-2al** were prepared through this procedure. In a 20 mL glass vial, 4CzIPN (4.74 mg, 0.006 mmol, 1 mol %) and DIPEA (1.6476 g, 12.75 mmol, 21.25 equiv.) were dissolved in DCE (18 mL). The solution was subjected to a 30-second sonication dispersion and then dispensed in equal volumes into 6 glass vials of 10 mL volume directly on bench. Benzyl alcohol **1** (0.1 mmol, 1.0 equiv.) was added and dissolved in each vial. For each glass vial, an oven-dried 10 mL Schlenk tube was evacuated and backfilled with SF₆ (repeated for 5 times), followed by filling in the solution via syringe. The tube was sealed with a Teflon lined cap and stirred under visible light source (450 nm, 18 W) at 50 °C for 20 h. The reaction mixture was concentrated *in vacuo*, then dissolved in CDCl₃ (0.5 mL) to measure ¹H NMR yield with CH₂Br₂ (17.4 mg, 0.1 mmol) as the internal standard substance. After NMR measurement, the sample was returned back into mixture, extracted with ethyl acetate, water and brine, dried over Na₂SO₄, filtrated and concentrated *in vacuo*. The product was obtained by dual-step flash column chromatography on silica gel (Rf = 0.3-0.7, n-hexane, 40 °C). The purified product was then subject to NMR and HRMS characterization.

2.3 Dual-step flash column chromatography purification of benzyl fluorides

After extraction of reaction mixture by ethyl acetate-water system, the organic solvent is removed *in vacro*, and the residue is dissolved in n-hexane (2 mL). In a 3 cm diameter, 30 cm length glass column chromatography vessel with a ceramic sieve plate, 200 mesh column chromatography silica gel is filled to a height of 3 cm together with 0.5 cm height of quartz sand on top. The silica gel is rinsed 3 times with n-hexane preheated to 40 °C. After compressing the liquid level to the top of the silica gel, the reaction mixture is transferred into the vessel and pressed into the silica gel layer. 150 ml of n-hexane preheated to 40 °C is added and rinsed quickly downward to collect the first 50 ml of solution, which is then concentrated *in vacro* to obtain the first-step product. Switch to a 1 cm diameter, 20 cm length glass column chromatography vessel with ceramic sieve plate and add silica gel to a height of 10 cm together with 0.5 cm height of quartz sand. The second-step purified benzyl fluorides can be obtained by rapid rinsing with n-hexane preheated to 40 °C.

2.4 Characterization data for substrates and isolated products

1-(2,5-dimethylphenyl)-3-phenylpropan-1-ol

The substrate **1af** was purified with silica gel chromatography (PE/EA = 2/1, Rf = 0.3) as a white solid (0.8172 g, 68 % yield). ¹**H NMR** (500 MHz, Chloroform-d) δ 7.28 (dd, J = 13.5, 5.5 Hz, 3H), 7.19 (dd, J = 16.7, 7.7 Hz, 3H), 6.98 (q, J = 7.2, 6.8 Hz, 2H), 4.88 (dd, J = 8.5, 4.3 Hz, 1H), 2.92 – 2.65 (m, 2H), 2.32 (s, 3H), 2.18 (s, 3H), 2.10 – 1.92 (m, 2H). ¹³**C NMR** (126 MHz, Chloroform-d) δ 142.82, 142.18, 136.1, 131.6, 130.7, 128.8 (d, J = 10.9 Hz), 128.3, 126.1 (d, J = 14.3 Hz), 70.3, 39.8, 32.7, 21.5, 18.8. **HRMS** (EI): m/z calcd. for C₁₇H₂₀O [M]: 240.1514, found: 240.1505.

fluorodiphenylmethane

2a

The product **2a** was purified with silica gel chromatography (n-hexane, 40 °C, Rf = 0.3) as a light yellow oily liquid (95 % ¹H NMR yield, 9.5 mg, 51 % isolated yield). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.38 – 7.30 (m, 10H), 6.47 (d, *J* = 47.4 Hz, 1H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 140.2 (d, *J* = 21.6 Hz), 1281.8, 128.7 (d, *J* = 2.3 Hz), 126.9 (d, *J* = 6.3 Hz), 94.8 (d, *J* = 172.8 Hz). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -166.71 (d, *J* = 47.8 Hz). HRMS (EI): m/z calcd. for C₁₃H₁₁F [M]: 186.0845, found: 186.0839.

1-fluoro-4-(fluoro(phenyl)methyl)benzene

The product **2b** was purified with silica gel chromatography (n-hexane, 40 °C, Rf = 0.3) as a light yellow oily liquid (85 % ¹H NMR yield, 12.9 mg, 63 % isolated yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.40 – 7.30 (m, 7H), 7.05 (td, *J* = 8.7, 0.9 Hz, 2H), 6.45 (d, *J* = 47.4 Hz, 1H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 164.0 (d, *J* = 2.7 Hz), 162.1 (d, *J* = 2.8 Hz), 139.9 (d, *J* = 22.0 Hz), 136.0 (dd, *J* = 22.2, 3.4 Hz), 129.0, 128.9, 128.9, 128.9, 128.9, 126.8 (d, *J* = 6.4 Hz), 115.8 (d, *J* = 21.1 Hz), 94.2 (d, *J* = 172.8 Hz). ¹⁹F NMR (376 MHz, Chloroform-d) δ -113.43 (tt, *J* = 8.6, 4.3 Hz), -165.01 (dd, *J* = 47.3, 5.1 Hz). HRMS (EI): m/z calcd. for C₁₃H₁₀F₂ [M]: 204.0751, found: 204.0745.

1-bromo-4-(fluoro(phenyl)methyl)benzene

2c

The product **2c** was purified with silica gel chromatography (n-hexane, 40 °C, Rf = 0.3) as a light yellow oily liquid (74 % ¹H NMR yield, 13.0 mg, 49 % isolated yield). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.50 (d, *J* = 8.2 Hz, 2H), 7.38 – 7.31 (m, 5H), 7.22 (d, *J* = 8.1 Hz, 2H), 6.42 (d, *J* = 47.3 Hz, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 139.5 (d, *J* = 21.3 Hz), 139.2 (d, *J* = 22.4 Hz), 132.0, 129.0 (d, *J* = 2.3 Hz), 128.9, 128.5 (d, *J* = 6.4 Hz), 126.9 (d, *J* = 6.0 Hz), 122.8 (d, *J* = 2.7 Hz), 94.2 (d, *J* = 173.5 Hz). ¹⁹F NMR (565 MHz, Chloroform-d) δ -166.88 (d, *J* = 47.6 Hz). HRMS (EI): m/z calcd. for C₁₃H₁₀BrF [M]: 263.9950, found: 263.9950.

1-iodo-4-(fluoro(phenyl)methyl)benzene

The product **2d** was purified with silica gel chromatography (n-hexane, 40 °C, Rf = 0.3) as a light yellow oily liquid (69 % ¹H NMR yield, 11.9 mg, 38 % isolated yield). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.70 (d, *J* = 8.1 Hz, 2H), 7.38 – 7.31 (m, 6H), 7.09 (d, *J* = 8.1 Hz, 2H), 6.41 (d, *J* = 47.3 Hz, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 139.9 (d, *J* = 22.3 Hz), 139.5 (d, *J* = 21.3 Hz), 137.9, 129.0, 128.9, 128.7 (d, *J* = 6.4 Hz), 126.9 (d, *J* = 6.0 Hz), 94.8, 94.6, 93.6. ¹⁹F NMR (565 MHz, Chloroform-d) δ -167.34 (d, *J* = 48.3 Hz). HRMS (EI): m/z calcd. for C₁₃H₁₀FI [M]: 311.9811, found: 311.9811.

1-chloro-4-(fluoro(phenyl)methyl)benzene

The product **2e** was purified with silica gel chromatography (n-hexane, 40 °C, Rf = 0.3) as a light yellow oily liquid (77 % ¹H NMR yield, 9.7 mg, 44 % isolated yield). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.38 – 7.25 (m, 9H), 6.42 (d, *J* = 47.3 Hz, 1H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 139.6 (d, *J* = 22.0 Hz), 138.7 (d, *J* = 23.0 Hz), 134.6 (d, *J* = 2.7 Hz), 129.0, 129.0, 128.9, 128.3 (d, *J* = 6.4 Hz), 126.9 (d, *J* = 6.4 Hz), 94.1 (d, *J* = 173.7 Hz). ¹⁹F NMR (471 MHz, Chloroform-d) δ -166.59 (d, *J* = 47.0 Hz). HRMS (EI): m/z calcd. for C₁₃H₁₀CIF [M]: 220.0455, found: 220.0453.

1-(fluoro(phenyl)methyl)-4-(trifluoromethyl)benzene

The product **2f** was purified with silica gel chromatography (n-hexane, 40 °C, Rf = 0.2) as a light yellow oily liquid (71 % ¹H NMR yield, 13.5 mg, 53 % isolated yield). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.64 (d, *J* = 8.0 Hz, 2H), 7.47 (d, *J* = 8.0 Hz, 2H), 7.40 – 7.33 (m, 5H), 6.51 (d, *J* = 47.2 Hz, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 144.1 (d, *J* = 22.4 Hz), 139.3 (d, *J* = 21.2 Hz), 130.8 (q, *J* = 32.5 Hz), 129.3 (d, *J* = 2.4 Hz), 129.1, 127.1 (d, *J* = 6.2 Hz), 126.9 (d, *J* = 6.7 Hz), 125.8 (q, *J* = 3.8 Hz), 124.3 (q, *J* = 272.2 Hz), 94.1 (d, *J* = 174.5 Hz). ¹⁹F NMR (565 MHz, Chloroform-d) δ -62.50, -168.52 (d, *J* = 47.5 Hz). HRMS (EI): m/z calcd. for C₁₄H₁₀F₄ [M]: 254.0719, found: 254.0718.

methyl 4-(fluoro(phenyl)methyl)benzoate

The product **2g** was purified with silica gel chromatography (PE/EA = 10:1, Rf = 0.3) as a light yellow oily liquid (59 % ¹H NMR yield, 10.5 mg, 43 % isolated yield). ¹H NMR (600 MHz, Chloroform-*d*) δ 8.04 (dt, *J* = 7.9, 0.9 Hz, 2H), 7.42 (dq, *J* = 7.6, 0.8 Hz, 2H), 7.39 – 7.31 (m, 5H), 6.49 (d, *J* = 47.2 Hz, 1H), 3.90 (s, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 167.0, 145.0 (d, *J* = 22.3 Hz), 139.4 (d, *J* = 21.4 Hz), 130.3, 130.1, 129.1 (d, *J* = 2.7 Hz), 129.0, 127.1 (d, *J* = 6.0 Hz), 126.4 (d, *J* = 7.0 Hz), 94.2 (d, *J* = 174.5 Hz), 52.5. ¹⁹F NMR (565 MHz, Chloroform-d) δ -168.49 (d, *J* = 47.6 Hz). HRMS (EI): m/z calcd. for C₁₅H₁₃FO₂ [M]: 244.0900, found: 244.0893.

4-(fluoro(phenyl)methyl)benzonitrile

The product **2h** was purified with silica gel chromatography (PE/EA = 10:1, Rf = 0.3) as a light yellow oily liquid (45 % ¹H NMR yield, 6.8 mg, 32 % isolated yield). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.67 (d, *J* = 8.1 Hz, 2H), 7.46 (d, *J* = 8.0 Hz, 2H), 7.42 – 7.36 (m, 3H), 7.33 – 7.30 (m, 2H), 6.49 (d, *J* = 47.0 Hz, 1H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 145.3 (d, *J* = 22.9 Hz), 138.8 (d, *J* = 21.0 Hz), 132.7, 129.5 (d, *J* = 2.4 Hz), 129.2, 127.1 (dd, *J* = 8.3, 6.4 Hz), 118.8, 112.5, 93.9 (d, *J* = 175.8 Hz). ¹⁹F NMR (471 MHz, Chloroform-d) δ -169.39 (d, *J* = 47.4 Hz). HRMS (EI): m/z calcd. for C₁₄H₁₀FN [M]: 211.0797, found: 211.0791.

1-(fluoro(phenyl)methyl)-4-methylbenzene

The product **2i** was obtained in the crude reaction mixture (89 % ¹H NMR yield). **Crude** ¹H NMR (400 MHz, Chloroform-*d*) δ 6.44 (d, J = 47.5 Hz, 1H). **Crude** ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -165.80 (d, J = 47.5 Hz). **HRMS** (ESI): m/z calcd. for C₁₄H₁₃FNa⁺ [M + Na⁺]: 223.0893, found: 223.0870.

1-(fluoro(phenyl)methyl)-4-methoxybenzene

The product **2j** was obtained in the crude reaction mixture (98 % ¹H NMR yield). **Crude** ¹H NMR (400 MHz, Chloroform-*d*) δ 6.44 (d, J = 47.7 Hz, 1H). **Crude** ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -163.45 (d, J = 47.6 Hz). **HRMS** (ESI): m/z calcd. for C₁₄H₁₄FO⁺ [M + H⁺]: 217.1023, found: 217.1039.

1-chloro-3-(fluoro(phenyl)methyl)benzene

The product **2k** was purified with silica gel chromatography (n-hexane, 40 °C, Rf = 0.3) as a light yellow oily liquid (84 % ¹H NMR yield, 13.5 mg, 61 % isolated yield). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.39 – 7.19 (m, 9H), 6.41 (d, *J* = 47.2 Hz, 1H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 142.2 (d, *J* = 22.5 Hz), 139.4 (d, *J* = 21.2 Hz), 134.8, 130.1, 129.1 (d, *J* = 2.3 Hz), 129.0, 128.8 (d, *J* = 1.8 Hz), 127.0 (d, *J* = 6.1 Hz), 126.8 (d, *J* = 6.9 Hz), 124.9 (d, *J* = 6.4 Hz), 94.0 (d, *J* = 174.4

Hz). ¹⁹**F NMR** (471 MHz, Chloroform-d) δ -167.56 (d, J = 47.0 Hz). **HRMS** (EI): m/z calcd. for C₁₃H₁₀ClF [M]: 220.0455, found: 220.0452.

1-(fluoro(phenyl)methyl)-3-(trifluoromethyl)benzene

The product **2l** was purified with silica gel chromatography (n-hexane, 40 °C, Rf = 0.3) as a light yellow oily liquid (56 % ¹H NMR yield, 11.9 mg, 47 % isolated yield). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.56 (s, 1H), 7.51 (d, *J* = 7.2 Hz, 1H), 7.44 – 7.37 (m, 2H), 7.33 – 7.24 (m, 5H), 6.42 (d, *J* = 47.1 Hz, 1H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 141.3 (d, *J* = 22.9 Hz), 139.2 (d, *J* = 21.2 Hz), 131.3 (q, *J* = 32.4 Hz), 130.0 (d, *J* = 6.4 Hz), 129.4, 129.3 (d, *J* = 2.3 Hz), 129.1, 127.1 (d, *J* = 6.0 Hz), 125.5 (dt, *J* = 5.5, 2.8 Hz), 124.3 (q, *J* = 272.4 Hz), 123.5 (dq, *J* = 7.6, 3.9 Hz), 94.1 (d, *J* = 174.5 Hz). ¹⁹F NMR (471 MHz, Chloroform-d) δ -62.64, -167.70 (d, *J* = 47.4 Hz). HRMS (ESI): m/z calcd. for C₁₄H₁₁F₄⁺ [M + H⁺]: 255.0791, found: 255.0774.

1-chloro-2-(fluoro(phenyl)methyl)benzene

2m

The product **2m** was purified with silica gel chromatography (n-hexane, 40 °C, Rf = 0.4) as a light yellow oily liquid (56 % ¹H NMR yield, 4.9 mg, 22 % isolated yield). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.57 (dd, *J* = 7.7, 1.8 Hz, 1H), 7.38 – 7.29 (m, 7H), 7.25 (td, *J* = 7.6, 1.8 Hz, 1H), 6.82 (d, *J* = 46.4 Hz, 1H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 138.6 (d, *J* = 21.6 Hz), 137.7 (d, *J* = 23.4 Hz), 132.4 (d, *J* = 5.5 Hz), 129.9 (d, *J* = 3.0 Hz), 129.0 (d, *J* = 2.7 Hz), 128.8, 127.9 (d, *J* = 9.1 Hz), 127.4, 127.4, 127.4, 91.5 (d, *J* = 172.5 Hz). ¹⁹F NMR (471 MHz, Chloroform-d) δ - 168.56 (d, *J* = 46.7 Hz). HRMS (EI): m/z calcd. for C₁₃H₁₀CIF [M]: 220.0455, found: 220.0451.

1-(fluoro(phenyl)methyl)-2-(trifluoromethyl)benzene

2n

The product **2n** was purified with silica gel chromatography (n-hexane, 40 °C, Rf = 0.3) as a light yellow oily liquid (41 % ¹H NMR yield, 7.6 mg, 30 % isolated yield). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.70 (d, *J* = 8.0 Hz, 1H), 7.68 – 7.56 (m, 2H), 7.47 (t, *J* = 7.6 Hz, 1H), 7.39 – 7.27 (m, 5H), 6.90 (d, *J* = 46.7 Hz, 1H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 139.5 (d, *J* = 22.2 Hz), 138.5 – 138.0 (m), 132.6, 129.5 (d, *J* = 8.1 Hz), 129.0 (d, *J* = 2.5 Hz), 128.9 (d, *J* = 2.8 Hz), 128.8, 127.0 (d, *J* = 6.7 Hz), 126.1 (q, *J* = 6.0 Hz), 124.4 (q, *J* = 273.6 Hz), 90.1 (dd, *J* = 171.4, 2.8 Hz).

¹⁹**F NMR** (471 MHz, Chloroform-d) δ -57.87, -163.39 (d, J = 46.9 Hz). **HRMS** (EI): m/z calcd. for C₁₄H₁₀F₄ [M]: 254.0719, found: 254.0711.

1,2-dichloro-4-(fluoro(phenyl)methyl)benzene

The product **20** was purified with silica gel chromatography (n-hexane, 40 °C, Rf = 0.3) as a light yellow oily liquid (48 % ¹H NMR yield, 9.4 mg, 37 % isolated yield). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.47 – 7.31 (m, 8H), 7.19 – 7.14 (m, 1H), 6.41 (d, *J* = 47.1 Hz, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 140.4 (d, *J* = 23.0 Hz), 139.0 (d, *J* = 21.1 Hz), 133.1, 132.8, 130.9, 129.3 (d, *J* = 2.2 Hz), 129.1, 128.7 (d, *J* = 7.1 Hz), 127.0 (d, *J* = 6.3 Hz), 126.0 (d, *J* = 6.4 Hz), 93.5 (d, *J* = 174.9 Hz). ¹⁹F NMR (565 MHz, Chloroform-*d*) δ -167.26 (d, *J* = 47.9 Hz). HRMS (EI): m/z calcd. for C₁₃H₉Cl₂F [M]: 254.0065, found: 254.0058.

1-(fluoro(phenyl)methyl)-3,5-bis(trifluoromethyl)benzene

The product **2p** was purified with silica gel chromatography (PE/EA = 100/1, 40 °C, Rf = 0.3) as a light yellow oily liquid (37 % ¹H NMR yield, 9.3 mg, 29 % isolated yield). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.85 (s, 1H), 7.80 (s, 1H), 7.46 – 7.38 (m, 3H), 7.36 – 7.30 (m, 3H), 6.54 (d, *J* = 46.8 Hz, 1H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 142.9 (d, *J* = 23.6 Hz), 138.2 (d, *J* = 20.7 Hz), 132.3 (q, *J* = 33.5 Hz), 129.8 (d, *J* = 2.3 Hz), 129.4, 127.2 (d, *J* = 5.9 Hz), 126.9 – 126.3 (m), 123.5 (q, *J* = 272.8 Hz), 123.1 – 122.5 (m), 93.5 (d, *J* = 176.4 Hz). ¹⁹F NMR (471 MHz, Chloroform-d) δ -62.90, -168.30 (d, *J* = 46.8 Hz). HRMS (ESI): m/z calcd. for C₁₅H₉F₇Na⁺ [M + Na⁺]: 345.0485, found: 345.0505.

4,4'-(fluoromethylene)bis(fluorobenzene)

The product **2q** was purified with silica gel chromatography (n-hexane, 40 °C, Rf = 0.3) as a light yellow oily liquid (96 % ¹H NMR yield, 20.2 mg, 91 % isolated yield). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.29 (dd, *J* = 8.3, 5.4 Hz, 4H), 7.06 (t, *J* = 8.5 Hz, 4H), 6.43 (d, *J* = 47.4 Hz, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 163.9 (d, *J* = 2.4 Hz), 162.3 (d, *J* = 2.6 Hz), 135.8 (dd, *J* = 22.3, 3.3 Hz), 128.8 (dd, *J* = 8.3, 6.1 Hz), 115.9 (d, *J* = 21.7 Hz), 93.6 (d, *J* = 173.3 Hz). ¹⁹F NMR (565 MHz, Chloroform-*d*) δ -113.04, -163.16 (d, *J* = 47.8 Hz). HRMS (EI): m/z calcd. for C₁₄H₁₀F₄

[M]: 186.0845, found: 186.0839. HRMS (EI): m/z calcd. for $C_{13}H_9F_3$ [M]: 222.0656, found: 222.0651.

1-chloro-4-(fluoro(4-fluorophenyl)methyl)benzene

The product **2r** was purified with silica gel chromatography (n-hexane, 40 °C, Rf = 0.3) as a light yellow oily liquid (86 % ¹H NMR yield, 18.6 mg, 78 % isolated yield). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.35 (d, *J* = 8.1 Hz, 2H), 7.28 (dd, *J* = 8.3, 5.5 Hz, 2H), 7.25 (d, *J* = 3.6 Hz, 2H), 7.06 (t, *J* = 8.5 Hz, 2H), 6.42 (d, *J* = 47.3 Hz, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 164.0 (d, *J* = 2.8 Hz), 162.3 (d, *J* = 2.7 Hz), 138.4 (d, *J* = 22.4 Hz), 135.5 (dd, *J* = 22.2, 3.3 Hz), 134.8 (d, *J* = 2.5 Hz), 129.1, 129.0 (dd, *J* = 8.5, 5.9 Hz), 128.1 (d, *J* = 6.3 Hz), 115.9 (d, *J* = 21.7 Hz), 93.5 (d, *J* = 173.6 Hz). ¹⁹F NMR (565 MHz, Chloroform-*d*) δ -112.75, -164.77 (d, *J* = 47.5 Hz). HRMS (EI): m/z calcd. for C₁₃H₉ClF₂ [M]: 238.0361, found: 238.0359.

1-fluoro-4-(fluoro(4-(trifluoromethyl)phenyl)methyl)benzene

The product **2s** was purified with silica gel chromatography (n-hexane, 40 °C, Rf = 0.3) as a light yellow oily liquid (59 % ¹H NMR yield, 13.9 mg, 51 % isolated yield). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.64 (d, *J* = 8.1 Hz, 2H), 7.44 (d, *J* = 8.1 Hz, 2H), 7.30 (ddd, *J* = 8.8, 5.2, 1.6 Hz, 2H), 7.07 (t, *J* = 8.5 Hz, 2H), 6.48 (d, *J* = 47.2 Hz, 1H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 164.0 (d, *J* = 2.7 Hz), 162.0 (d, *J* = 2.6 Hz), 143.5 (d, *J* = 22.7 Hz), 134.9 (dd, *J* = 21.6, 3.2 Hz), 131.4 - 130.0 (m), 128.9 (dd, *J* = 8.4, 5.8 Hz), 126.5 (d, *J* = 6.8 Hz), 125.6 (q, *J* = 3.8 Hz), 124.0 (q, *J* = 272.2 Hz), 115.8 (d, *J* = 21.8 Hz), 93.1 (d, *J* = 175.0 Hz). ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -62.67, -112.41 (tq, *J* = 9.4, 5.1 Hz), -166.80 (d, *J* = 47.3 Hz). HRMS (ESI): m/z calcd. for C₁₄H₁₀F₅⁺ [M + H⁺]: 273.0697, found: 273.0702.

methyl 4-(fluoro(4-fluorophenyl)methyl)benzoate

The product **2t** was purified with silica gel chromatography (PE/EA = 10:1, Rf = 0.3) as a light yellow oily liquid (72 % ¹H NMR yield, 15.7 mg, 60 % isolated yield). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.96 (d, *J* = 8.0 Hz, 2H), 7.31 (d, *J* = 8.1 Hz, 2H), 7.25 – 7.18 (m, 2H), 6.96 (t, *J* = 8.5 Hz, 2H), 6.39 (d, *J* = 47.2 Hz, 1H), 3.82 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 166.9, 164.2 (d, *J* = 2.7 Hz), 162.2 (d, *J* = 2.7 Hz), 144.7 (d, *J* = 22.4 Hz), 135.3 (dd, *J* = 21.6, 3.2 Hz), 130.5 (d, *J* = 1.8 Hz), 130.1, 129.2 (dd, *J* = 8.5, 5.7 Hz), 126.3 (d, *J* = 6.8 Hz), 116.0 (d, *J* = 21.8 Hz), 136.1 (d, *J* = 21.8 Hz), 126.3 (d, *J* = 6.8 Hz), 116.0 (d, *J* = 21.8 Hz), 136.1 (d, *J* = 21.8 Hz), 126.2 (d, *J* = 2.7 Hz), 126.3 (d, *J* = 6.8 Hz), 116.0 (d, *J* = 21.8 Hz), 126.2 (d, *J* = 2.8 Hz), 126.3 (d, *J* = 6.8 Hz), 126.2 (d, *J* = 21.8 Hz), 126.2 (d, *J* = 6.8 Hz), 126.2 (d, *J* = 2.8 Hz), 126.3 (d, *J* = 6.8 Hz), 126.2 (d, *J* = 21.8 Hz), 126.3 (d, *J* = 6.8 Hz), 126.2 (d, *J* = 21.8 Hz), 126.3 (d, *J* = 6.8 Hz), 126.2 (d, *J* = 21.8 Hz), 126.3 (d, *J* = 6.8 Hz), 126.2 (d, *J* = 21.8 Hz), 126.2 (d, *J* = 6.8 Hz), 126.3 (d, *J* = 6.8 Hz), 126.2 (d, *J* = 21.8 Hz), 126.3 (d, *J* = 6.8 Hz), 126.3 (d, *J* = 21.8 Hz), 126.3 (d, *J* = 21.8 Hz), 126.3 (d, *J* = 6.8 Hz), 126.3 (d, *J* = 21.8 Hz), 126.3 (d

Hz), 93.6 (d, J = 174.6 Hz), 52.5. ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -112.56 (tq, J = 9.0, 4.8 Hz), -166.81 (d, J = 47.5 Hz). HRMS (EI): m/z calcd. for C₁₅H₁₂F₂O₂ [M]: 262.0805, found: 262.0797.

1-ethynyl-4-(fluoro(4-fluorophenyl)methyl)benzene

The product **2u** was purified with silica gel chromatography (n-hexane, 40 °C, Rf = 0.3) as a light yellow oily liquid (69 % ¹H NMR yield, 10.5 mg, 46 % isolated yield). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.50 (d, *J* = 7.9 Hz, 1H), 7.32 – 7.26 (m, 2H), 7.05 (t, *J* = 8.5 Hz, 1H), 6.43 (d, *J* = 47.3 Hz, 1H), 3.09 (s, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 164.0 (d, *J* = 2.6 Hz), 162.4, 140.5 (d, *J* = 22.2 Hz), 135.5 (dd, *J* = 21.8, 3.4 Hz), 132.6, 129.1 (dd, *J* = 8.4, 5.9 Hz), 126.6 (d, *J* = 6.6 Hz), 122.6, 115.9 (d, *J* = 21.7 Hz), 93.7 (d, *J* = 173.8 Hz), 83.4, 78.2. ¹⁹F NMR (565 MHz, Chloroform-*d*) δ -112.74, -165.73 (d, *J* = 47.7 Hz). HRMS (EI): m/z calcd. for C₁₅H₁₀F₂ [M]: 228.0751, found: 228.0749.

4,4'-(fluoromethylene)bis(chlorobenzene)

The product **2v** was purified with silica gel chromatography (n-hexane, 40 °C, Rf = 0.4) as a light yellow oily liquid (82 % ¹H NMR yield, 18.4 mg, 72 % isolated yield). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.55 – 7.15 (m, 8H), 6.40 (d, *J* = 47.2 Hz, 1H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 138.1 (d, *J* = 22.1 Hz), 134.9 (d, *J* = 2.7 Hz), 129.1, 128.2 (d, *J* = 6.1 Hz), 93.4 (d, *J* = 174.4 Hz). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -166.49 (d, *J* = 47.1 Hz). HRMS (EI): m/z calcd. for C₁₃H₉Cl₂F [M]: 254.0065, found: 254.0064.

4,4'-(fluoromethylene)bis((trifluoromethyl)benzene)

The product **2w** was purified with silica gel chromatography (n-hexane, 40 °C, Rf = 0.5) as a light yellow oily liquid (43 % ¹H NMR yield, 11.9 mg, 37 % isolated yield). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.65 (d, *J* = 8.1 Hz, 4H), 7.46 (d, *J* = 8.0 Hz, 4H), 6.55 (d, *J* = 46.9 Hz, 1H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 143.1 (d, *J* = 21.5 Hz), 131.4 (q, *J* = 33.4 Hz), 129.6, 127.1 (d, *J* = 6.9 Hz), 126.1 (q, *J* = 4.0 Hz), 124.2 (q, *J* = 272.2 Hz), 93.3 (d, *J* = 176.1 Hz). ¹⁹F NMR (471

MHz, Chloroform-*d*) δ -62.77, -170.84 (d, J = 46.9 Hz). **HRMS** (ESI): m/z calcd. for C₁₅H₉F₇ [M]: 322.0592, found: 322.0586.

1-(fluoro(4-(trifluoromethyl)phenyl)methyl)-2-methylbenzene

2x

The product **2x** was purified with silica gel chromatography (n-hexane, 40 °C, Rf = 0.3) as a light yellow oily liquid (61 % ¹H NMR yield, 13.1 mg, 49 % isolated yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.53 (d, *J* = 8.1 Hz, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 7.25 – 7.08 (m, 4H), 6.58 (d, *J* = 47.0 Hz, 1H), 2.18 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 143.4 (d, *J* = 22.1 Hz), 137.0 (d, *J* = 19.5 Hz), 136.2 (d, *J* = 4.2 Hz), 131.2, 130.8 (qd, *J* = 32.4, 2.2 Hz), 129.3 (d, *J* = 2.2 Hz), 127.4 (dd, *J* = 7.2, 4.8 Hz), 126.6, 125.8 (q, *J* = 3.8 Hz), 124.3 (q, *J* = 272.2 Hz), 92.1 (d, *J* = 173.0 Hz), 19.6. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -62.58, -169.49 (d, *J* = 46.8 Hz). HRMS (EI): m/z calcd. for C₁₅H₁₂F₄ [M]: 268.0875, found: 268.0868.

(1-fluoropropane-1,3-diyl)dibenzene

The product **2y** was purified with silica gel chromatography (n-hexane, 40 °C, Rf = 0.3) as a light yellow oily liquid (58 % ¹H NMR yield, 10.1 mg, 47 % isolated yield). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.39 – 7.26 (m, 8H), 7.22 – 7.17 (m, 3H), 5.43 (ddd, *J* = 47.9, 8.5, 4.4 Hz, 1H), 2.86 – 2.70 (m, 2H), 2.35 – 2.25 (m, 1H), 2.20 – 2.02 (m, 1H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 141.5, 140.5 (d, *J* = 19.8 Hz), 128.8, 128.6 (d, *J* = 1.9 Hz), 126.4, 125.9 (d, *J* = 6.7 Hz), 94.0 (d, *J* = 170.9 Hz), 39.2 (d, *J* = 23.9 Hz), 31.7 (d, *J* = 4.3 Hz). ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -175.98 (ddd, *J* = 46.8, 30.1, 16.1 Hz). HRMS (ESI): m/z calcd. for C₁₅H₁₆F⁺ [M + H⁺]: 215.1231, found: 215.1260.

1-fluoro-4-(1-fluoro-3-phenylpropyl)benzene

The product **2z** was purified with silica gel chromatography (n-hexane, 40 °C, Rf = 0.3) as a light yellow oily liquid (57 % ¹H NMR yield, 11.4 mg, 49 % isolated yield). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.33 – 7.27 (m, 4H), 7.23 – 7.18 (m, 3H), 7.06 (t, *J* = 8.6 Hz, 2H), 5.40 (ddd, *J* = 47.6, 8.6, 4.4 Hz, 1H), 2.85 – 2.69 (m, 2H), 2.37 – 2.01 (m, 2H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 164.0, 162.0, 141.3, 136.3 (dd, *J* = 20.2, 3.2 Hz), 128.8 (d, *J* = 9.1 Hz), 127.8 (dd, *J* = 8.2, 6.5 Hz), 126.5, 115.8 (d, *J* = 21.5 Hz), 93.4 (d, *J* = 171.0 Hz), 39.1 (d, *J* = 23.9 Hz), 31.6 (d, *J* = 4.2

Hz). ¹⁹**F NMR** (471 MHz, Chloroform-*d*) δ -113.69 (td, J = 8.7, 4.7 Hz), -173.80 (ddd, J = 46.2, 29.8, 15.3 Hz). **HRMS** (EI): m/z calcd. for C₁₅H₁₄F₂ [M]: 232.1064, found: 232.1055.

1-(1-fluoro-3-phenylpropyl)-4-(trifluoromethyl)benzene

The product **2aa** was purified with silica gel chromatography (n-hexane, 40 °C, Rf = 0.3) as a light yellow oily liquid (38 % ¹H NMR yield, 9.3 mg, 33 % isolated yield). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.55 (d, *J* = 8.2 Hz, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 7.23 – 7.19 (m, 2H), 7.16 – 7.10 (m, 3H), 5.41 (ddd, *J* = 47.7, 8.7, 4.1 Hz, 1H), 2.77 – 2.65 (m, 2H), 2.29 – 1.97 (m, 2H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 144.6 (d, *J* = 19.9 Hz), 141.0, 130.8 (q, *J* = 32.6 Hz), 128.9 (dd, *J* = 15.2, 4.8 Hz), 126.6, 126.0 (d, *J* = 7.4 Hz), 125.8 (q, *J* = 3.8 Hz), 93.0 (d, *J* = 173.2 Hz), 39.2 (d, *J* = 23.2 Hz), 31.4 (d, *J* = 4.1 Hz). ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -62.60, -180.18 (ddd, *J* = 47.6, 30.8, 16.8 Hz). HRMS (EI): m/z calcd. for C₁₆H₁₄F₄ [M]: 282.1032, found: 282.1023.

1-(1-fluoro-3-phenylpropyl)-4-methylbenzene

The product **2ab** was purified with silica gel chromatography (n-hexane, 40 °C, Rf = 0.3) as a light yellow oily liquid (68 % ¹H NMR yield, 14.4 mg, 63 % isolated yield). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.37 (dd, *J* = 8.3, 6.9 Hz, 2H), 7.33 – 7.23 (m, 7H), 5.47 (ddd, *J* = 47.9, 8.5, 4.5 Hz, 1H), 2.93 – 2.77 (m, 2H), 2.43 (s, 3H), 2.41 – 2.34 (m, 1H), 2.25 – 2.11 (m, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 141.5, 138.4 (d, *J* = 2.1 Hz), 137.4 (d, *J* = 20.0 Hz), 129.5, 128.8, 126.3, 126.0 (d, *J* = 6.4 Hz), 93.9 (d, *J* = 169.9 Hz), 39.0 (d, *J* = 24.2 Hz), 31.7 (d, *J* = 4.3 Hz), 21.5. ¹⁹F NMR (565 MHz, Chloroform-*d*) δ -173.52 (ddd, *J* = 46.8, 29.8, 14.4 Hz). HRMS (ESI): m/z calcd. for C₁₆H₁₈F⁺ [M + H⁺]: 229.1387, found: 229.1402.

1-(tert-butyl)-4-(1-fluoro-3-phenylpropyl)benzene

The product **2ac** was purified with silica gel chromatography (n-hexane, 40 °C, Rf = 0.3) as a light yellow oily liquid (67 % ¹H NMR yield, 11.9 mg, 44 % isolated yield). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.34 – 7.30 (m, 2H), 7.22 – 7.18 (m, 4H), 7.15 – 7.12 (m, 3H), 5.33 (ddd, *J* = 47.9, 8.6, 4.4 Hz, 1H), 2.79 – 2.65 (m, 2H), 2.32 – 2.18 (m, 1H), 2.12 – 1.99 (m, 1H), 1.25 (s, 9H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 141.6, 137.4 (d, *J* = 19.9 Hz), 128.8 (d, *J* = 1.9 Hz), 126.3, 125.8 (d, *J* = 6.4 Hz), 125.7, 94.0 (d, *J* = 169.8 Hz), 38.9 (d, *J* = 24.1 Hz), 31.8 – 31.2 (m). ¹⁹F NMR (471

MHz, Chloroform-*d*) δ -173.90 (ddd, J = 46.8, 30.1, 15.4 Hz). **HRMS** (EI): m/z calcd. for C₁₉H₂₃F [M]: 270.1784, found: 270.1776.

1-(1-fluoro-3-phenylpropyl)-4-methoxybenzene

The product **2ad** was obtained in the crude reaction mixture (44 % ¹H NMR yield). **Crude ¹H NMR** (400 MHz, Chloroform-*d*) δ 5.36 (ddd, J = 47.8, 8.4, 4.8 Hz, 1H). **Crude ¹⁹F NMR** (376 MHz, Chloroform-*d*) δ -170.10 (ddd, J = 48.0, 28.6, 14.6 Hz). **HRMS** (ESI): m/z calcd. for C₁₆H₁₈FO⁺ [M + H⁺]: 245.1336, found: 245.1344.

1-(1-fluoro-3-phenylpropyl)-3-methylbenzene

2ae

The product **2ae** was purified with silica gel chromatography (n-hexane, 40 °C, Rf = 0.3) as a light yellow oily liquid (72 % ¹H NMR yield, 14.6 mg, 64 % isolated yield). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.25 – 7.01 (m, 9H), 5.31 (ddd, *J* = 47.9, 8.6, 4.4 Hz, 1H), 2.78 – 2.61 (m, 2H), 2.28 (s, 3H), 2.27 – 2.15 (m, 1H), 2.11 – 1.94 (m, 1H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 141.5, 140.4 (d, *J* = 19.4 Hz), 138.5, 129.4 (d, *J* = 2.2 Hz), 128.8, 128.7, 126.6 (d, *J* = 6.8 Hz), 126.4, 123.0 (d, *J* = 6.7 Hz), 94.1 (d, *J* = 170.7 Hz), 39.1 (d, *J* = 23.9 Hz), 31.7 (d, *J* = 4.2 Hz), 21.8. ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -175.55 (ddd, *J* = 46.9, 30.1, 15.7 Hz). HRMS (ESI): m/z calcd. for C₁₆H₁₇FNa⁺ [M + Na⁺]: 251.1206, found: 251.1256.

2-(1-fluoro-3-phenylpropyl)-1,4-dimethylbenzene

The product **2af** was purified with silica gel chromatography (n-hexane, 40 °C, Rf = 0.3) as a light yellow oily liquid (57 % ¹H NMR yield, 10.4 mg, 43 % isolated yield). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.24 – 7.19 (m, 2H), 7.16 – 7.11 (m, 4H), 6.94 (d, *J* = 1.2 Hz, 2H), 5.52 (ddd, *J* = 47.6, 9.1, 3.5 Hz, 1H), 2.82 (ddd, *J* = 14.3, 9.7, 4.9 Hz, 1H), 2.71 (ddd, *J* = 13.9, 9.4, 7.3 Hz, 1H), 2.25 (s, 3H), 2.23 – 2.14 (m, 1H), 2.09 (s, 3H), 2.05 – 1.90 (m, 1H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 141.5, 138.5 (d, *J* = 18.4 Hz), 136.0, 131.4 (d, *J* = 5.2 Hz), 130.7, 129.1 (d, *J* = 2.0 Hz), 128.8 (d, *J* = 2.5 Hz), 126.4, 126.1 (d, *J* = 8.3 Hz), 91.4 (d, *J* = 169.4 Hz), 38.3 (d, *J* = 24.2 Hz), 32.0 (d, *J* = 3.2 Hz), 21.4, 18.6. ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -179.42 (ddd, *J* = 48.5, 33.3, 16.2 Hz). HRMS (ESI): m/z calcd. for C₁₇H₂₀F⁺ [M + H⁺]: 243.1544, found: 243.1537.

2-(1-fluoro-3-phenylpropyl)-1,3-dimethylbenzene

The product **2ag** was purified with silica gel chromatography (n-hexane, 40 °C, Rf = 0.3) as a light yellow oily liquid (60 % ¹H NMR yield, 13.8 mg, 57 % isolated yield). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.23 (t, *J* = 7.6 Hz, 2H), 7.19 – 7.10 (m, 3H), 6.99 (t, *J* = 7.5 Hz, 1H), 6.90 (d, *J* = 7.5 Hz, 2H), 5.71 (ddd, *J* = 47.5, 10.2, 3.5 Hz, 1H), 2.89 (ddd, *J* = 14.0, 9.3, 4.7 Hz, 1H), 2.71 (dt, *J* = 13.8, 8.3 Hz, 1H), 2.49 – 2.39 (m, 1H), 2.22 (s, 6H), 1.96 – 1.79 (m, 1H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 141.4, 136.3 (d, *J* = 17.5 Hz), 135.9 (d, *J* = 3.5 Hz), 129.5, 128.8 (d, *J* = 6.0 Hz), 128.1, 126.4, 92.0 (d, *J* = 170.5 Hz), 36.5 (d, *J* = 23.4 Hz), 32.3 (d, *J* = 3.2 Hz), 20.6 (d, *J* = 3.8 Hz). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -183.92 (ddd, *J* = 47.2, 34.1, 12.1 Hz). HRMS (ESI): m/z calcd. for C₁₇H₂₀F+ [M + H⁺]: 243.1544, found: 243.1591.

(1-fluoroethane-1,2-diyl)dibenzene

2ah

The product **2ah** was purified with silica gel chromatography (n-hexane, 40 °C, Rf = 0.3) as a light yellow oily liquid (47 % ¹H NMR yield, 6.6 mg, 33 % isolated yield). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.41 – 7.30 (m, 7H), 7.29 – 7.25 (m, 1H), 7.21 (d, *J* = 8.6 Hz, 2H), 5.69 (dd, *J* = 8.2, 4.8 Hz, 1H), 3.30 (ddd, *J* = 17.4, 14.3, 8.2 Hz, 1H), 3.14 (ddd, *J* = 28.8, 14.3, 4.8 Hz, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 140.1 (d, *J* = 20.1 Hz), 137.0 (d, *J* = 4.1 Hz), 129.8, 128.7 (d, *J* = 2.8 Hz), 127.0, 126.0 (d, *J* = 6.6 Hz), 95.2 (d, *J* = 174.1 Hz), 44.3 (d, *J* = 24.4 Hz). ¹⁹F NMR (565 MHz, Chloroform-*d*) δ -173.01 (ddd, *J* = 47.8, 29.0, 17.3 Hz). HRMS (EI): m/z calcd. for C₁₄H₁₃F [M]: 200.0992, found: 200.1001.

1-bromo-4-(1-fluoroethyl)benzene

The product **2ai** was purified with silica gel chromatography (n-hexane, 40 °C, Rf = 0.6) as a light yellow oily liquid (41 % ¹H NMR yield, 5.9 mg, 29 % isolated yield). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.52 – 7.47 (m, 2H), 7.24 – 7.19 (m, 2H), 5.57 (dq, *J* = 47.5, 6.4 Hz, 1H), 1.61 (dd, *J* = 23.9, 6.4 Hz, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 140.8 (d, *J* = 20.1 Hz), 132.0, 127.3 (d, *J* = 6.6 Hz), 122.4 (d, *J* = 2.6 Hz), 90.6 (d, *J* = 168.6 Hz), 23.2 (d, *J* = 25.2 Hz). ¹⁹F NMR (565 MHz, Chloroform-*d*) δ -167.92 (dq, *J* = 49.2, 25.3 Hz). HRMS (ESI): m/z calcd. for C₈H₉BrF⁺ [M + H⁺]: 202.9866, found: 202.9827.

1-(tert-butyl)-4-(1-fluoroethyl)benzene

The product **2aj** was purified with silica gel chromatography (n-hexane, 40 °C, Rf = 0.5) as a light yellow oily liquid (77 % ¹H NMR yield, 9.9 mg, 55 % isolated yield). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.44 – 7.39 (m, 2H), 7.30 (dd, *J* = 8.4, 1.5 Hz, 2H), 5.61 (dq, *J* = 47.8, 6.4 Hz, 1H), 1.65 (dd, *J* = 23.8, 6.4 Hz, 3H), 1.33 (s, 9H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 151.6, 138.7 (d, *J* = 19.5 Hz), 125.7, 125.5 (d, *J* = 6.4 Hz), 91.2 (d, *J* = 166.2 Hz), 34.9, 31.7, 23.0 (d, *J* = 25.4 Hz). ¹⁹F NMR (565 MHz, Chloroform-*d*) δ -164.81 (dq, *J* = 49.8, 25.1 Hz). HRMS (EI): m/z calcd. for C₁₂H₁₇F [M]: 180.1314, found: 180.1305.

2-(1-fluoroethyl)naphthalene

The product **2ak** was purified with silica gel chromatography (n-hexane, 40 °C, Rf = 0.6) as a light yellow oily liquid (67 % ¹H NMR yield, 9.0 mg, 52 % isolated yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.91 – 7.74 (m, 4H), 7.55 – 7.43 (m, 3H), 5.79 (dq, *J* = 47.6, 6.4 Hz, 1H), 1.72 (dd, *J* = 23.8, 6.4 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 137.8 (d, *J* = 19.3 Hz), 132.2, 132.1, 127.4, 127.1, 126.7, 125.2 (d, *J* = 14.8 Hz), 123.1 (d, *J* = 7.9 Hz), 122.1 (d, *J* = 5.8 Hz), 90.1 (d, *J* = 167.8 Hz), 21.9 (d, *J* = 25.3 Hz). ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -166.98 (dq, *J* = 47.5, 23.9 Hz). HRMS (ESI): m/z calcd. for C12H12F⁺ [M + H⁺]: 175.0918, found: 175.0910.

3. Additional experiments

3.1 Condition screening

Table SI-1. Control Experiments

ОН		SF ₆ photocatalyst, reductant		Į
Ph Ph 1a	-	solvent, <i>hv</i> , 20 h	→	Ph Ph
entry	photocatalyst	reductant	atmosphere	yield
1	w/o	DIPEA	SF_6	N.D.
2	4CzIPN	w/o	SF ₆	trace
3	4CzIPN	DIPEA	N ₂	N.D.
4 ^b	4CzIPN	DIPEA	N ₂	19 %
5 ^b	w/o	w/o	N ₂	40 %

a. Unless otherwise noted, the reaction conditions were as follows: **1a** (0.1 mmol, 1.0 equiv.), SF₆ (0.3 mmol, 3.0 equiv., 7 mL), 4CzIPN (5 mol %), DIPEA (1 mmol, 10 equiv.), DCE (3.0 mL), 450 nm (18 W), 50 °C, 20 h, ¹H NMR yield, CH₂Br₂ as internal standard substance. b. DAST (0.2 mmol, 2.0 equiv.) was added.

Table SI-2. Fine Condition Screening

<mark>он</mark> 		SF ₆ photocatalyst, reductant		F
Ph Ph	-	solvent, <i>hv</i> , 20 h		Ph Ph
1a				2a
entry	DIPEA	4CzIPN	DIPEA : 4CzIPN	2a
1	5.0 equiv	5 mol %	100	38 %
2	15.0 equiv.	5 mol %	300	83 %
3	15.0 equiv.	10 mol %	100	62 %
4	10.0 equiv.	1 mol %	1000	77 %
5	12.5 equiv.	1 mol %	1250	85 %
6	15.0 equiv.	1 mol %	1500	86 %
7	17.5 equiv.	1 mol %	1750	88 %
8	21.25 equiv.	1 mol %	2125	95 %
9	12.5 equiv.	0.5 mol %	2500	88 %
10	15.0 equiv.	0.5 mol %	3000	83 %
11	17.5 equiv.	0.5 mol %	3500	79 %

a. Unless otherwise noted, the reaction conditions were as follows: **1a** (0.1 mmol, 1.0 equiv.), SF₆ (0.3 mmol, 3.0 equiv., 7 mL), 4CzIPN (5 mol %), DIPEA (1 mmol, 10 equiv.), DCE (3.0 mL), 450 nm (18 W), 50 °C, 20 h, ¹H NMR yield, CH₂Br₂ as internal standard substance. b. DAST (0.2 mmol, 2.0 equiv.) was added.

Figure SI-1. Photocatalyst / reductant ratio - yield plot.

3.2 Synthetic Utility

1 mmol scale reaction

In a 20 mL glass vial, 4CzIPN (7.9 mg, 0.01 mmol, 1 mol %), DIPEA (2.7460 g, 21.25 mmol, 21.25 equiv.) and benzyl alcohol **1** (0.1842 g, 1.0 mmol, 1.0 equiv.) were dissolved in DCE (10 mL). An oven-dried 50 mL Schlenk tube was evacuated and backfilled with SF₆ (repeated for 5 times), followed by filling in the mixture solution via syringe. The tube was sealed with a Teflon lined cap and stirred under visible light source (450 nm, 18 W) at 50 °C for 72 h. SF₆ was supplemented by balloon and syringe every 12 h until reaction time reached 72 h. The reaction mixture was concentrated *in vacuo*, then dissolved in CDCl₃ (0.5 mL) to measure ¹H NMR yield with CH₂Br₂ (87.0 mg, 0.5 mmol) as the internal standard substance. The result showed a 92 % yield in ¹H NMR spectrum.

3.3 Mechanistic study

Radical trapping with TEMPO

In a 10 mL glass vial, 4CzIPN (0.79 mg, 0.001 mmol, 1 mol %), DIPEA (0.2746 g, 2.125 mmol, 21.25 equiv.) **1a** (0.0184 g, 0.1 mmol, 1.0 equiv.) and TEMPO (0.1 mmol, 1.0 equiv.; 0.2 mmol, 2.0 equiv.) were dissolved in DCE (3 mL). An oven-dried 10 mL Schlenk tube was evacuated and backfilled with SF_6 (repeated for 5 times), followed by filling in the mixture solution via syringe.

The tube was sealed with a Teflon lined cap and stirred under visible light source (450 nm, 18 W) at 50 °C for 20 h. The reaction mixture was concentrated *in vacuo*, then dissolved in CDCl₃ (0.5 mL) to measure ¹H NMR yield with CH₂Br₂ (17.4 mg, 0.1 mmol) as the internal standard substance. The yield did not show a significant reduction in the presence of the radical trapping agent (97 %, 89 % ¹H NMR yield).

Hydroxyl protection

In a 10 mL glass vial, 4CzIPN (0.79 mg, 0.001 mmol, 1 mol %), DIPEA (0.2746 g, 2.125 mmol, 21.25 equiv.) and **1a'** (0.0226 g, 0.1 mmol, 1.0 equiv.) were dissolved in DCE (3 mL). An ovendried 10 mL Schlenk tube was evacuated and backfilled with SF_6 (repeated for 5 times), followed by filling in the mixture solution via syringe. The tube was sealed with a Teflon lined cap and stirred under visible light source (450 nm, 18 W) at 50 °C for 20 h. The reaction mixture was concentrated *in vacuo*, then dissolved in CDCl₃ (0.5 mL) to measure ¹H NMR and ¹⁹F NMR was conducted with CH_2Br_2 and PhCF₃ as the internal standard substance. The result showed no signal of expected product was detected.

Fluorination reagent capture

In a 10 mL glass vial, 4CzIPN (0.79 mg, 0.001 mmol, 1 mol %), DIPEA (0.2746 g, 2.125 mmol, 21.25 equiv.) and **1a** (0.0184 g, 0.1 mmol, 1.0 equiv.) were dissolved in DCE (3 mL). An ovendried 10 mL Schlenk tube was evacuated and backfilled with SF₆ (repeated for 5 times), followed by filling in the mixture solution via syringe. The tube was sealed with a Teflon lined cap and stirred under visible light source (450 nm, 18 W) at 50 °C for 20 h. After completion, PPh₃ (0.1 mmol, 1.0 equiv.) was added into the mixture and stirred for another 1 h. The mixture was concentrated *in vacuo*, then dissolved in CDCl₃ (0.5 mL) for ¹⁹F NMR and ³¹P NMR analysis to detect possible derivatives from PPh₃. The result indicated that the *in situ* generated active species were smoothly captured. Another blank experiment without adding PPh₃ was conducted to analysis the NMR signals of the crude reaction mixture. SO₃F⁻ was deduced according to previous report (P. Nagorny, *Org. Lett.*, **2020**, 23, 190-194).

Crude ³¹P NMR (162 MHz, CDCl₃) of products deriving from PPh₃

Crude ¹H, ¹⁹F NMR analysis of reaction without PPh₃ addition

Radical clock experiment

In a 10 mL glass vial, 4CzIPN (0.79 mg, 0.001 mmol, 1 mol %), DIPEA (0.2746 g, 2.125 mmol, 21.25 equiv.) and **1ai** (0.0148 g, 0.1 mmol, 1.0 equiv.) were dissolved in DCE (3 mL). An ovendried 10 mL Schlenk tube was evacuated and backfilled with SF_6 (repeated for 5 times), followed by filling in the mixture solution via syringe. The tube was sealed with a Teflon lined cap and stirred under visible light source (450 nm, 18 W) at 50 °C for 20 h. The reaction mixture was concentrated *in vacuo*, then dissolved in CDCl₃ (0.5 mL) to measure ¹H NMR yield with CH₂Br₂ and as the internal standard substance. The result showed a 67 % ¹H NMR yield, and no signal of ring-opening product was detected.

-40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 -260 fl (ppm)

Crude ¹⁹F NMR (376 MHz, CDCl₃) Spectrum of **2ai** reaction mixture

Regioselectivity experiment

In a 10 mL glass vial, 4CzIPN (0.79 mg, 0.001 mmol, 1 mol %), DIPEA (0.2746 g, 2.125 mmol, 21.25 equiv.) and **1am** (0.0166 g, 0.1 mmol, 1.0 equiv.) were dissolved in DCE (3 mL). An ovendried 10 mL Schlenk tube was evacuated and backfilled with SF₆ (repeated for 5 times), followed by filling in the mixture solution via syringe. The tube was sealed with a Teflon lined cap and stirred under visible light source (450 nm, 18 W) at 50 °C for 20 h. The reaction mixture was concentrated *in vacuo*, then dissolved in CDCl₃ (0.5 mL) to measure ¹H NMR yield with CH₂Br₂ and as the internal standard substance. The result showed a 62 % ¹H NMR yield for benzyl fluoride, and no crude ¹⁹F NMR signal of terminal alkyl fluoride was detected.

(ppm)

The Yield of 2am Based on ¹H NMR (400 MHz, CDCl₃) Spectrum

fl (ppm)

Crude ¹⁹F NMR (376 MHz, CDCl₃) Spectrum of **2am** reaction mixture

Chiral substitution experiment

In a 10 mL glass vial, 4CzIPN (0.79 mg, 0.001 mmol, 1 mol %), DIPEA (0.2746 g, 2.125 mmol, 21.25 equiv.) and **1ak** (0.0172 g, 0.1 mmol, 1.0 equiv.) were dissolved in DCE (3 mL). An ovendried 10 mL Schlenk tube was evacuated and backfilled with SF₆ (repeated for 5 times), followed by filling in the mixture solution via syringe. The tube was sealed with a Teflon lined cap and stirred under visible light source (450 nm, 18 W) at 50 °C for 20 h. The reaction mixture was concentrated *in vacuo*, then dissolved in CDCl₃ (0.5 mL) to measure ¹H NMR yield with CH₂Br₂ (17.4 mg, 0.1 mmol) as the internal standard substance. Then the product was obtained by dual-step flash column chromatography on silica gel (Rf = 0.6, n-hexane, 40 °C), then subject to chiral HPLC analysis for determination of the retention time.

In a 10 mL glass vial, 4CzIPN (0.79 mg, 0.001 mmol, 1 mol %), DIPEA (0.2746 g, 2.125 mmol, 21.25 equiv.) and (*R*)-1ak (0.0172 g, 0.1 mmol, 1.0 equiv.) were dissolved in DCE (3 mL). An oven-dried 10 mL Schlenk tube was evacuated and backfilled with SF₆ (repeated for 5 times), followed by filling in the mixture solution via syringe. The tube was sealed with a Teflon lined cap and stirred under visible light source (450 nm, 18 W) at 50 °C for 20 h. The reaction mixture was concentrated *in vacuo*, then dissolved in CDCl₃ (0.5 mL) to measure ¹H NMR yield with CH₂Br₂ (7.0 mg, 0.04 mmol) as the internal standard substance. Then the product was obtained by dual-step flash column chromatography on silica gel (Rf = 0.6, n-hexane, 40 °C), then subject to chiral HPLC analysis for determination of the *e.r.* value. we found that the reaction obtained 78 % chiral retention and 22 % chiral flip.

Upon analysis, we proposed the explanation for this reaction based on reported literatures (H. M. Bell et al., *J. Fluorine Chem.*, **1980**, 15, 191; A.I. Burmakov et al., *J. Fluorine Chem.*, **1981**, 19, 151). when SF_4 is used for alcohol deoxyfluorination, a C-O-S-F four-membered cyclic intermediate is often formed, thus completing the substitution via the S_N mechanism. In addition, a minority amount of racemization occurred probably through the S_N2 mechanism in which the fluorine ion attacks from the backside.

Figure SI-2. Proposed S_Ni mechanism for substitution with chiral retention

The Total Yield of (R)-2ak and (S)-2ak Based on ¹H NMR (400 MHz, CDCl₃) Spectrum

Peak#	Ret. Time	Area	Area%
1	10.728	2615300	21.940
2	11.778	9304954	78.060
Total		11920254	100.000

Optical Rotation: $[\alpha]_D^{20} = +15.8$ (c 1.000, CHCl3).

HPLC analysis condition: Daicel Chiralpak OJ-H, n-hexane/iso-propanol = 49/1, 1.0 mL/min, λ = 214 nm. The assignment of the absolute configurations was confirmed according to previous report (*ACS Catal.*, **2020**, 10, 3, 1954).

3.4 Photochemistry experiments

Light on/off experiment

In a 20 mL glass vial, 4CzIPN (4.74 mg, 0.006 mmol, 1 mol %), DIPEA (1.6476 g, 12.75 mmol, 21.25 equiv.) and **1a** (0.1105 g, 0.6 mmol, 1.0 equiv.) were dissolved in DCE (18 mL). The mixture solution was sonicated and equally divided into 6 glass vials of the same size to ensure equal volume. Six oven-dried 10 mL Schlenk tubes numbered #1-#6 were evacuated and backfilled with SF₆ (repeated for 5 times), followed by filling in the separated solution via syringe. The tubes were sealed with Teflon lined caps and stirred under visible light source (450 nm, 18 W) at 50 °C to perform 6 parallel experiments. At the 6 h, the light was turned off and tube #1 was opened to measure ¹H NMR yield with CH₂Br₂ as the internal standard substance. After 3 h, tube #2 was subject to yield measurement and the light was turned on for another 6 h, and the rest of experiment was done in the same manner. The results showed obvious suspension of reaction process when light source was extracted.

Luminescence quenching experiments

To gain further insight for the process, we conducted Stern-Volmer studies on the photocatalytic system. The experiments were performed according to the following procedure. In the quartz cuvette, 4CzIPN (0.1 mM) was dissolved in DCE (3 mL). After completing the blank test, DIPEA was pipetted into each portion of solution using a 10 μ L microsampler. The luminescence quenching effect of the sample was observed on Hitachi Fluorescence Spectrophotometer F-4600 with excitation wavelength at 378 nm, emission wavelength ranging from 400-750 nm. Emission intensity peak height at 535 nm was recorded.

First, we measured the emission intensity in the presence of various possible quenchers. 4CzIPN (0.1 mM) in DCE and sparged with SF_6 for 60 seconds before testing (line 1), 4CzIPN (0.1 mM) in DCE (line 2), 4CzIPN (0.1 mM) with substrate **1a** (10 mM) in DCE (line 3) and 4CzIPN (0.1 mM) with DIPEA (10 mM) in DCE (line 4). The study revealed that the excited state of 4CzIPN is quenched by the reductant DIPEA (**Figure SI-3**).

Figure SI-3. Luminescence quenching of excited 4CzIPN with various quenchers

Then, we added different concentrations of DIPEA to the system, measured the emission intensity of the 4CzIPN (0.1 mM) as below (**Figure SI-4**).

Figure SI-4. 4CzIPN emission quenching by different concentrations of DIPEA

In addition, the Stern-Volmer plot and a linear fit (**Figure SI-5**) were drawn according to the equation:

$$rac{I_0}{I}-1=K_q[Q]$$

Figure SI-5. Stern-Volmer plot of 0.1 mM 4CzIPN quenched by different concentration of DIPEA

4. By-product salt preparation and analysis

4.1 Preparation and NMR analysis

In a 20 mL glass vial, 4CzIPN (3.16 mg, 0.004 mmol, 1 mol %) and DIPEA (1.0984 g, 8.5 mmol, 21.25 equiv.) were dissolved in DCE (12 mL). The solution was subjected to a 30-second sonication dispersion and then dispensed in equal volumes into 4 glass vials of 10 mL volume directly on bench. **1a** (0.0184 g, 0.1 mmol, 1.0 equiv.) was added and dissolved in each vial. For each glass vial, an oven-dried 10 mL Schlenk tube was evacuated and backfilled with SF₆ (repeated for 5 times), followed by filling in the solution via syringe. The tube was sealed with a Teflon lined cap and stirred under visible light source (450 nm, 18 W) at 50 °C for 20 h. The reaction mixture was concentrated *in vacuo*, and the by-product salt was obtained by flash column chromatography on silica gel (from PE to DCM). The purified product was then subject to further characterization.

¹**H** NMR (600 MHz, Chloroform-d) δ 8.99 (s, 2H), 3.36 (hept, J = 6.4 Hz, 2H), 1.45 (d, J = 6.6 Hz, 12H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 47.8, 19.5. ¹⁹F NMR (565 MHz, Chloroform-*d*) δ -120.63.

¹H NMR (600 MHz, CDCl₃) Spectrum of by-product salt

¹⁹F NMR (500 MHz, CDCl₃) Spectrum of by-product salt

4.2 XPS analysis detail of by-product salt

XPS elemental analysis further revealed the composition of the by-product salt. As C-O bonds were not detected and nitrogen formed C-N bond, it is suggested that the salt was derived from the reductant amine DIPEA. S-O and O-H bonds indicated the presence of partially protonated sulfur containing acid anion. Flourine signals were inferred as anions with or without hydrogen bond.

5. Additional information

	Fluorine co	ontent by	Commercial cost by		ent by Commercial cost by Source		Source
	weight (%)	mole (%)	1 mol fluorine (\$)	1 mol reagent (\$)			
SF ₆	78	86	0.44	2.66	Nanjing Special Gas Plant Co., Ltd. https://www.njtq.cn/product/781.html		
SO ₂ F ₂	37	40	9.86	19.71	Sichuan Shangfu Technology Co., Ltd. http://www.shangfluoro.com/2699-79-8.html		
SF3 N DAST	35	16	15.79	47.37	Shanghai Haohong Scientific Co.,Ltd. https://www.leyan.com/38078-09-0.html		
O O S F N PyFluor	12	7.1	186.99	186.99	Shanghai Haohong Scientific Co.,Ltd. https://www.leyan.com/878376-35-3.html		
PhPhPh 0 0 0 0 0 NFSI	6.0	3.3	29.15	29.15	Shanghai Haohong Scientific Co.,Ltd. https://www.leyan.com/133745-75-2.html		
CI -N ⁺ P Selectfluor	5.3	2.9	32.27	32.27	Shanghai Haohong Scientific Co.,Ltd. https://www.leyan.com/140681-55-6.html		
Ph CpFluor	17	7.4	7990.87	15981.74	DAICEL Chiral Technologies (China) Co., Ltd. https://www.daicelchiraltech.cn/reagents /detail/201223.html		

Table SI-3. Comparison Between SF₆ and Other Deoxyfluorination Reagents
6. NMR Spectrum

 ^{13}C NMR (126 MHz, CDCl₃) Spectrum of Compound 1af

¹H NMR (500 MHz, CDCl₃) Spectrum of Compound 2a

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

¹⁹F NMR (376 MHz, CDCl₃) Spectrum of Compound 2a

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

¹⁹F NMR (565 MHz, CDCl₃) Spectrum of Compound 2c

¹⁹F NMR (565 MHz, CDCl₃) Spectrum of Compound 2d

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2. fl (ppm)

¹⁹F NMR (471 MHz, CDCl₃) Spectrum of Compound 2e

¹⁹F NMR (565 MHz, CDCl₃) Spectrum of Compound 2f

¹H NMR (600 MHz, CDCl₃) Spectrum of Compound 2g

¹⁹F NMR (565 MHz, CDCl₃) Spectrum of Compound 2g

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: fl (ppm)

¹⁹F NMR (471 MHz, CDCl₃) Spectrum of Compound **2h**

Crude $^{19}\!F$ NMR (376 MHz, CDCl_3) Spectrum of 2i Reaction Mixture

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

Crude ¹⁹F NMR (376 MHz, CDCl₃) Spectrum of **2j** Reaction Mixture

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: fl (ppm)

¹⁹F NMR (471 MHz, CDCl₃) Spectrum of Compound 2k

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2. fl (ppm)

¹⁹F NMR (471 MHz, CDCl₃) Spectrum of Compound **21**

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: f1 (ppm)

¹⁹F NMR (565 MHz, CDCl₃) Spectrum of Compound 20

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: fl (ppm)

¹⁹F NMR (471 MHz, CDCl₃) Spectrum of Compound **2p**

 ^{19}F NMR (565 MHz, CDCl₃) Spectrum of Compound 2q

¹H NMR (600 MHz, CDCl₃) Spectrum of Compound **2r**

¹⁹F NMR (565 MHz, CDCl₃) Spectrum of Compound **2r**

¹H NMR (500 MHz, CDCl₃) Spectrum of Compound 2s

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: f1 (ppm)

¹⁹F NMR (471 MHz, CDCl₃) Spectrum of Compound 2s

¹H NMR (500 MHz, CDCl₃) Spectrum of Compound 2t

¹⁹F NMR (471 MHz, CDCl₃) Spectrum of Compound 2t

¹H NMR (600 MHz, CDCl₃) Spectrum of Compound 2u

 ^{19}F NMR (565 MHz, CDCl₃) Spectrum of Compound 2u

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

¹⁹F NMR (376 MHz, CDCl₃) Spectrum of Compound 2v

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2. f1 (ppm)

¹⁹F NMR (471 MHz, CDCl₃) Spectrum of Compound **2w**

¹H NMR (400 MHz, CDCl₃) Spectrum of Compound 2x

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

¹H NMR (500 MHz, CDCl₃) Spectrum of Compound 2y

¹⁹F NMR (471 MHz, CDCl₃) Spectrum of Compound **2y**

¹H NMR (500 MHz, CDCl₃) Spectrum of Compound 2z

¹H NMR (500 MHz, CDCl₃) Spectrum of Compound 2aa

¹⁹F NMR (471 MHz, CDCl₃) Spectrum of Compound 2aa

¹H NMR (600 MHz, CDCl₃) Spectrum of Compound **2ab**

¹⁹F NMR (565 MHz, CDCl₃) Spectrum of Compound 2ab

¹H NMR (500 MHz, CDCl₃) Spectrum of Compound 2ac

¹⁹F NMR (471 MHz, CDCl₃) Spectrum of Compound 2ac

Crude ¹⁹F NMR (376 MHz, CDCl₃) Spectrum of 2ad Reaction Mixture

¹H NMR (500 MHz, CDCl₃) Spectrum of Compound 2ae

¹⁹F NMR (471 MHz, CDCl₃) Spectrum of Compound 2ae

¹H NMR (500 MHz, CDCl₃) Spectrum of Compound 2af

¹⁹F NMR (471 MHz, CDCl₃) Spectrum of Compound 2af

¹H NMR (500 MHz, CDCl₃) Spectrum of Compound 2ag

¹⁹F NMR (376 MHz, CDCl₃) Spectrum of Compound 2ag

¹H NMR (600 MHz, CDCl₃) Spectrum of Compound 2ah

¹⁹F NMR (565 MHz, CDCl₃) Spectrum of Compound 2ah

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 fl (ppm) 30 20 10 0 -10 -20

¹³C NMR (151 MHz, CDCl₃) Spectrum of Compound 2ai

¹⁹F NMR (565 MHz, CDCl₃) Spectrum of Compound 2ai

¹H NMR (600 MHz, CDCl₃) Spectrum of Compound 2aj

 ^{19}F NMR (565 MHz, CDCl₃) Spectrum of Compound 2aj

145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 fl (ppm)

 ^{13}C NMR (126 MHz, CDCl_3) Spectrum of Compound 2ak