Supplementary Information (SI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Electroreductive deoxygenative carboxylation of alkyl oxalates with CO₂

Yong Yuan,* Hangfei Jiang, Ya-Nan Zhang, Yuyan Tao, Xincong Liu, and Congde Huo

College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China

*Email: <u>yuanyong@nwnu.edu.cn</u>

Table of Contents

1. General Information	
2. Experimental Details	
3. Mechanistic Investigations	07
4. Characterization of Products	
5. References	
6. NMR Spectra of Products	

1. General Information

All glassware was oven dried at 110 °C for h and cooled down under vacuum. Unless otherwise noted, materials were obtained from commercial suppliers and used without further purification. Flash column chromatography was performed with silica gel (200-300 mesh). Cyclic voltammograms were recorded on a CHI660E potentiostat. ¹H NMR, ¹³C NMR, and ¹⁹F NMR experiments were carried out using Vnmr Mercury plus 400 MHz or Agilent DD2-600 MHz spectrometers. All chemical shifts (δ) are reported in ppm relative to internal tetramethyl silane (TMS, 0 ppm) for ¹H, CDCl₃ (77.16 ppm) or DMSO-*d*₆ (39.52 ppm) for ¹³C. The abbreviations used for explaining the multiplicities were as follows: s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, m = multiplet, br = broad. Coupling constants (*J*) are reported in Hz. High-resolution mass spectra (HRMS) spectra were obtained from the Thermo Fisher Q-Exactive mass spectrometer in electrospray ionization (ESI⁺) mode.

2. Experimental Details

2.1 General procedure for the synthesis of alkyl oxalates ^[1]

The alcohols (5.0 mmol), pyridine (0.6 mL, 7.5 mmol, 1.5 equiv.), and 4dimethylamino pyridine (DMAP) (61 mg, 0.5 mmol, 0.1 equiv.) were dissolved in 25 mL anhydrous CH₂Cl₂ and methyl oxalyl chloride (0.7 mL, 7.5 mmol, 1.5 equiv.) was next added slowly. The reaction mixture was stirred at room temperature until the reaction was complete (monitored by TLC). The resulting mixture was quenched with saturated NaHCO₃ solution and extracted with DCM (3×30 mL). The combined organic layers were dried over Na₂SO₄, filtered, and concentrated under reduced pressure. Then the residue was purified by flash column chromatography (petroleum ether/ethyl acetate = 20/1 to 10/1) to obtain the desired alkyl oxalates.

2.2 General procedure for the electroreductive deoxygenative carboxylation of alkyl oxalates with CO₂

$$R^{O} + CO_{2} \xrightarrow{n Bu_{4}NOAc, 15 mA, 4 h}{DMF, RT, undivided cell} R-COOH$$

In an oven-dried undivided three-necked bottle (25 mL) equipped with a stir bar, alkyl oxalates (0.5 mmol, 1.0 equiv.) and "Bu₄NOAc (151 mg, 0.5 mmol, 1.0 equiv.) were combined and added. The bottle was equipped with an aluminum plate (15.0 mm \times 15.0 mm \times 0.5 mm) anode and a stainless steel plate (15.0 mm \times 15.0 mm \times 1.0 mm) cathode and was then charged with CO₂. Under the atmosphere of carbon dioxide, DMF (11 mL) was injected into the tube by a syringe. The reaction mixture was stirred and electrolyzed at a constant current of 15 mA for 4 h. After electrolysis, the mixture was acidized by HCl solution (10 mL, 2M) and extracted by ethyl acetate for 4 times (4 \times 15 mL). The combined organic layers were washed with saturated saline solution (2 \times 15 mL), dried over Na₂SO₄, filtered, and concentrated under reduced pressure. Then

the residue was purified by flash column chromatography (petroleum ether/ethyl acetate/acetic acid = 10/1/0.005 to 5/1/0.005) to obtain the desired products.

2.3 Procedure for the gram scale synthesis of 2

In an oven-dried undivided three-necked bottle equipped with a stir bar, methyl (1-phenylethyl) oxalate (20 mmol, 4.16 g) and "Bu₄NOAc (5 mmol, 1.51 g) were combined and added. The bottle was equipped with two aluminum plates (15 mm \times 30 mm \times 0.5 mm) anodes and two stainless steel plates (15 mm \times 30 mm \times 1.0 mm) cathodes and was then charged with carbon dioxide. Under the atmosphere of carbon dioxide, DMF (75 mL) was injected into the tube by a syringe. The reaction mixture was stirred and electrolyzed at a constant current of 30 mA for 40 h. After electrolysis, the mixture was acidized by HCl solution (50 mL, 2M) and extracted by ethyl acetate for 4 times (4 \times 60 mL). The combined organic layers were washed with saturated saline solution (2 \times 30 mL), dried over Na₂SO₄, filtered, and concentrated under reduced pressure. Then the residue was purified by flash column chromatography (petroleum ether/ethyl acetate = 5/1) to obtain the desired product as a colorless oil (73%).

2.4 Procedure for the gram scale synthesis of 27

Biprofen

In an oven-dried undivided three-necked bottle equipped with a stir bar, 1-([1,1'biphenyl]-4-yl)ethyl methyl oxalate (20 mmol, 5.69 g) and "Bu4NOAc (5 mmol, 1.51 g) was added. The bottle was equipped with two aluminum plates (15 mm × 30 mm × 0.5 mm) anodes and two stainless steel plates (15 mm × 30 mm × 1.0 mm) cathodes and was then charged with carbon dioxide. Under the atmosphere of carbon dioxide, DMF (75 mL) was injected into the tube by a syringe. The reaction mixture was stirred and electrolyzed at a constant current of 30 mA for 40 h. After electrolysis, the mixture was acidized by HCl solution (50 mL, 2M) and extracted by ethyl acetate for 4 times (4 × 60 mL). The combined organic layers were washed with saturated saline solution (2 × 30 mL), dried over Na₂SO₄, filtered, and concentrated under reduced pressure. Then the residue was purified by flash column chromatography (petroleum ether/ethyl acetate = 5/1) to obtain the desired biprofen as a white solid (63%). 2.5 The experimental setup for the gram scale synthesis

3. Mechanistic Investigations

3.1 Cyclic voltammetry study

Cyclic voltammetry (CV) experiments were conducted in an electrolyte of ^{*n*}Bu₄NOAc (0.1 M) in DMF using a glassy carbon disk working electrode (diameter, 1 mm), a Pt wire auxiliary electrode and a Ag/AgCl reference electrode. The scan rate is 100 mV/s.

Fig. S1. Cyclic voltammogram of 1, CO_2 and their mixture in DMF. Conditions: ^{*n*}Bu₄NOAc (0.1 M in DMF), and with (a) CO_2 saturated, (b) 1 (1.0 mM), or (c) 1 (1.0 mM) + CO_2 saturated. Scan rate: 100 mV/s.

3.2 Radical trapping by TEMPO

In an oven-dried undivided three-necked bottle (25 mL) equipped with a stir bar, methyl (1-phenylethyl) oxalate (104 mg, 0.5 mmol, 1.0 equiv.), "Bu4NOAc (151 mg, 0.5 mmol, 1.0 equiv.) and 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO, 156 mg, 1.0 mmol, 2.0 equiv.) were combined and added. The bottle was equipped with an aluminum plate (15.0 mm \times 15.0 mm \times 0.5 mm) anode and a stainless steel plate (15.0 mm \times 15.0 mm \times 0.5 mm) anode and a stainless steel plate (15.0 mm \times 15.0 mm \times 1.0 mm) cathode and was then charged with CO₂. Under the atmosphere of carbon dioxide, DMF (11 mL) was injected into the tube by a syringe. The reaction mixture was stirred and electrolyzed at a constant current of 15 mA for 4 h. After electrolysis, the mixture was acidized by HCl solution (10 mL, 2M) and extracted by ethyl acetate for 4 times (4 \times 15 mL). The combined organic layers were washed with saturated saline solution (2 \times 15 mL), dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The desired product was obtained by HRMS.

3.3 Radical trapping by 1,1-diphenylethylene

In an oven-dried undivided three-necked bottle (25 mL) equipped with a stir bar, methyl (1-phenylethyl) oxalate (104 mg, 0.5 mmol, 1.0 equiv.) and "Bu₄NOAc (151 mg, 0.5 mmol, 1.0 equiv.) were combined and added. The bottle was equipped with an aluminum plate (15.0 mm × 15.0 mm × 0.5 mm) anode and a stainless steel plate (15.0 mm × 15.0 mm × 15.0 mm) cathode and was then charged with CO₂. Under the atmosphere of carbon dioxide, 1,1-diphenylethylene (177 μ L, 1.0 mmol, 2.0 equiv.) and DMF (11 mL) were injected respectively into the tube by syringes. The reaction mixture was stirred and electrolyzed at a constant current of 15 mA for 4 h. After electrolysis, the mixture was acidized by HCl solution (10 mL, 2M) and extracted by ethyl acetate

for 4 times (4×15 mL). The combined organic layers were washed with saturated saline solution (2×15 mL), dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The desired product was obtained by flash column chromatography on silica gel and other intermediates were detected by HRMS.

3.4 D-labeling experiment

In an oven-dried undivided three-necked bottle (25 mL) equipped with a stir bar, methyl (1-(naphthalen-1-yl)ethyl) oxalate (129 mg, 0.5 mmol, 1.0 equiv.) and ^{*n*}Bu₄NOAc (151 mg, 0.5 mmol, 1.0 equiv.) were combined and added. The bottle was equipped with an aluminum plate (15.0 mm \times 15.0 mm \times 0.5 mm) anode and a stainless

steel plate (15.0 mm \times 15.0 mm \times 1.0 mm) cathode and was then charged with CO₂. Under the atmosphere of carbon dioxide, D₂O (45 µL, 2.5 mmol, 5.0 equiv.) and DMF (11 mL) were injected respectively into the tube by syringes. The reaction mixture was stirred and electrolyzed at a constant current of 15 mA for 4 h. After electrolysis, the mixture was acidized by HCl solution (10 mL, 2M) and extracted by ethyl acetate for 4 times (4 \times 15 mL). The combined organic layers were washed with saturated saline solution (2 \times 15 mL), dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The pure products were obtained by flash column chromatography on silica gel.

4. Characterization of the products

2-Phenylpropanoic acid (2) ^[2]. The desired pure product was obtained in 86% yield (65 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.38 - 7.17 (m, 5H), 3.73 (q, J = 7.2 Hz, 1H), 1.51 (d, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 180.9, 139.7, 128.6, 127.6, 127.4, 45.4, 18.1. HRMS (ESI) m/z: [M + H]⁺ calcd for C₉H₁₁O₂ 151.0754. Found: 151.0753.

2-(*p***-Tolyl)propanoic acid (3)** ^[2]. The desired pure product was obtained in 67% yield (55 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.20 (d, *J* = 7.8 Hz, 2H), 7.13 (d, *J* = 7.9 Hz, 2H), 3.69 (q, *J* = 7.2 Hz, 1H), 2.32 (s, 3H), 1.48 (d, *J* = 7.3 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 180.8, 137.0, 136.8, 129.3, 127.4, 44.9, 21.0, 18.1. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₀H₁₃O₂ 165.0910. Found: 165.0909

2-(*m***-Tolyl)propanoic acid (4)** ^[2]. The desired pure product was obtained in 58% yield (48 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.27 - 7.18 (m, 1H), 7.16 - 7.05 (m, 3H), 3.70 (q, *J* = 7.2 Hz, 1H), 2.34 (s, 3H), 1.49 (d, *J* = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 180.5, 139.7, 138.3, 128.6, 128.3, 128.1, 124.6, 45.2, 21.4, 18.1. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₀H₁₃O₂ 165.0910. Found: 165.0913.

Соон

2-(*o***-Tolyl)propanoic acid (5)** ^[2]. The desired pure product was obtained in 63% yield (52 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.32 - 7.13 (m, 4H), 3.98 (q, J = 7.1 Hz, 1H), 2.37 (s, 3H), 1.48 (d, J = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 180.9, 138.3, 135.9, 130.5, 127.2, 126.5, 126.4, 41.1, 19.6, 17.5. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₀H₁₃O₂ 165.0910. Found: 165.0911.

2-(4-Methoxyphenyl)propanoic acid (6) ^[3]. The desired pure product was obtained in 57% yield (51 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.32 - 7.21 (m, 2H), 6.90 - 6.83 (m, 2H), 3.80 (s, 3H), 3.68 (q, *J* = 7.2 Hz, 1H), 1.47 (d, *J* = 6.4 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 181.2, 158.8, 131.8, 128.6, 114.0, 55.2, 44.5, 18.1. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₀H₁₃O₃ 181.0859. Found: 181.0861.

2-(4-Fluorophenyl)propanoic acid (7) ^[4]. The desired pure product was obtained in 76% yield (64 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.32 - 7.24 (m, 2H), 7.05 - 6.97 (m, 2H), 3.72 (q, *J* = 7.0 Hz, 1H), 1.50 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 180.1, 162.1 (d, *J* = 246.1 Hz), 135.4 (d, *J* = 3.2 Hz), 129.1 (d, *J* = 8.1 Hz), 115.5 (d, *J* = 21.0 Hz), 44.5, 18.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -115.24. HRMS (ESI) m/z: [M + H]⁺ calcd for C₉H₁₀FO₂ 169.0659. Found: 169.0660.

2-(4-Chlorophenyl)propanoic acid (8) ^[4]. The desired pure product was obtained in 83% yield (77 mg) as a white solid. M.P. = 57 °C - 59 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.33 - 7.19 (m, 4H), 3.71 (q, *J* = 7.2 Hz, 1H), 1.49 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 180.5, 138.1, 133.3, 129.0, 128.8, 44.7, 18.0. HRMS (ESI) m/z: [M + H]⁺ calcd for C₉H₁₀ClO₂ 185.0364. Found: 185.0365.

2-(4-Bromophenyl)propanoic acid (9) ^[5]. The desired pure product was obtained in 71% (81 mg) yield as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, *J* = 8.5 Hz, 2H), 7.19 (d, *J* = 8.4 Hz, 2H), 3.70 (q, *J* = 7.2 Hz, 1H), 1.49 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 180.2, 138.6, 131.8, 129.3, 121.4, 44.8, 18.0. HRMS (ESI) m/z: [M + H]⁺ calcd for C₉H₁₀BrO₂ 228.9859. Found: 228.9861.

2-(4-(Trifluoromethyl)phenyl)propanoic acid (10) ^[4]. The desired pure product was obtained in 88% yield (96 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, *J* = 8.1 Hz, 2H), 7.44 (d, *J* = 8.0 Hz, 2H), 3.81 (q, *J* = 7.2 Hz, 1H), 1.54 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 180.1, 143.5, 129.8 (q, *J* = 30.8 Hz), 128.1, 126.8 (q, *J* = 3.2 Hz), 124.0 (q, *J* = 271.0 Hz), 45.2, 18.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.62. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₀H₁₀F₃O₂ 219.0627. Found: 219.0629.

2-Phenylbutanoic acid (11) ^[6]. The desired pure product was obtained in 88% yield (72 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.36 - 7.23 (m, 5H), 3.45 (t, *J* = 7.7 Hz, 1H), 2.17 - 1.70 (m, 2H), 0.90 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃)

 δ 180.3, 138.3, 128.6, 128.1, 127.4, 53.3, 26.3, 12.1. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₀H₁₃O₂ 165.0910. Found: 165.0912.

2-Phenylpentanoic acid (12) ^[2]. The desired pure product was obtained in 76% yield (68 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.38 - 7.26 (m, 5H), 3.55 (t, *J* = 7.7 Hz, 1H), 2.12 - 1.68 (m, 2H), 1.34 - 1.22 (m, 2H), 0.90 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 180.4, 138.5, 128.6, 128.0, 127.4, 51.3, 35.2, 20.6, 13.8. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₁H₁₅O₂ 179.1067. Found: 179.1066.

4-Ethoxy-4-oxo-2-phenylbutanoic acid (13). The desired pure product was obtained in 74% yield (82 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.36 - 7.27 (m, 5H), 4.15 - 4.07 (m, 3H), 3.16 (dd, *J* = 16.9, 10.0 Hz, 1H), 2.67 (dd, *J* = 16.9, 5.5 Hz, 1H), 1.20 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 178.5, 171.3, 137.0, 128.9, 127.9, 127.8, 60.9, 47.1, 37.4, 14.0. HRMS (ESI) m/z: [M - H]⁻ calcd for C₉H₁₃O₄ 221.0808. Found: 221.0811.

2-Cyclopropyl-2-phenylacetic acid (14) ^[7]. The desired pure product was obtained in 70% yield (62 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.43 - 7.27 (m, 5H), 2.82 (d, *J* = 10.2 Hz, 1H), 1.55 - 1.42 (m, 1H), 0.75 - 0.53 (m, 2H), 0.47 - 0.15 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 180.4, 138.2, 128.6, 128.0, 127.4, 56.4, 13.8, 4.9, 4.1. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₁H₁₃O₂ 177.0910. Found: 177.0911.

Соон

2-Cyclobutyl-2-phenylacetic acid (15). The desired pure product was obtained in 66% yield (63 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.36 - 7.25 (m, 5H), 3.57 (d, *J* = 11.0 Hz, 1H), 3.06 - 2.94 (m, 1H), 2.29 - 2.17 (m, 1H), 1.95 - 1.78 (m, 4H), 1.67 - 1.53 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 179.8, 137.0, 128.5, 128.2, 127.4, 58.1, 38.0, 27.5, 26.3, 17.8. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₂H₁₅O₂ 191.1067. Found: 191.1068.

1,2,3,4-Tetrahydronaphthalene-1-carboxylic acid (16) ^[8]. The desired pure product was obtained in 71% yield (63 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.25 - 7.05 (m, 4H), 3.84 (t, *J* = 5.7 Hz, 1H), 2.89 - 2.70 (m, 2H), 2.24 - 2.10 (m, 1H), 2.09 - 1.90 (m, 2H), 1.84 - 1.71 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 181.4, 137.3, 132.5, 129.6, 129.4, 127.1, 125.8, 44.4, 29.0, 26.4, 20.4. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₁H₁₃O₂ 177.0910. Found: 177.0912.

6,7,8,9-Tetrahydro-5H-benzo[7]**annulene-5-carboxylic acid (17)** ^[8]. The desired pure product was obtained in 74% yield (70 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.19 - 7.06 (m, 4H), 3.94 (dd, J = 7.4, 2.3 Hz, 1H), 2.92 - 2.70 (m, 2H), 2.26 - 2.13 (m, 1H), 1.93 - 1.70 (m, 4H), 1.54 (d, J = 11.6 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 180.1, 143.0, 138.7, 130.0, 129.0, 127.3, 126.2, 51.5, 36.2, 30.0, 28.6, 27.5. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₂H₁₅O₂ 191.1067. Found: 191.1066.

2,2-Diphenylacetic acid (18) ^[8]. The desired pure product was obtained in 75% yield (80 mg) as a white solid. M.P. = 147 °C - 149 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.37 - 7.25 (m, 10H), 5.04 (s, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 178.7, 137.9, 128.6, 127.5, 57.0. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₄H₁₃O₂ 213.0910. Found: 213.0911.

2-(Naphthalen-1-yl)propanoic acid (19) ^[9]. The desired pure product was obtained in 90% yield (90 mg) as a white solid. M.P. = $122 \circ C - 124 \circ C$. ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, *J* = 8.3 Hz, 1H), 7.85 (dd, *J* = 34.1, 7.8 Hz, 2H), 7.62 - 7.42 (m, 4H), 4.56 (q, *J* = 7.1 Hz, 1H), 1.69 (d, *J* = 7.3 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 181.1, 135.9, 133.9, 131.3, 129.0, 128.0, 126.4, 125.7, 125.5, 124.6, 123.0, 41.0, 17.8. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₃H₁₃O₂ 201.0910. Found: 201.0912.

2-(Naphthalen-2-yl)propanoic acid (20) ^[9]. The desired pure product was obtained in 78% yield (78 mg) as a white solid. M.P. = 129 °C - 130 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.89 - 7.74 (m, 4H), 7.54 - 7.42 (m, 3H), 3.93 (q, *J* = 7.1 Hz, 1H), 1.62 (d, *J* = 7.6 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 180.7, 137.1, 133.4, 132.7, 128.4, 127.8, 127.6, 126.3, 126.2, 125.9, 125.7, 45.5, 18.1. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₃H₁₃O₂ 201.0910. Found: 201.0911.

1,2-Dihydroacenaphthylene-1-carboxylic acid (21) ^[2]. The desired pure product was obtained in 68% yield (67 mg) as a white solid. M.P. = 256 °C - 257 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.67 (dd, *J* = 22.7, 8.1 Hz, 2H), 7.59 - 7.44 (m, 3H), 7.33 (d, *J* = 6.8 Hz, 1H), 4.62 (dd, *J* = 8.8, 4.0 Hz, 1H), 3.87 (dd, *J* = 17.4, 4.0 Hz, 1H), 3.64 (dd, *J* = 17.4, 8.7 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 179.0, 142.9, 141.3, 138.1, 131.5, 128.1, 127.8, 124.1, 122.7, 120.6, 119.6, 48.2, 34.0. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₃H₁₁O₂ 199.0754. Found: 199.0755.

2-(3-((3,7-Dimethyloct-6-en-1-yl)oxy)phenyl)propanoic acid (22). The desired pure product was obtained in 72% yield (110 mg) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.23 (t, *J* = 9.1 Hz, 1H), 6.98 - 6.73 (m, 3H), 5.11 (s, 1H), 4.06 - 3.89 (m, 2H), 3.70 (t, *J* = 7.7 Hz, 1H), 2.11 - 1.93 (m, 2H), 1.91 - 1.77 (m, 1H), 1.70 (d, *J* = 7.9 Hz, 5H), 1.61 (s, 3H), 1.50 (s, 2H), 1.32 - 1.14 (m, 2H), 0.99 - 0.91 (m, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 159.3, 141.2, 131.3, 129.6, 124.7, 119.7, 114.1, 113.1, 66.2, 45.3, 37.1, 36.2, 29.5, 25.7, 25.4, 19.6, 18.1, 17.7. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₉H₂₉O₃ 305.2111. Found: 305.2110.

2-(4-Isobutylphenyl)propanoic acid (23) ^[8]. The desired pure product was obtained in 61% yield (63 mg) as a white solid. M.P. = 77 °C - 78 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, J = 7.7 Hz, 2H), 7.66 (d, J = 7.7 Hz, 2H), 4.26 (q, J = 7.3 Hz, 1H), 3.00 (d, J

= 7.1 Hz, 2H), 2.45 - 2.34 (m, 1H), 2.05 (d, J = 7.1 Hz, 3H), 1.45 (d, J = 5.0 Hz, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 181.1, 140.8, 136.9, 129.4, 127.3, 45.1, 45.0, 30.1, 22.4, 18.1. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₃H₁₉O₂ 207.1380. Found: 207.1381.

2-(6-Methoxynaphthalen-2-yl)propanoic acid (24) ^[8]. The desired pure product was obtained in 68% yield (78 mg) as a white solid. M.P. = 152 °C - 154 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.73 - 7.64 (m, 3H), 7.40 (dd, *J* = 8.4, 1.9 Hz, 1H), 7.17 - 7.05 (m, 2H), 3.90 (s, 3H), 3.85 (q, *J* = 7.2 Hz, 1H), 1.58 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 180.7, 157.7, 134.8, 133.8, 129.3, 128.9, 127.2, 126.2, 126.1, 119.0, 105.6, 55.3, 45.2, 18.1. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₄H₁₅O₃ 231.1016. Found: 231.1023.

2-(3-Phenoxyphenyl)propanoic acid (**25**) ^[8]. The desired pure product was obtained in 82% yield (99 mg) as a white solid. M.P. = 169 °C - 170 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.36 - 7.23 (m, 3H), 7.14 - 6.97 (m, 5H), 6.88 (dd, *J* = 8.2, 2.4 Hz, 1H), 3.71 (q, *J* = 7.2 Hz, 1H), 1.50 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 180.3, 157.5, 156.9, 141.6, 129.9, 129.7, 123.4, 122.3, 119.0, 118.2, 117.5, 45.2, 18.0. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₅H₁₅O₃ 243.1016. Found: 243.1014.

2-(4-Cyclohexylphenyl)propanoic acid (26) ^[8]. The desired pure product was obtained in 60% yield (70 mg) as a white solid. M.P. = 110 °C - 111 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.23 (d, *J* = 8.2 Hz, 2H), 7.16 (d, *J* = 8.2 Hz, 2H), 3.70 (q, *J* = 7.2 Hz, 1H), 2.54 - 2.41 (m, 1H), 1.92 - 1.67 (m, 6H), 1.49 (d, *J* = 7.2 Hz, 3H), 1.45 - 1.33 (m, 4H). ¹³C NMR (151 MHz, CDCl₃) δ 180.7, 147.2, 137.0, 127.4, 127.1, 44.9, 44.2, 34.4, 26.9, 26.1, 18.1. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₅H₂₁O₂ 233.1536. Found: 233.1535.

2-([1,1'-Biphenyl]-4-yl)propanoic acid (27) ^[8]. The desired pure product was obtained in 75% yield (85 mg) as a white solid. M.P. = 168 °C - 169 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.61 - 7.52 (m, 4H), 7.49 - 7.29 (m, 5H), 3.79 (q, *J* = 7.2 Hz, 1H), 1.55 (d, *J* = 7.0 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 180.5, 140.7, 140.4, 138.7, 128.7, 128.0, 127.4, 127.3, 127.1, 45.0, 18.1. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₅H₁₅O₂ 227.1067. Found: 227.1066.

2-Methyl-3-phenylpropanoic acid (**28**) ^[10]. The desired pure product was obtained in 38% yield as (31 mg) a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.34 - 7.17 (m, 5H), 4.05 - 3.96 (m, 1H), 2.80 - 2.64 (m, 2H), 1.23 (d, *J* = 6.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 182.7, 139.0, 129.0, 128.4, 126.4, 41.2, 39.3, 16.4. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₀H₁₃O₂ 165.0910. Found: 165.0912.

2-Phenylacetic acid (29) ^[8]. The desired pure product was obtained in 64% yield (44 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.39 - 7.22 (m, 5H), 3.65 (s, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 177.6, 133.2, 129.4, 128.6, 127.3, 41.0. HRMS (ESI) m/z: [M + H]⁺ calcd for C₈H₉O₂ 137.0597. Found: 137.0598.

2-(*p***-Tolyl)acetic acid (30)** ^[8]. The desired pure product was obtained in 44% yield (33 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.21 - 7.07 (m, 4H), 3.60 (s, 2H), 2.33 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 178.2, 137.0, 130.2, 129.3, 129.2, 40.6, 21.1. HRMS (ESI) m/z: [M + H]⁺ calcd for C₉H₁₁O₂ 151.0754. Found: 151.0755.

2-(4-Methoxyphenyl)acetic acid (31) ^[8]. The desired pure product was obtained in 53% yield (44 mg) as a white solid. M.P. = 84 °C - 86 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.32 - 7.16 (m, 2H), 6.93 - 6.82 (m, 2H), 4.62 (s, 1H), 3.80 (d, *J* = 7.1 Hz, 3H), 3.58 (s, 1H). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 173.9, 158.6, 135.0, 130.8, 128.4, 114.0, 113.9, 63.0, 55.5. HRMS (ESI) m/z: [M + H]⁺ calcd for C₉H₁₁O₃ 167.0703. Found: 167.0705.

2-(4-Chlorophenyl)acetic acid (32)^[11]. The desired pure product was obtained in 62% yield (53 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.33 - 7.17 (m, 4H), 3.61 (s, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 177.6, 133.4, 131.6, 130.7, 128.8, 40.3. HRMS (ESI) m/z: [M + H]⁺ calcd for C₈H₈ClO₂ 171.0207. Found: 171.0209.

2-(4-Bromophenyl)acetic acid (33) ^[11]. The desired pure product was obtained in 68% yield (73 mg) as a white solid. M.P. = 114 °C - 117 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, *J* = 8.4 Hz, 2H), 7.15 (d, *J* = 8.4 Hz, 2H), 3.60 (s, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 177.3, 132.1, 131.7, 131.1, 121.4, 40.4. HRMS (ESI) m/z: [M + H]⁺ calcd for C₈H₈BrO₂ 214.9702. Found: 214.9701.

2-(4-Cyanophenyl)acetic acid (34). The desired pure product was obtained in 62% yield (50 mg) as a white solid. M.P. = 145 °C - 150 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, *J* = 8.2 Hz, 1H), 7.41 (d, *J* = 8.3 Hz, 1H), 3.73 (s, 1H), ¹³C NMR (151 MHz, DMSO-*d*₆) δ 172.3, 141.4, 132.6, 131.1, 119.4, 110.0, 40.9. HRMS (ESI) m/z: [M - H]⁻ calcd for C₉H₆NO₂ 160.0393. Found: 160.0393.

2-(4-(Methoxycarbonyl)phenyl)acetic acid (35). The desired pure product was obtained in 80% yield (78 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, *J* = 8.4 Hz, 1H), 7.36 (d, *J* = 8.0 Hz, 1H), 3.91 (s, 2H), 3.71 (s, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 176.5, 166.8, 138.3, 129.9, 129.5, 129.3, 52.1, 40.9. HRMS (ESI) m/z: [M - H]⁻ calcd for C₁₀H₉O₄ 193.0495. Found: 193.0494.

4-Phenylbutanoic acid (**36**) ^[4]. The desired pure product was obtained in 28% yield (23 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.33 - 7.15 (m, 5H), 3.68 (t, *J* = 6.4 Hz, 2H), 2.71 (dd, *J* = 8.7, 6.7 Hz, 2H), 1.95 - 1.84 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 179.6, 141.8, 128.4, 128.3, 125.8, 62.1, 34.1, 32.0. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₀H₁₃O₂ 165.0910. Found: 165.0913

2-Methyl-2-phenylpropanoic acid (37) ^[12]. The desired pure product was obtained in 72% yield (59 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.43 - 7.21 (m, 5H), 1.60 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 183.2, 143.8, 128.4, 126.9, 125.8, 46.3, 26.2. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₀H₁₃O₂ 165.0910. Found: 165.0913.

2,2-Dimethyl-3-phenylpropanoic acid (**38**) ^[13]. The desired pure product was obtained in 66% yield (59 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.29 - 7.13 (m, 5H), 2.89 (s, 2H), 1.20 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 184.5, 137.5, 130.2, 128.0, 126.5, 45.8, 43.4, 24.6. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₁H₁₅O₂ 179.1067. Found: 179.1069.

2,2-Dimethyl-4-phenylbutanoic acid (**39**) ^[14]. The desired pure product was obtained in 75% yield (72 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.32 - 7.12 (m, 5H), 2.71 (t, *J* = 8.7 Hz, 2H), 1.80 (t, *J* = 8.9 Hz, 2H), 1.29 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 173.7, 142.5, 128.4, 128.3, 125.7, 70.9, 45.7, 30.7, 29.3. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₂H₁₇O₂ 193.1223. Found: 193.1226.

ÇH₂OH

2,2-Dimethyl-4-phenylbutanoic acid (40). The desired pure product was obtained in 93% yield (38 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.37 - 7.20 (m, 5H),

3.70 (d, J = 4.2 Hz, 2H), 2.95 (q, J = 6.9 Hz, 1H), 1.28 (d, J = 7.0 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 143.6, 128.6, 127.5, 126.7, 68.7, 42.4, 17.6. HRMS (ESI) m/z: [M + H]⁺ calcd for C₉H₁₃O 137.0961. Found: 137.0962.

2,2-Dimethyl-4-phenylbutanoic acid (**41**). The desired pure product was obtained in 96% yield (85 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.91 - 7.73 (m, 4H), 7.47 - 7.29 (m, 5H), 4.13 (q, *J* = 7.2 Hz, 1H), 1.68 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 170.8, 161.8, 138.3, 134.7, 128.9, 128.9, 127.8, 127.5, 123.9, 42.9, 19.0. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₇H₁₄NO₄ 296.0917. Found: 296.0921.

2,2-Dimethyl-4-phenylbutanoic acid (42). The desired pure product was obtained in 94% yield (68 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.34 - 7.21 (m, 10H), 5.10 (q, *J* = 12.5 Hz, 2H), 3.77 (q, *J* = 7.1 Hz, 1H), 1.52 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 174.3, 140.4, 136.0, 128.6, 128.4, 128.0, 127.8, 127.5, 127.1, 66.4, 45.5, 18.4. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₆H₁₇O₂ 241.1223. Found: 241.1225.

2,2-Dimethyl-4-phenylbutanoic acid (43). The desired pure product was obtained in 91% yield (64 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.38 - 7.24 (m, 5H), 5.94 (s, 1H), 4.16 (q, *J* = 7.1 Hz, 2H), 4.04 - 3.87 (m, 2H), 3.63 (q, *J* = 7.2 Hz, 1H),

1.54 (d, J = 7.2 Hz, 3H), 1.24 (t, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 174.3, 169.8, 140.9, 128.9, 127.7, 127.3, 61.4, 46.8, 41.5, 18.4, 14.0. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₃H₁₈NO₃ 236.1281. Found: 236.1287.

2,2-Dimethyl-4-phenylbutanoic acid (**47**). The desired pure product was obtained in 21% yield (17 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.89 - 7.78 (m, 3H), 7.67 (s, 1H), 7.53 - 7.35 (m, 3H), 2.86 (q, *J* = 7.6 Hz, 2H), 1.38 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 141.8, 133.7, 131.9, 127.8, 127.6, 127.4, 127.1, 125.8, 125.5, 125.0, 29.7, 29.0, 15.5. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₂H₁₃D 159.1153. Found: 159.1155.

5. References

- [1] (a) H. Wang, Z. Wang, G. Zhao, V. Ramadoss, L. Tian, Y. Wang, *Org. Lett.* 2022, 24, 3668-3673;
 (b) B. Xiong, G. Wang, C. Zhou, Y. Liu, P. Zhang, K. Tang, *J. Org. Chem.* 2018, 83, 993-999.
- [2] Q.-Y. Meng, T. E. Schirmer, A. L. Berger, K. Donabauer, B. König, J. Am. Chem. Soc. 2019, 141, 11393-11397.
- [3] Q.-Y. Meng, S. Wang, G. S. Huff, B. König, J. Am. Chem. Soc. 2018, 140, 3198-3201.
- [4] Z. Huang, Y. Cheng, X. Chen, H.-F. Wang, C.-X. Du, Y. Li, Chem. Commun. 2018, 54, 3967-3970.
- [5] E. Tassano, K. Faber, M. Hall, Adv. Synth. Catal. 2018, 360, 2742-2751.
- [6] M. Juhl, S. L. R. Laursen, Y. Huang, D. U. Nielsen, K. Daasbjerg, T. Skrydstrup, ACS Catal. 2017, 7, 1392-1396.
- [7] J. Vigier, M. Gao, P. Jubault, H. Lebel, T. Besset, Chem. Commun. 2024, 60, 196-199.
- [8] P.-F. Yuan, Z. Yang, S.-S. Zhang, C.-M. Zhu, X.-L. Yang, Q.-Y. Meng, Angew. Chem. Int. Ed. 2024, 63, e202313030.
- [9] D. H. Gibson, Chem. Rev. 1996, 96, 2063-2096.
- [10] H. Seo, A. Liu, T. F. Jamison, J. Am. Chem. Soc. 2017, 139, 13969-13972.
- [11] S.-S. Yan, L. Zhu, J.-H. Ye, Z. Zhang, H. Huang, H. Zeng, C.-J. Li, Y. Lan, D.-G. Yu, Chem. Sci. 2018, 9, 4873-4878.
- [12] J.-S. Zhong, Z.-X. Yang, C.-L. Ding, Y.-F. Huang, Y. Zhao, H. Yan, K.-Y. Ye, J. Org. Chem. 2021, 86, 16162-16170.
- [13] Z.-W. Liu, B.-H. Han, Curr. Opin. Green Sustain. Chem. 2019, 16, 20-25.
- [14] Y. Zhang, J. Qian, M. Wang, Y. Huang, P. Hu, Org. Lett. 2022, 24, 5972-5976.

6. NMR Spectra of Products

fl (ppm)

S32

¹⁹F NMR of compound 7

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -2 fl (ppm)

¹⁹F NMR of compound **10**

110 100 f1 (ppm)

7.3318 7.3289 7.3286 7.3197 7.3110 7.3120 7.3220 7.3020 7.2851 7.2851 7.2851 7.2775	4.1404 4.11224 4.1181 4.1181 4.0939 4.0868 4.0868 4.0803 3.1482 3.1482 3.1482 3.1392 3.1392 3.1392 3.1392 3.1392 3.12837 2.6972 2.6837 2.6612	1.2157 1.1979 1.1799
		512

 ^1H NMR (400 MHz, CDCl_3) of compound 15

S46

S48

S50

S56

S57

110 100 f1 (ppm)

S60

100 90 fl (ppm)

S63

S65

¹H NMR (400 MHz, CDCl₃) of compound 42 ⁸⁰¹⁵¹ ⁸⁰¹⁵² ⁸⁰

^{13}C NMR (151 MHz, CDCl₃) of compound **42**

|--|

- 18.4451

-174.2939

¹³C NMR (151 MHz, CDCl₃) of compound 43

- 174.2780 - 169.8365

- 18.3697 - 14.0307

110 100 f1 (ppm) (

