## Supplementary Materials of

## Green solid-state synthesis of Cu<sub>4</sub>O<sub>3</sub>/biochar composites with high antimicrobial activity

Ke Sun<sup>a</sup>, Wenyi Yang<sup>b</sup>, Yiheng Shen<sup>a</sup>, Zihan Wang<sup>a</sup>, Yindian Wang<sup>c</sup>, Hongxia Chen<sup>b, \*</sup>, and Yi Liu<sup>a, \*</sup>

<sup>a</sup> Materials Genome Institute, Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials, Shanghai University, Shanghai 200444, China
 \* Corresponding author
 E-mail address: yiliu@shu.edu.cn (Y. Liu)

<sup>b</sup> School of Life Sciences, Shanghai University, Shanghai, 200444, China

\* Corresponding author

*E-mail address*: hxchen@shu.edu.cn (H. Chen)

° School of Medicine, Shanghai University, Shanghai, 200444, China



Figure S1. SEM images of copper formate. (a) untreated sample, (b) after the BM-1 process.



Figure S2. SEM images of (a) CSBC and (b-d) the copper formate/CSBC precursor.

**Table S1.** The mass ratio of Cu and  $Cu_4O_3$  in the  $Cu_4O_3/CSBC$  composite. The results were determined by ICP-OES. The mass ratio of  $Cu_4O_3$  was calculated according to the mass ratio of Cu element (84.1 %) relative to  $Cu_4O_3$ .

| Sample                                         | Cu atomic mass ratio | Cu <sub>4</sub> O <sub>3</sub> mass ratio |  |
|------------------------------------------------|----------------------|-------------------------------------------|--|
|                                                | (wt.%)               | (wt.%)                                    |  |
| Cu <sub>4</sub> O <sub>3</sub> /CSBC composite | 12.87                | 15.30                                     |  |



**Figure S3.** XRD spectra of the sintered product of copper formate/CSBC precursor after the solid-state sintering process at different sintering temperature. (a) sintering at 220 °C for 12 min; (b) sintering at 240 °C for 12 min.



**Figure S4.** XRD spectra of the sintered products for the CSBC supporting capacity experiments on  $Cu_4O_3$ . (a) support amount of 10 wt.% for  $Cu_4O_3$ ; (b) support amount of 20 wt.% for  $Cu_4O_3$ .

| Table S2. Optimal processing parameters for preparing Cu <sub>4</sub> O <sub>3</sub> /biochar composites from various |
|-----------------------------------------------------------------------------------------------------------------------|
| resources: PLBC, CWBC, and BBC.                                                                                       |

| comple                                         | biomass     | pyrolysis temperature | Cu <sub>4</sub> O <sub>3</sub> mass ratio |
|------------------------------------------------|-------------|-----------------------|-------------------------------------------|
| sample                                         | resource    | of biochar (°C)       | (wt.%)                                    |
| Cu <sub>4</sub> O <sub>3</sub> /PLBC composite | palm leaves | 300                   | 15                                        |
| Cu <sub>4</sub> O <sub>3</sub> /CWBC composite | cedar wood  | 300                   | 10                                        |
| Cu <sub>4</sub> O <sub>3</sub> /BBC composite  | bagasse     | 400                   | 15                                        |

|                                                   |              | process                      |                                  |  |  |
|---------------------------------------------------|--------------|------------------------------|----------------------------------|--|--|
| sample                                            | BM-2         | removal of copper<br>formate | solid-state sintering<br>process |  |  |
| CSBC                                              | ×            | ×                            | ×                                |  |  |
| BM-CSBC                                           |              | $\checkmark$                 | ×                                |  |  |
| BM-S-CSBC                                         |              | $\checkmark$                 | $\checkmark$                     |  |  |
| Cu <sub>4</sub> O <sub>3</sub> /CSBC<br>composite | $\checkmark$ | ×                            | $\checkmark$                     |  |  |

**Table S3.** Processing variables of the controlled experiments, where " $\sqrt{}$ " indicates that the sample underwent the treatment and "×" indicates that the sample did not undergo the treatment.

| sample                                         |         | MIC (µg/mL) |       |
|------------------------------------------------|---------|-------------|-------|
|                                                | E. coli | S. aureus   | MRSA  |
| Cu <sub>4</sub> O <sub>3</sub> /CSBC composite | 5       | 0.1         | 0.125 |

**Table S4.** MIC values of the Cu<sub>4</sub>O<sub>3</sub>/CSBC composite against *E. coli*, *S. aureus*, and *MRSA*, respectively.



**Figure S5.** Release rate of Cu ions for the  $Cu_4O_3/CSBC$  composite during the 48-hour immersion experiment. The data were analyzed based on the differences in the cumulative release of Cu ions during each test period.



**Figure S6.** Standard curve between the absorbance of BCS at 483 nm and the concentrations of Cu ions. The linear regression equation was obtained from the standard curve as follows,  $A_{483} = 0.18796 c + 0.05021$ 

where  $A_{483}$  is the absorbance at 483 nm, and c is the concentration of Cu ions.

## **Experimental procedure:**

Hydroxylamine hydrochloride (20 mg) was added to six portions of the standard solution of CuSO<sub>4</sub> (1 mM) to completely reduce Cu<sup>2+</sup> to Cu<sup>+</sup>. Then the solution was diluted to 0.5, 1, 2, 3, 4, and 5 ppm of Cu ion concentrations with phosphate buffer solution and water, respectively. 100  $\mu$ L of BCS solution (5 mM) was added to each solution, and kept for 10 min after shaking. The absorbance of the samples was then detected by UV-vis spectroscopy in the wavelength range of  $\lambda = 190-700$  nm.



**Figure S7.** Cumulative release of Cu(I) and Cu(II) ions for the  $Cu_4O_3/CSBC$  composite during the 48-hour immersion experiment. The data were obtained as follows,

$$C_{Cu(II)} = C_{Cu} - C_{Cu(I)}$$

where  $C_{\text{Cu(II)}}$  is the cumulative release of Cu(II) ions,  $C_{\text{Cu}}$  is the cumulative release of Cu ions obtained from the ICP-OES test, and  $C_{\text{Cu(I)}}$  is the cumulative release of Cu(I) ions obtained from the linear regression equation:  $A_{483} = 0.18796 c + 0.05021$ .

**Table S5.** Vacancy formation energy of Cu ions on the  $Cu_4O_3$  (101) surface.

| Sites                           | Cu-I    | Cu-II-a | Cu-II-b |
|---------------------------------|---------|---------|---------|
| $E_{\text{defected slab}}$ (eV) | -299.67 | -298.25 | -298.80 |
| $E_{\rm vacancy} ({\rm eV})$    | 1.69    | 3.10    | 2.55    |

The vacancy formation energy is calculated by the equation as follows,

 $E_{\text{vacancy}} = E_{\text{defected slab}} + E_{\text{FCC}_{\text{C}}} - E_{\text{perfect slab}}$ where  $E_{\text{vacancy}}$  is the vacancy formation energy;  $E_{\text{defected slab}}$  is the total energy of surface model with a vacancy,  $E_{\text{FCC}_{\text{C}}}$  is the total energy of FCC Cu, -1.63 eV/atom, and  $E_{\text{perfect}_{\text{slab}}}$  is the total energy of (101) surface model, -302.98 eV.

| sites                                         | Cu-I    | Cu-II   |
|-----------------------------------------------|---------|---------|
| $E_{\text{defected slab}} (\text{eV})$        | -291.53 | -289.29 |
| $E_{\text{vacancy}} \left( \text{eV} \right)$ | 1.83    | 4.07    |

**Table S6.** Vacancy formation energy of Cu ions on the  $Cu_4O_3$  (100) surface.

The vacancy formation energy is calculated by the equation as follows,

 $E_{\text{vacancy}} = E_{\text{defected slab}} + E_{\text{FCC_Cu}} - E_{\text{perfect slab}}$ 

where  $E_{\text{vacancy}}$  is the vacancy formation energy;  $E_{\text{defected slab}}$  is the total energy of surface model with vacancies,  $E_{\text{FCC}\_\text{Cu}}$  is the energy of FCC Cu, -1.63 eV/atom, and  $E_{\text{perfect}\_\text{slab}}$  is the total energy of (100) surface model, -294.99 eV.

| Immersion time                                | 0 h  | 6 h  | 12 h | 24 h | 48 h |
|-----------------------------------------------|------|------|------|------|------|
| I <sub>d(202)</sub> /I <sub>d(CSBC)</sub> (%) | 1.28 | 1.18 | 1.04 | 0.91 | 0.88 |

**Table S7.** Intensity ratio of the (202) of  $Cu_4O_3$  and CSBC based on the XRD spectra of the  $Cu_4O_3/CSBC$  composite during a 48-hour immersion experiment.