Electronic Supplementary Information

Unidirectional Competitive Redox enabled Unsegmented Natural Seawater Splitting for Green Hydrogen Production

Hemanga Pradhan,[‡] Ritwik Mondal,[‡] Bhojkumar Nayak,[‡] Ravikumar Thimmappa, Rahul Mahadeo Mendhe, Musthafa Ottakam Thotiyl^{*}

Department of Chemistry, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pune, 411008, India

*Correspondence: <u>musthafa@iiserpune.ac.in</u>

[‡]These authors contributed equally.

Fig. S1. Cyclic voltammogram demonstrating chlorine evolution reaction (CER) and chloride reduction reaction (CRR) occurring on a Pt electrode in argon-purged 0.6 M NaCl electrolyte at a scan rate of 20 mV/s.

Fig. S2. Tafel plots for ascorbic acid oxidation with various electrocatalysts (extracted from Fig. 1c).

Fig. S3. ¹H NMR spectra of the electrolyte after electrolysis.

Fig. S4. Cyclic voltammograms of a hydrogen oxidation reaction in carbon electrode with and without purging H₂ in the electrolyte.

Fig. S5. Chronopotentiometry plots at 150 mA/cm² for the membraneless saline water electrolyzer, with and without AA in 0.6 M NaCl electrolyte. The anodic electrode is Ketjen black carbon (2 mg/cm²), and the cathodic electrocatalyst is based on Pt/C (0.5 mg/cm²).

Fig. S6. (a) Rate capability study and (b) corresponding in-situ electrochemical mass spectra for membraneless saline water electrolyzer, with AA in 0.6 M NaCl electrolyte. The anodic electrode is Ketjen black carbon (2 mg/cm²), and the cathodic electrocatalyst is based on Pt/C (0.5 mg/cm²).

Calculation S1: Faradaic efficiency

For 100 mA/cm² : (Fig. S6a, purple trace)

Total charge passed for 1 h = 0.1 * 3600 = 360 C= 360/96485 = 0.00373 mol = 3.73 mmolFor the evolution of one H₂ molecule, it requires 2 electrons So, the theoretical amount of H₂ evolved = 3.73/2 = 1.865 mmolAt room temperature (298K), 1 mole of H₂ gas is equivalent to 24.45 L of H₂ Therefore, the theoretical amount of H₂ gas evolved = (24.45* 1.865) mL = 45.599 mLFrom the experiment, the amount of H₂ evolved = 43 mLFaradaic efficiency = (43/45.599) * 100 = 94.30 %

For 150 mA/cm² : (Fig. S6a, brown trace)

Total charge passed for 1 h = 0.15 *3600 = 540 C = 540/96485 = 0.00559 mol = 5.59 mmol

For the evolution of one H2 molecule, it requires 2 electronsSo, the theoretical amount of H2 evolved= 5.59/2 = 2.798 mmolAt room temperature (298K), 1 mole of H2 gas is equivalent to 24.45 L of H2Therefore, the theoretical amount of H2 gas evolved= (24.45* 2.798) mL = 68.419 mLFrom the experiment, the amount of H2 evolved= 63.5 mLFaradaic efficiency= (63.5/68.419) * 100 = 92.82 %

For 200 mA/cm² : (Fig. S6a, blue trace)

Total charge passed for 1 h = 0.2 * 3600 = 720 C

= 720/96485 = 0.00746 mol = 7.46 mmol

For the evolution of one H₂ molecule, it requires 2 electrons

So, the theoretical amount of H_2 evolved= 7.46/2 = 3.73 mmolAt room temperature (298K), 1 mole of H_2 gas is equivalent to 24.45 L of H_2 Therefore, the theoretical amount of H_2 gas evolved= (24.45* 3.73) mL = 91.198 mLFrom the experiment, the amount of H_2 evolved= 84 mLFaradaic efficiency= (84/91.198) * 100 = 92.11 %

Calculation S2: Total energy saved

Total energy saved = (energy required for HER||CER) – (energy required for HER||AAOR), which is equivalent to the shaded area between the chronopotentiometry traces in Fig. 4b.

= (96.6979 - 34.6601) V.h = 62.0378 V.hEnergy saved = Shaded area * Current $= 62.0378 * 150 * 10^{-3*} 3600 V.A.s$ = 33,500 J = 33.5 kJTotal moles of AA consumed = 0.0849 molThe amount of energy saved per mole $= 33.5/0.0849 kJ mol^{-1}$ $= 394.6 kJ mol^{-1}$ Energy savings in percentage = Energy saved / Energy required for HER||CER = 64.16 %

Fig. S7. Full range ¹H NMR spectra of the electrolyte before electrolysis

Fig. S8. Zoomed view of ¹H NMR spectra of the electrolyte before electrolysis.

Fig. S9. Full range ¹H NMR spectra of the electrolyte after electrolysis.

Fig. S10. Zoomed view of ¹H NMR spectra of the electrolyte after electrolysis.

Fig. S11. (a) UV-Vis absorption spectra for ascorbic acid with various concentrations. (b) Linear fit between absorbance and concentration of ascorbic acid (AA).

Calculation S3: Charge balance

The initial concentration of AA	= 1 M				
om the calibration plot (Fig. S11b), the slope = 9.404					
For UV visible spectra, we diluted the solution 4000 times					
After 30h, the absorbance of AA	= 0.355				
The concentration after 30 h	= 0.355/9.404 = 0.0377*4000				
	= 150.999 mM				
Volume	= 100 mL				
Amount of AA after 30 h	= 15.099 mmol				
So, the number of moles of AA consumed during 30 h = 100 – 15.099 = 84.901 mmol					
	= 0.0849 mol				
The charge passed at a constant current of 150 mA for 30 h = 0.15 * 3600 * 30					
	= 16200 C				
	= 0.1674 mol				

Fig. S12. In situ electrochemical mass spectrum for O_2 and Cl_2 detection during the constant current test at 50 mA/cm² for hydrogen production in an undivided cell.

Fig. S13. ¹H NMR spectra of the electrolyte after long-term electrolysis.

Fig. S14. (a) XRD pattern for MoS₂ corresponds to JCPDS: 00-037-1492. (b) TEM image and (c) EDX spectrum and the corresponding elemental mapping images for Mo and S in MoS₂.

Fig. S15. (a) Linear sweep voltammograms for Pt and MoS_2 electrocatalysts at a scan rate of 20 mV/s in the presence of dissolved oxygen.

Fig. S16. MP-AES elemental analysis of natural seawater obtained from the Bay of Bengal (Chennai coastal area, India).

Calculation S4: Hydrogen quantification (from Fig. 6f)

At a constant current of 50 mA/cm²

For 1 h

Total charge passed for 1 h = 0.05 *3600 = 180 C

= 180/96485 = 0.001865 mol = 1.865 mmol

For the evolution of one H₂ molecule, it requires 2 electrons

So, the theoretical amount of H_2 evolved = 1.865/2 = 0.932 mmol

At room temperature (298K), 1 mole of H_2 gas is equivalent to 24.45 L of H_2

Therefore, the theoretical amount of H_2 gas evolved= (24.45* 0.932) mL = 22.787 mLFrom the experiment, the amount of H_2 evolved= 22 mLFaradaic efficiency= (22/22.787) * 100 = 96.54 %

For 2 h

Total charge passed for 2 h = 0.05 *7200 = 360 C

= 360/96485 = 0.00373 mol = 3.73 mmol

For the evolution of one H2 molecule, it requires 2 electronsSo, the theoretical amount of H2 evolved= 3.73/2 = 1.865 mmolAt room temperature (298K), 1 mole of H2 gas is equivalent to 24.45 L of H2Therefore, the theoretical amount of H2 gas evolved= (24.45* 1.865) mL = 45.599 mLFrom the experiment, the amount of H2 evolved= 43.5 mLFaradaic efficiency= (43.5/45.599) * 100 = 95.40 %

For 3 h

Total charge passed for 3 h = 0.05 *10800 = 540 C

= 540/96485 = 0.005596 mol = 5.596 mmol

For the evolution of one H2 molecule, it requires 2 electronsSo, the theoretical amount of H2 evolved= 5.596/2 = 2.798 mmolAt room temperature (298K), 1 mole of H2 gas is equivalent to 24.45 L of H2Therefore, the theoretical amount of H2 gas evolved= (24.45* 2.798) mL = 68.42 mLFrom the experiment, the amount of H2 evolved= 65 mLFaradaic efficiency= (65/68.42)* 100 = 95.00%

Fig. S17. TEM images of (a) cathode electrocatalyst-before electrolysis, (b) anode electrocatalystbefore electrolysis, (c) cathode electrocatalyst-after electrolysis, and (d) anode electrocatalystafter electrolysis.

Fig. S18. SEM images of (a) cathode electrocatalyst-before electrolysis, (b) anode electrocatalystbefore electrolysis, (c) cathode electrocatalyst-after electrolysis, and (d) anode electrocatalystafter electrolysis.

Fig. S19. (a) SEM image of MoS₂ electrode after long-term electrolysis with (b) the elemental mapping images for different ions. (c) EDX spectrum and (d) elemental composition table (Fluorine in the table is derived from the Nafion binder).

Fig. S20. XRD spectra of (a) Anode (carbon) electrocatalyst before and after electrolysis, (b) Cathode (MoS₂) electrocatalyst before and after electrolysis.

Fig. S21. Comparisons of energy consumption, with and without ascorbic acid (Corresponds to Fig. 4a).

Calculation S5: Energy consumption (from Fig. 4a)

With Ascorbic acid

The required voltage to maintain a current of 100 mA/cm² = 0.9 V

Energy consumption = 0.9 * 0.1* 1 Wh = 0.09 Wh Amount of H₂ production = 43 mL Energy consumption = $0.09/43*10^{-6}$ Wh.m⁻³ = 2.09 kWh m⁻³

Without Ascorbic acid

The required voltage to maintain a current density of 100 mA/cm² = 2.45 V Energy consumption = 2.45 * 0.1* 1 Wh = 0.245 Wh Amount of H₂ production = 43 mL Energy consumption = 0.245/43*10⁻⁶ Wh.m⁻³ = 5.7 kWh m⁻³ Total energy saved during electrolysis = (5.7 - 2.09) kWh m⁻³ = 3.61 kWh m⁻³ **Table S1:** Comparison of unsegmented natural seawater electrolyzer system with previouslyreported water splitting systems.

Serial no.	Anodic Reaction	Electrolyte	Cell voltage at 100 mA/cm ² (V)	Energy consumption (kWh/m ³ H ₂)	Reference
1	Ascorbic acid oxidation	Ascorbic acid + Seawater (+, –)	0.90	2.09	This work
2	Oxygen evolution reaction	Seawater (+, –)	2.45	5.7	This work
3	Sulphur Oxidation reaction	1.0 M NaOH + 2.0 M Na2S (+) H2O 2.5 M H2SO4 (-)	1.32	3.16	Angew. Chemie Int. Ed., 2021, 60 , 21550– 21557
4	Hydrazine oxidation reaction	1.0 M KOH + 0.1.0 M N ₂ H ₄ (+, –)	0.61	1.46	<i>Sci. Adv.,</i> 2020, 6 , eabb4197
5	Methanol Oxidation reaction	2.0 M MeOH + 1.0 M NaOH + 3.5% NaCl (+, –)	1.08	2.58	J. Mater. Chem. A, 2021, 9 , 6316–6324
6	Urea Oxidation reaction	1.0 M KOH+ 0.5 M urea (+, –)	1.395	3.34	Carbon Energy, 2023, 5 , 1–13
7	Glucose oxidation Reaction	1.0 M KOH + 0.5 M glucose (+) 1.0 M KOH (–)	1.39	3.33	Nat. Commun., 2020, 11 , 1–11
8	HMF oxidation reaction	1.0 M KOH + 1.0 M HMF (+) 1.0 M KOH (–)	1.70	4.07	Adv. Mater., 2020, 32 , 1–10
9	Benzyl alcohol Oxidation Reaction	1.0 M KOH + 0.5 M benzyl alcohol (+) 1.0 M KOH (–)	1.82	4.37	Adv. Funct. Mater., 2017, 27 , 1–11
10	Oxygen Evolution Reaction	1.0 M KOH seawater	1.8	4.31	Adv. Funct. Mater., 2021, 31 , 1–12