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Tables

Table S1. Experimental campaign and detailed GC characterization of the light 
fraction

LTT (wt%)
Run

Temp. 
Reboil
er (ºC)

RR Benzen
e

Toluen
e

Ethyl-
benzene

p+m-
Xylen
e

Styrene + 
o-Xylene BTEX Limonen

e

1 190 --- 19.51 47.65 3.18 8.33 1.47 80.14 0.01
2 210 --- 14.35 40.19 6.31 18.16 4.22 83.20 0.05
3 230 --- 11.98 34.15 6.49 20.29 5.68 78.60 0.12
4 250 --- 9.71 28.52 5.95 18.57 5.47 68.20 0.26
5 270 --- 8.95 26.23 5.47 17.37 5.21 63.20 0.23
6 190 1.5 --- --- --- --- --- --- ---
7 210 1.5 14.25 41.33 6.75 19 4.19 85.50 0.02
8 230 1.5 11.73 33.53 6.71 20.66 5.49 78.10 0.03
9 250 1.5 10.18 29.11 5.91 18.52 5.13 68.90 0.09
10 270 1.5 10.59 29.95 5.85 18.77 5.23 70.40 0.08

Table S2. Experimental campaign and detailed GC characterization of the heavy 
fraction

HTT (wt%)
Run

Temp. 
Reboil
er
(ºC)

RR Benzen
e

Toluen
e

Ethyl-
benzene

p+m-
Xylen
e

Styrene + 
o-Xylene BTEX Limonen

e

1 190 --- 0.64 1.89 3.22 9.42 3.09 18.26 0.19
2 210 --- 0.63 1.53 0.99 5.48 2.74 11.37 0.51
3 230 --- 0.44 1.27 1.34 1.55 0.93 5.53 0.44
4 250 --- 0.27 1.28 0.52 1.78 0.64 4.49 0.12
5 270 --- 0.04 0.20 0.10 0.39 0.16 0.89 0.08
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6 190 1.5 --- --- --- --- --- --- ---
7 210 1.5 0.21 1.52 1.24 2.74 1.88 7.59 0.19
8 230 1.5 0.44 2.11 0.82 2.48 1.05 6.90 0.19
9 250 1.5 0.54 2.49 0.83 1.87 0.94 6.67 0.19
10 270 1.5 0.38 1.13 0.27 0.93 0.29 3.0 0.08



Tale S3. BTEX concentrations reported in the literature from the pyrolysis of ELTs

Type of 
waste 
tire

Pyrolysis conditions Catalyst Pyrolysis yields BTEX in the TPO Ref

Truck 
tires

Reactor: Fixed-bed. Sample: 300g. 
Temperature: 800 ºC. Heating rate: 15-
25 ºC/min

No catalyst TPO: 44.7 wt%; TPG: 
16.8 wt%; RRCB: 38.52 
wt%

Aromatics: 65.4 wt% RS1

Passenge
r car tires

Reactor: Py-GC/MS. Sample: ~10 g. 
Temperature: 400-500 ºC

No catalyst Yields predicted by 
mathematical models

Optimum pyrolytic condition for yield of 
BTX (26.5 g per 100 g tire rubber)

RS2

From a 
recycling 
plant

Reactor: Self-designed optical 
precision heat control device. Sample: 
0.40 g. Temperature: 425 - 575 °C. 
Heating rates: 60 - 6000 °C/min

No catalytic TPO yields in the range of 
55-57 wt%

Up to 41.5 area% with high heating 
rates

RS3

Passenge
r cars

Reactor: Fixed bed. Temperature: 500 
°C. Heating rate: 10 °C/min. Gas 
residence time: 30 s approx.) 

ZSM-5 (si/Al 40). 
Y-Zeolite (CBV-
400). Y-Zeolite 
(CBV-780. 
Catalyst/feed 
ratio: 0-1.5

TPO yields in the range of 
32-33 wt%. Catalyst 
presence reduces TPO 
yield. Increasing 
catalyst/tire feed ratio 
decreases TPO yield 
further and increases gas 
and coke formation.

Toluene reached a maximum value in 
the oil of 24 wt.%, benzene 5 wt.%, 
m/p-xylenes 20 wt.% and o-xylene 7 
wt.%. (Total= 56wt%)

RS4

Origin not 
provided

Reactor: Fixed-bed. Sample: 1g. 
Temperature: 400-600 ºC

Fe2O3, CuO, 
CaO. Addition 
ratios: 5, 10, and 
15 % of metal 
oxide

TPO: 48-50 wt% ; TPG: 9-
12 wt%; RRCB: 39-40 
wt%

Fe2O3 promotes cyclization and 
dehydrogenation to produce 
monoaromatics (57.4% relative area)

RS5

Sidewall 
rubber of 
automotiv
e vehicle 
scrap 
tires

Reactor: Continuous stirred batch. 
Sample: 150g of scrap tires. 
Temperature: 430-500 °C. Heating 
rate: 15 °C/min

ZSM-5, USY, β, 
SAPO-11, and 
ZSM-22. The 
catalytic pyrolysis 
was performed 
using 1.0 wt% (on 
a scrap tire weight 
basis)

HZSM-5: TPO: 55.65 
wt%; TPG: 6.49 wt%; 
RRCB: 37.86 wt%. USY: 
TPO: 53.49 wt%; TPG: 
9.97 wt%; RRCB: 36.54 
wt%. β zeolite: TPO: 54 
wt%; TPG: 8.24 wt%; 
RRCB: 37.76 wt%

HZSM-5: MAHs: 45.8 wt% (PAHs: 4.3 
wt%). USY: MAHs: 45.4 wt% (PAHs: 
3.4 wt%). β zeolite: MAHs: 46.7 wt% 
(PAHs: 3.3 wt%)

RS6

Origin not Reactor: Fixed bed. Sample: 30 g. Zeolites: KL, TPO: 42-43 wt%; TPG: MAHs = 44-45 wt% RS7



Type of 
waste 
tire

Pyrolysis conditions Catalyst Pyrolysis yields BTEX in the TPO Ref

provided Temperature: 500 ºC. Heating rate: 10 
ºC/min

HMOR, HBeta, 
HZSM-5, and HY

11-13 wt%; RRCB: 41-43 
wt%

Small 
domestic 
cars

Initial Evaluation:
Reactor: Pyroprobe coupled with 
GC/MS. Sample: 0.60 mg. 
Temperature: 500-800 °C. Residence 
time: 5-30 s. Atmospheres: He, CH4, 
H2, N2, O2
Catalytic Pyrolysis:
Reactor: fixed-bed. Sample: 3g. 
Temperature: 750 °C. Heating rate: 
500 °C/s. Carrier Gas: CH4. 
Residence time: 30 s

Different zeolite 
catalysts. The 
catalysts were 
loaded in a quartz 
tube by mixing 
with the raw 
materials at 10 wt. 
%.

The yields of pyrolysis 
products are not shown. 

Non-catalytic: 40.91 % MAHs were 
obtained at 500 °C/s and 750 °C in 
helium atmosphere.
Catalytic: The Hβ catalyst is conducive 
to the formation of MAHs (up to 53.09 
area %). The MCM-41Q catalyst is 
beneficial to the formation of BTEX 
(22.35 area %), as the content of 
MAHs was 46.09 area%

RS8

Origin not 
provided.

Reactor: Py-GC/MS. Sample: 1 mg. 
Temperature: 400-450 ºC. Heating 
rate: 2000 °C/s

Noble metals (Pd, 
Pt, Au) supported 
on titanate 
nanotubes (NT-
Ti). The catalysts 
to feedstocks 
mass ratio was 
held at 1:4

The yields of pyrolysis 
products are not shown

The BTX production was enhanced by 
the presence of catalysts with a 
selectivity order as follows Pd > Pt ≈ 
Au > support > non-catalys. Values up 
to 50 area % of Monoaromatics

RS9

Origin not 
provided

Reactor: Two-staged pyrolysis–
catalysis (fixed bed reactor). Sample: 
10g. Temperature: 500 °C

Y-type (USY) 
zeolite. 
Catalyst/tire ratios 
of 0.25, 0.5, 0.75 
and 1.0

Non-catalytic: 
TPO: 45.9 wt%; TPG: 
16.5 wt%; RRCB: 37.59 
wt%.
TPO yield decreased as 
increasing the catalyst/tire 
ratio. Values lower than 
30 wt%

Values up to 63 wt% of BTEX 
(catalyst/tire ratio of 0.5)

RS1
0

Origin not 
provided

Reactor: CDS 5200 Pyroprobe coupled 
to GC/MS. Sample: 10g. Temperature: 
350, 400, and 450 °C

(Pd, Ni or 
Co)/SiO2. Metal 
catalysts based 
on Ni, Co, and Pd 

The yields of pyrolysis 
products are not shown 

BTX: Pd (30.1 %) > Ni (22.2 %) > Co 
(10.2 %) > non-catalyzed (8.8 %)

RS1
1



Type of 
waste 
tire

Pyrolysis conditions Catalyst Pyrolysis yields BTEX in the TPO Ref

supported on 
SiO2). Catalyst-to-
tire ratio of 8:1

Truck tire Reactor: Quartz Tube. Sample: 2 g. 
Temperature: 500 ºC

Metal-modified 
USY (Fe, Co, Ni, 
Cu, Zn). 2 g of 
waste tire and 
0.4 g catalyst

TPO yield decreased from 
42 to 34 wt%, 
approximately.

The highest relative content of 
monoaromatics reached 63.70 relative 
area % over 1%Cu/USY (42.92 mg/g)

RS1
2

Origin not 
provided

Reactor: Tandem micro pyrolyzer (Rx-
3050 TR) coupled with GC/MS. 
Sample: 1 mg. Temperature: 400-600 
ºC. Investigations: Zinc content and 
catalytic temperature.

RRCB and Zinc 
loaded RRCB 
was used as 
catalyst. Catalyst-
to-tire ratio (5:1, 
10:1, 15:1, 20:1, 
25:1, and 30:1)

The yields of pyrolysis 
products are not shown 

BTEX yield which was 2.4 times higher 
than that from uncatalyzed case. The 
optimal TPO products were obtained at 
600 °C with catalyst-to-tire ratio of 20. 
The relative content of BTEX reached 
54.70%

RS1
3



Table S4. Elemental and calorific analyses of the resulting heavy fraction

Elemental composition, as 
received (wt%)Run

Temp. 
Reboile
r (ºC)

RR
C H N S

HCV 
(MJ/kg)

1 190 No 89.0 8.6 1.3 1.1 40.1
2 210 No 89.0 8.6 1.1 1.0 39.5
3 230 No 89.2 8.2 0.6 0.8 39.2
4 250 No 89.7 8.1 1.0 1.0 39.3
5 270 No 89.0 8.0 1.3 1.1 40.1
6 190 1.5 --- --- --- ---
7 210 1.5 89.1 8.2 1.5 1.0 39.3
8 230 1.5 89.4 8.1 0.8 0.9 41.1
9 250 1.5 89.1 8.0 1.4 1.0 41.4
10 270 1.5 89.2 8.0 1.2 0.8 39.8

Table S5. GC/MS results of the resulting heavy fraction

BTEX
Substitute
d 
Benzenes

Indanes, 
indenes

Heterocyc
lic 
compoun
ds

PAH Others
Ru
n

Temp. 
Reboil
er (ºC)

R
R

RA 
(%)

RS
D 
(%)

RA 
(%)

RS
D 
(%)

RA 
(%)

RSD 
(%)

RA 
(%)

RS
D 
(%) 

RA 
(%)

RS
D 
(%) 

RA 
(%)

RS
D 
(%) 

Total

1 190 N
o 40.2 2.0 36.0 1.0 1.5 4.5 1.7 3.2 19.2 1.4 1.3 3.5 100.0

2 210 N
o 32.4 2.5 40.3 1.2 1.7 1.7 1.9 1.5 22.2 1.2 1.6 1.2 100.0

3 230 N
o 29.6 1.4 46.8 0.1 2.0 2.3 1.7 2.8 18.1 1.4 1.7 0.4 100.0

4 250 N
o 9.1 1.4 27.6 0.1 3.9 2.0 4.7 0.8 52.9 0.3 1.7 0.7 100.0

5 270 N
o 3.0 3.0 21.0 2.9 2.8 3.2 5.2 6.1 65.6 1.5 2.3 2.2 100.0

6 190 1.
5 --- --- --- --- --- --- --- --- --- --- --- --- ---

7 210 1.
5 19.7 0.3 39.7 0.3 2.3 0.7 2.7 9.8 33.8 0.5 1.8 1.9 100.0

8 230 1.
5 17.2 0.5 42.5 0.0 2.4 0.3 2.9 1.2 33.0 0.3 2.0 0.4 100.0

9 250 1.
5 16.3 0.5 38.8 0.8 2.9 1.1 3.1 2.3 37.0 0.8 2.0 1.3 100.0

10 270 1.
5 9.7 1.4 26.0 0.5 2.4 2.5 4.0 0.0 55.6 0.4 2.2 0.2 100.0
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190 ºC, No reflux

Fig. S1. Steady-state temperature profile of the column (run # 1) 
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Fig. S2. Steady-state temperature profile of the column (runs 2 and 7)
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Fig. S3. Steady-state temperature profile of the column (runs 3 and 8)
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Fig. S4. Steady-state temperature profile of the column (runs 4 and 9)
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Fig. S5. Steady-state temperature profile of the column (runs 5 and 10)
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