Supporting Information

Copper-catalyzed 1,2-dioxygenation of 1,3-dienes with tert-butyl

benzoperoxoate at room temperature

Pu Chen,^a Lin Tian,^a Lindong Xiao,^a Xiaochen Ji,^a Guo-Jun Deng,^{a,b} and Huawen Huang^{a,*}

 ^a Key a Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Hunan, Xiangtan 411105, China.
^b School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China.

E-mail: hwhuang@xtu.edu.cn.

Table of Contents

1. General information	S1
2. General procedure for the synthesis of 1,3-dienes (1)	S2
3. General procedure for the synthesis of peroxides (2)	S4
4. General procedures for the synthesis of 3 or 4	S4
5. Optimization of reaction conditions.	
5.1 Optimization of the reaction conditions for the synthesis of 3a	S5
5.2 Optimization of the reaction conditions for the synthesis of (<i>R</i>)-3a	S6
6. Mechanistic investigations	S7
6.1 Free radical trapping experiments	
6.2 Reaction with allyl benzene and naphthalene ethylene	S11
6.3 Z/E configuration control experiment	S13
7. Metrics calculations	S16
8. Characterization data of products	S16
9. References	S31
10. NMR Spectra	S32
11. HPLC trace	

1. General information

Reactions via general procedure were carried out under an air atmosphere unless otherwise noted. Column chromatography was performed using silica gel (200-300 mesh). ¹H NMR, ¹³C NMR and ³¹P NMR spectra were recorded on Bruker-AV (400, 100, 162 MHz, respectively) instrument using CDCl₃ or Dimethyl Sulfoxide-d₆ as solvent, Chemical shifts are given in ppm and coupling constants in 400Hz. Chemical shift values are reported in δ (ppm) relative to CDCl₃ (¹H NMR, δ = 7.26; ¹³C NMR, δ = 77.00), respectively. In order to indicate the signal multiplicity, the following abbreviations were used: s (singlet), d (doublet), t (triplet), q (quartet) and m (multiplet) as well as combinations of them. Mass spectra were measured on Agilent 5975 GC-MS instrument (EI). High-resolution mass spectra (ESI) were obtained with the Thermo Scientific LTQ Orbitrap XL mass spectrometer. Melting points were measured with a YUHUA X-5 melting point instrument and were uncorrected.

2. General procedure for the synthesis of 1,3-dienes (1)¹⁻⁴

Method A:

ⁿBuLi (6 mmol, 2.5 M in hexane) was added dropwise to a stirred suspension of MePPh₃Br (6 mmol, 1.2 equiv.) in anhydrous THF (30 mL) at 0 °C under a nitrogen atmosphere. The mixture was stirred for 30 min. Then cinnamaldehydes (5 mmol, 1.0 equiv.) was added, and the reaction was kept stirring for 4-8 h with TLC detection. After the complete consumption of cinnamaldehyde, the mixture was poured into saturated aq. NH₄Cl and extracted with EtOAc (30 mL \times 3). The combined organic extracts were dried over anhydrous Na₂SO₄, and then concentrated. The product was purified by column chromatography on silica gel to afford desired 1,3-dienes. **1a**, **1b**, **1g**, **1i**, **1k**, **1m-1o**, **1s-1u** were prepared according to method A.

Method B:

$$\overset{\textcircled{\baselineskip}{\baselineskip}}{\longrightarrow} \overset{\textcircled{\baselineskip}{\baselineskip}}{\longrightarrow} \overset{\overset{\r{\baselineskip}{\baselineskip}}{\longrightarrow}}{\longrightarrow} \overset{\overset{\r{\baselineskip}{\baselineskip}}{\longrightarrow}}{\longrightarrow} \overset{\overset{\r{\baselineskip}{\baselineskip}}{\longrightarrow}}{\longrightarrow} \overset{\r{\baselineskip}{\baselineskip}}{\longrightarrow} \overset{\r{\baselineskip}{\baselineskip}} \overset{\r{\baselineskip}{\baselineskip}} \overset{\r{\baselineskip}{\baselineskip}}}{\longrightarrow} \overset{\r{\baselineskip}{\baselineskip}}}{\longrightarrow} \overset{\r{\baselineskip}{\baselineskip}}}{\longrightarrow} \overset{\r{\baselineskip}{\baselineskip}}} \overset{\r{\baselineskip}{\baselineskip}} \overset{\r{\baselineskip}{\baselineskip}}} \overset{\r{\baselineskip}{\baselineskip}}} \overset{\r{\baselineskip}{\baselineskip}}} \overset{\r{\baselineskip}{\baselineskip}} \overset{\r{\baselineskip}}{\baselineskip}} \overset{\r{\baselineskip}}{\baselineskip}} \overset{\r{\bas$$

nBuLi (6 mmol, 2.5 M in hexane) was added dropwise to a stirred suspension of allylPPh₃Br (6 mmol, 1.2 equiv.) in anhydrous THF (30 mL) at 0 °C under a nitrogen atmosphere. The mixture was stirred for 30 min. Then the aldehyde (5 mmol, 1.0 equiv.) was added, and the reaction was kept stirring for 4-8 h with TLC detection. After the complete consumption of cinnamaldehyde, the mixture was poured into saturated aq. NH₄Cl and extracted with EtOAc (30 mL \times 3). The combined organic extracts were dried over anhydrous Na₂SO₄, and then concentrated. The product was purified by column chromatography on silica gel to afford desired 1,3-dienes. All spectroscopic data are in agreement with the literature. **1c-1f**, **1h**, **1j**, **1l**, **1p-1r**, **1v** were prepared according to method B.

3. General procedure for the synthesis of peroxides $(2)^2$

Method C:

$$Ar \stackrel{O}{\leftarrow} CI + {}^{t}BuOOH \xrightarrow{Et_{3}N (1.5 \text{ equiv})}{DCM, 0 \circ C \text{ to } RT} Ar \stackrel{O}{\leftarrow} O$$

To a solution of TBHP (5 mmol, 5.5 M in decane) in DCM (20 mL) at 0 $^{\circ}$ C was added acyl chloride (5 mmol) dropwise. Then Et₃N (7.5 mmol) was slowly added. After being stirred for 8 h at room temperature, the solution was concentrated on a rotary evaporator under vacuum at 25 $^{\circ}$ C and then purified by flash column chromatography on silica gel to afford the peroxides **2**.

4. General procedures for the synthesis of 3 or 4.

Standard conditions: A 10 mL reaction vessel was charged with 1,3-butadienes 1 (0.2 mmol), peroxides 2 (2.0 equiv, 0.24 mmol), $Cu(CH_3CN)_4PF_6$ (5 mol %), L1 (5.5 mol %), and PhCl or H₂O (2 mL) at 30 °C for 24 h under an argon atmosphere. Until complete consumption of the starting material was observed by TLC and/or GC-MS analysis. The extracts were combined, dried over sodium sulfate, filtered and the volatiles were removed under reduced pressure. The reaction yield was quantified by separation, and then column chromatography was performed using silica gel (200-300 mesh) or thin layer chromatography was performed using silica gel (GF254) to give product **3** or **4** (petroleum ether/ethyl acetate, 20 : 1 to 50 : 1).

Gram-scale experiment: A 100 mL reaction vessel was charged with 1-phenylbutadiene **1a** (0.78 g, 6 mmol), *tert*-butyl 4-(*tert*-butyl)benzoperoxoate **2c** (2 equiv, 12 mmol, 3.00 g), Cu(CH₃CN)₄PF₆ (5 mol %, 111.6 mg), L1 (5.5 mol %, 60.7 mg) and PhCl or H₂O (60 mL) at 30 °C for 60 h under an argon atmosphere gave the target product **4c** in 65% (1.48 g) or 50% (1.14 g)yield.

5. Optimization of reaction conditions.

5.1 Optimization of the reaction conditions for the synthesis of 3a

Table S1:^{*a*}

Entry	Cat.[Cu] (5.0	Ligand (5.5	Solvent	Yield $(\%)^b$
1	Cu(CH ₃ CN) ₄ PF ₆	L1	PhCl	65%
2	Cu(CH ₃ CN) ₄ BF ₄	L1	PhCl	41%
3	CuBr	L1	PhCl	21%
4	CuCN	L1	PhCl	27%
5	Cu(OAc) ₂	L1	PhCl	n.r
6	Cu(OTf) ₂	L1	PhCl	trace
7	Cu(CH ₃ CN) ₄ PF ₆	L2	PhCl	34%
8	Cu(CH ₃ CN) ₄ PF ₆	L3	PhCl	10%
9	Cu(CH ₃ CN) ₄ PF ₆	L4	PhCl	trace
10	Cu(CH ₃ CN) ₄ PF ₆	L5	PhCl	trace
11	Cu(CH ₃ CN) ₄ PF ₆	L6	PhCl	trace
12	Cu(CH ₃ CN) ₄ PF ₆	L7	PhCl	42%
13	Cu(CH ₃ CN) ₄ PF ₆	L8	PhCl	55%
14	Cu(CH ₃ CN) ₄ PF ₆	L1	CH ₃ CN	47%
15	Cu(CH ₃ CN) ₄ PF ₆	L1	DCE	21%
16	Cu(CH ₃ CN) ₄ PF ₆	L1	acetone	24%
17	Cu(CH ₃ CN) ₄ PF ₆	L1	THF	n.r
18c	Cu(CH ₃ CN) ₄ PF ₆	L1	toluene	trace
19	Cu(CH ₃ CN) ₄ PF ₆	L1	DMF	n.r
20	Cu(CH ₃ CN) ₄ PF ₆	L1	1,2-dichlorobenz	61%
21	Cu(CH ₃ CN) ₄ PF ₆	L1	H ₂ O	58%
22	Cu(CH ₃ CN) ₄ PF ₆	L1	$H_2O:PhCl = 9:1$	61%
23	Cu(CH ₃ CN) ₄ PF ₆	L1	$H_2O:CH3CN =$	52%
24	Cu(CH ₃ CN) ₄ PF ₆	L1	$H_2O:DCE = 9:1$	48%
25	Cu(CH ₃ CN) ₄ PF ₆	L1		35%
26		L1	PhCl	n.r
27	Cu(CH ₃ CN) ₄ PF ₆		PhCl	n.r

^{*a*} Reaction conditions: **1a** (0.2 mmol), **2a** (2.0 equiv), Cu(CH₃CN₄)PF₆ (5 mol%), ligand (5.5 mol%), solvent (0.1 mol/L) under Ar at 30 °C for 24 h. ^{*b*} Isolated yield.

5.2 Optimization of the reaction conditions for the synthesis of (R)-3a.

Table S2:^{*a*}

Entry	Cat.[Cu] (5.0 mol%)	Ligand (5.5	Solvent	Yield $(\%)^b$	e.e
1	Cu(CH ₃ CN) ₄ PF ₆	L9*	H ₂ O	45%	-50%
2	Cu(CH ₃ CN) ₄ PF ₆	L10*	H ₂ O	32%	-5%
3	Cu(CH ₃ CN) ₄ PF ₆	L11*	H ₂ O	43%	0
4	Cu(CH ₃ CN) ₄ PF ₆	L12*	H ₂ O	55%	79%
5	Cu(CH ₃ CN) ₄ PF ₆	L13*	H ₂ O	12%	3%
6	Cu(CH ₃ CN) ₄ PF ₆	L14*	H ₂ O	15%	-13%
7	Cu(CH ₃ CN) ₄ PF ₆	L15*	H ₂ O	50%	-71%
8	Cu(CH ₃ CN) ₄ PF ₆	L16*	H ₂ O	54%	-79%
9	Cu(CH ₃ CN) ₄ PF ₆	L17*	H ₂ O	45%	-16%
10	Cu(CH ₃ CN) ₄ PF ₆	L18*	H ₂ O	54%	-31%
11	Cu(CH ₃ CN) ₄ PF ₆	L19*	H ₂ O	trace	
12	Cu(CH ₃ CN) ₄ PF ₆	L20*	H ₂ O	16%	65%
13	Cu(OTf) ₂	L12*	H ₂ O	27%	62%
14	Cu(CH ₃ CN) ₄ BF ₄	L12*	H ₂ O	34%	70%
15	Cu(CH ₃ CN) ₄ PF ₆	L12*	CH ₃ CN	50%	67%
16	Cu(CH ₃ CN) ₄ PF ₆	L12*	PhCl	44%	74%
17	Cu(CH ₃ CN) ₄ PF ₆	L12*	acetone	37%	74%
18	Cu(CH ₃ CN) ₄ PF ₆	L12*	DCM	trace	
19 ^c	Cu(CH ₃ CN) ₄ PF ₆	L12*	H ₂ O	50%	79%

^{*a*} Reaction conditions: **1a** (0.2 mmol), **2a** (2.0 equiv), [Cu] (5 mol%), ligand (5.5 mol%), solvent (0.1 mol/L) under Ar at 30 °C for 24 h. ^{*b*} R/S total isolated yield. ^{*c*} At 0 °C with ice-water bath.

6. Mechanistic investigations

6.1 Free radical trapping experiments

The following reaction was carried out under standard condition: A 10 mL reaction vessel was charged with 1-phenylbutadiene **1a** (0.2 mmol), *tert*-butyl benzoperoxoate **2a** (2.0 equiv, 0.4 mmol), Cu(CH₃CN)₄PF₆ (5 mol %), L1 (5.5 mol %), 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) (3.0 equiv), 1,1-Diphenylethylene (3.0 equiv) or 2,6-di-tert-butyl-4-methylphenol (3.0 equiv) and PhC1 (2 mL) at 30 °C for 24 h under an argon atmosphere. After completion, the consequence was detected by HRMS and/or GC-MS analysis.

S8

S9

6.2 Reaction with allyl benzene and naphthalene ethylene

The following reaction was carried out under standard condition: A 10 mL reaction vessel was charged with alkenes (0.2 mmol), *tert*-butyl benzoperoxoate **2a** (2.0 equiv, 0.4 mmol), Cu(CH₃CN)₄PF₆ (5 mol %), L1 (5.5 mol %), Cu(CH₃CN)₄PF₆ (5 mol %), L1 (5.5 mol %), Cu(CH₃CN)₄PF₆ (5 mol %), L1 (5.5 mol %) and PhCl (2 mL) at 30 °C for 24 h under an argon atmosphere. After completion, the consequence was detected by TLC and/or GC-MS analysis. Then, separated by column chromatography was performed using silica gel (200-300 mesh).

Reaction with allyl benzene **10**: column chromatography was performed using silica gel (200-300 mesh) to give products **12** in 35% yield (petroleum ether/ethyl acetate, 40 :1) and NMR was performed.

Reaction with alkenes 13 or 15: column chromatography was performed using silica gel (200-300 mesh) to give products 16 in 18% yield (petroleum ether/ethyl acetate, 20 :1) and NMR was performed.

6.3 Z/E configuration control experiment

NMR data for *E*-1n and *Z*-1n:

The following reaction was carried out under standard condition: A 10 mL reaction vessel was charged with *E*-1n or *Z*-1n (0.2 mmol), *tert*-butyl benzoperoxoate 2a (2.0 equiv, 0.4 mmol), Cu(CH₃CN)₄PF₆ (5 mol %), L1 (5.5 mol %) and PhCl (2 mL) at 30 °C for 24 h under an argon atmosphere.

The following reaction was carried out under standard condition: A 10 mL reaction vessel was charged with *E*-1n or *Z*-1n (0.2 mmol), *tert*-butyl benzoperoxoate 2a (2.0 equiv, 0.4 mmol), Cu(CH₃CN)₄PF₆ (5 mol %), L12* (5.5 mol %) and H₂O (2 mL) at 30 °C for 24 h under an argon atmosphere.

10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 fl (ppm)

Reacts with *E*-1n, product (*R*)-*E*-3n:

Reacts with Z-1n, product (R)-E-3n:

mir

7. Metrics calculations

E-factor were calculated using Waste Mass/Product Mass.

(a) J. Org. Chem. 2024, 89, 16865

E-factor: [2.098 (sol.)+0.065 (SM1) +0.318 (SM2)+0.156 (SM3)-0.136 (Pro)]/0.136 = 24.9

(b) Org. Lett. 2023, 25, 4313

E-factor: [31.2 (sol.)+0.320 (SM1) +0.630 (SM2)+0.222 (Cat)-0.404 (Pro)]/0.404 = 79.1

(c) Chem. Commun. 2023, 59, 9481

E-factor: [0.742 (sol.)+0.065 (SM1) +0.180 (SM2)+0.106 (additive)-0.079 (Pro)]/0.079 = 12.8

(d) Our system in water:

E-factor: [0.780 (SM1)+3.000 (SM2)+0.111 (Cat)+0.061 (Ligand)-1.140]/1.140 = 2.5

8. Characterization data of products

(*E*)-1-(buta-1,3-dien-1-yl)-3-methoxybenzene (*E*-1n), by silica gel column chromatography (hexane/ethyl acetate = 80:1), colorless oil. ¹HNMR (400 MHz, CDCl₃) δ :7.26 (dd, *J* = 9.1, 6.7 Hz, 1H), 6.99 – 6.72 (m, 4H), 6.43 (d, *J* = 11.5 Hz, 1H), 6.26 (t, *J* = 11.3 Hz, 1H), 5.37 (d, *J* = 16.9 Hz, 1H), 5.22 (d, *J* = 10.1 Hz, 1H), 3.81 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 159.4, 138.7, 133.2, 131.0, 130.2, 129.2, 121.5, 119.7, 114.4, 112.6, 55.2.

(Z)-1-(buta-1,3-dien-1-yl)-3-methoxybenzene (Z-1n), by silica gel column chromatography (hexane/ethyl acetate = 80:1), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ :7.30 – 7.16 (m, 1H), 7.01 (d, *J* = 7.7 Hz, 1H), 6.94 (s, 1H), 6.84 – 6.72 (m, 2H), 6.58 – 6.42 (m, 2H), 5.34 (d, *J* = 16.5 Hz, 1H), 5.18 (d, *J* = 9.7 Hz, 1H), 3.82 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 159.8, 138.5, 137.1, 132.7, 129.9, 129.5, 119.2, 117.8, 113.3, 111.6, 55.2.

(*E*)-1-(*tert*-butoxy)-4-phenylbut-3-en-2-yl benzoate (3a), by silica gel column chromatography (hexane/ethyl acetate = 50:1), 44.1 mg, 65% yield, colorless oil, HPLC: 79% ee, $t_R = 6.308$ min (minor), $t_R = 9.397$ min (major) (Chiralcel AD-H column, hexane/isopropanol = 95/5, flow rate 1.0 mL/min, T = 28°C, 254 nm). ¹HNMR (400 MHz, CDCl₃) δ :8.14 – 8.06 (m, 2H), 7.59 – 7.54 (m, 1H), 7.47 – 7.43 (m, 2H), 7.42 – 7.37 (m, 2H), 7.31 (t, *J* = 7.4 Hz, 2H), 7.26 – 7.21 (m, 1H), 6.75 (d, *J* = 16.0 Hz, 1H), 6.32 (dd, *J* = 16.0, 6.9 Hz, 1H), 5.80 – 5.73 (m, 1H), 3.68 (ddd, *J* = 14.7, 10.0, 5.7 Hz, 2H), 1.21 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 165.9, 136.3, 133.2, 132.9, 130.5, 129.7, 128.5, 128.3, 127.9, 126.6, 125.0, 74.6, 73.4, 63.9, 27.5; HRMS (ESI-TOF) *m/z*: C₂₁H₂₄NaO₃ (M + Na)⁺ calcd for 347.1618, found 347.1632.

(*E*)-1-(*tert*-butoxy)-4-(*p*-tolyl)but-3-en-2-yl benzoate (3b), by silica gel column chromatography (hexane/ethyl acetate = 50:1), 50.7 mg, 75% yield, white solid (mp 88-90 °C), HPLC: 64% ee, $t_R = 6.792$ min (minor), $t_R = 9.007$ min (major) (Chiralcel AD-H column, hexane/isopropanol = 95/5, flow rate 1.0 mL/min, T = 28°C, 254 nm). ¹HNMR (400 MHz, CDCl₃) δ : 8.09 (d, J = 7.1 Hz, 2H), 7.55 (d, J = 7.2 Hz, 1H), 7.45 (t, J = 7.3 Hz, 2H), 7.28 (t, J = 8.2 Hz, 2H), 7.11 (d, J = 7.4 Hz, 2H), 6.72 (d, J = 16.0 Hz, 1H), 6.26 (dd, J = 15.9, 6.9 Hz,

1H), 5.83 - 5.67 (m, 1H), 3.79 - 3.54 (m, 2H), 2.33 (s, 3H), 1.20 (s, 9H); ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) δ : 165.9, 137.8, 133.6, 133.2, 132.8, 130.6, 129.7, 129.2, 128.3, 126.5, 124.0, 74.7, 73.4, 64.0, 27.5, 21.2; HRMS (ESI-TOF) m/z: C₂₂H₂₆NaO₃ (M + Na)⁺ calcd for 361.1774, found 361.1794.

((E)-1-(*tert*-butoxy)-4-(4-(*tert*-butyl)phenyl)but-3-en-2-yl benzoate (3c), by silica gel column chromatography (hexane/ethyl acetate = 50:1), 53.9 mg, 78% yield, white solid (mp 75-77 °C), ¹HNMR (400 MHz, CDCl₃) δ :8.10 (d, J = 7.4 Hz, 2H), 7.56 (t, J = 7.3 Hz, 1H), 7.45 (t, J = 7.6 Hz, 2H), 7.35 (s, 4H), 6.75 (d, J = 16.0 Hz, 1H), 6.29 (dd, J = 16.0, 7.0 Hz, 1H), 5.77 (q, J = 6.3 Hz, 1H), 3.68 (ddd, J = 25.0, 10.0, 5.8 Hz, 2H), 1.31 (s, 9H), 1.22 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 165.8, 151.1, 133.6, 133.1, 132.8, 130.6, 129.6, 128.3, 126.3, 125.4, 124.2, 74.7, 73.4, 64.0, 34.6, 31.2, 27.5; HRMS (ESI-TOF) *m/z*: C₂₅H₃₂NaO₃ (M + Na)⁺ calcd for 403.2244, found 403.2266.

(*E*)-1-(*tert*-butoxy)-4-(4-methoxyphenyl)but-3-en-2-yl benzoate (3d), by silica gel column chromatography (hexane/ethyl acetate = 20:1), 30.5 mg, 43% yield, yellow solid (mp 101-103 °C), ¹HNMR (400 MHz, CDCl₃) δ :8.09 (d, J = 7.2 Hz, 2H), 7.58-7.54 (m, 1H), 7.46-7.43 (m, 2H), 7.33 (d, J = 8.7 Hz, 2H), 6.84 (d, J = 8.7 Hz, 2H), 6.70 (d, J = 16.0 Hz, 1H), 6.17 (dd, J = 16.0, 7.1 Hz, 1H), 5.74 (q, J = 6.5 Hz, 1H), 3.80 (s, 3H), 3.73 – 3.57 (m, 2H), 1.20 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 165.9, 159.5, 132.9, 132.8, 130.7, 129.7, 129.2, 128.3, 127.9, 122.8, 113.9, 74.9, 73.4, 64.0, 55.3, 27.5; HRMS (ESI-TOF) *m/z*: C₂₂H₂₆NaO₄ (M + Na)⁺ calcd for 377.1723, found 377.1738.

(*E*)-4-(4-(benzyloxy)phenyl)-1-(*tert*-butoxy)but-3-en-2-yl benzoate (3e), by silica gel column chromatography (hexane/ethyl acetate = 20:1), 33.6 mg, 39% yield, yellow solid (mp 112-114 °C), ¹HNMR (400 MHz, CDCl₃) δ :8.09 (d, J = 7.6 Hz, 2H), 7.55 (t, J = 7.4 Hz, 1H), 7.46-7.39 (m, 5H), 7.38-7.31 (m, 4H), 6.91 (d, J = 8.5 Hz, 2H), 6.70 (d, J = 16.0 Hz, 1H), 6.17 (dd, J = 16.0, 7.1 Hz, 1H), 5.74 (q, J = 6.5 Hz, 1H), 5.06 (s, 2H), 3.76 – 3.57 (m, 2H), 1.20 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 165.9, 158.6, 136.8, 132.9, 132.8, 130.6, 129.6, 129.4, 128.6, 128.3, 128.0, 127.9, 127.4, 122.8, 114.9, 74.8, 73.4, 70.0, 64.0, 27.5; HRMS (ESI-TOF) *m/z*: C₂₈H₃₀NaO₄ (M + Na)⁺ calcd for 453.2036, found 386.9998.

(*E*)-1-(*tert*-butoxy)-4-(4-ethynylphenyl)but-3-en-2-yl benzoate (3f), by silica gel column chromatography (hexane/ethyl acetate = 50:1), 44.6 mg, 65% yield, white solid (mp 92-94 °C), ¹HNMR (400 MHz, CDCl₃) δ :8.10 (d, *J* = 7.3 Hz, 2H), 7.57 (t, *J* = 7.4 Hz, 1H), 7.45 (dd, *J* = 13.1, 7.9 Hz, 4H), 7.34 (d, *J* = 8.2 Hz, 2H), 6.72 (d, *J* = 16.0 Hz, 1H), 6.35 (dd, *J* = 16.0, 6.7 Hz, 1H), 5.75 (dd, *J* = 11.8, 5.7 Hz, 1H), 3.73-3.63 (m, 2H), 3.11 (s, 1H), 1.21 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 165.8, 136.8, 132.9, 132.3, 132.2, 130.4, 129.7, 128.3, 126.5, 126.4, 121.4, 83.6, 77.9, 74.3, 73.5, 63.8, 27.5; HRMS (ESI-TOF) *m*/*z*: C₂₃H₂₄NaO₃ (M + Na)⁺ calcd for 371.1618, found 371.1632.

(*E*)-1-(*tert*-butoxy)-4-(4-fluorophenyl)but-3-en-2-yl benzoate (3g), by silica gel column chromatography (hexane/ethyl acetate = 40:1), 48.6 mg, 71% yield, yellow solid (mp 107-109 °C), HPLC: 71% ee, $t_R = 6.711$ min (minor), $t_R = 9.043$ min (major) (Chiralcel AD-H column, hexane/isopropanol = 95/5, flow rate 1.0 mL/min, T = 28°C, 254 nm). ¹HNMR (400 MHz, CDCl₃) δ :8.09 (d, J = 7.3 Hz, 2H), 7.56 (t, J = 7.4 Hz, 1H), 7.45 (t, J = 7.6 Hz, 2H), 7.36 (dd, J = 8.5, 5.5 Hz, 2H), 6.99 (t, J = 8.6 Hz, 2H), 6.71 (d, J = 16.0 Hz, 1H), 6.24 (dd, J = 16.0, 6.9 Hz, 1H), 5.74 (q, J = 5.9 Hz, 1H), 3.74 – 3.60 (m, 2H), 1.21 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 165.8, 162.5 (d, J = 245.7 Hz, 1C), 132.9, 132.5 (d, J = 3.2 Hz, 1C), 132.1, 130.5, 129.7, 128.3, 128.2 (d, J = 8.0 Hz, 1C), 124.9, 115.4 (d, J = 21.5 Hz, 1C), 74.5, 73.4, 63.9, 27.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -113.9 (s, 1F); HRMS (ESI-TOF) *m/z*: C₂₁H₂₃FNaO₃ (M + Na)⁺ calcd for 365.1523, found 365.1546.

(*E*)-1-(*tert*-butoxy)-4-(4-chlorophenyl)but-3-en-2-yl benzoate (3h), by silica gel column chromatography (hexane/ethyl acetate = 40:1), 45.1 mg, 63% yield, white solid (mp 100-102 °C), ¹HNMR (400 MHz, CDCl₃) δ : 8.09 (d, *J* = 7.4 Hz, 2H), 7.56 (t, *J* = 7.4 Hz, 1H), 7.45 (t, *J* = 7.7 Hz, 2H), 7.34 – 7.23 (m, 4H), 6.70 (d, *J* = 16.0 Hz, 1H), 6.30 (dd, *J* = 16.0, 6.7 Hz, 1H), 5.74 (q, *J* = 6.1 Hz, 1H), 3.77 – 3.56 (m, 2H), 1.21 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 165.8, 134.9, 133.5, 132.9, 131.9, 130.4, 129.7, 128.7, 128.3, 127.8, 125.8, 74.3, 73.5, 63.8, 27.5; HRMS (ESI-TOF) *m*/*z*: C₂₁H₂₃ClNaO₃ (M + Na)⁺ calcd for 381.1228, found 381.1250.

(*E*)-4-(4-bromophenyl)-1-(*tert*-butoxy)but-3-en-2-yl benzoate (3i), by silica gel column chromatography (hexane/ethyl acetate = 40:1), 48.2 mg, 60% yield, yellow solid (mp 85-87 °C), HPLC: 79% ee, $t_R = 7.550$ min (minor), $t_R = 10.490$ min (major) (Chiralcel AD-H column, hexane/isopropanol = 95/5, flow rate 1.0 mL/min, T = 28°C, 254 nm). ¹HNMR (400 MHz, CDCl₃) δ : 8.09 (d, J = 7.3 Hz, 2H), 7.57 (t, J = 7.4 Hz, 1H), 7.44 (dd, J = 15.4, 8.1 Hz, 4H), 7.25 (d, J = 8.4 Hz, 2H), 6.68 (d, J = 16.0 Hz, 1H), 6.32 (dd, J = 16.0, 6.7 Hz, 1H), 5.74 (dd, J = 11.8, 5.8 Hz, 1H), 3.72-3.62 (m, 2H), 1.21 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 165.8, 135.3, 132.9, 131.9, 131.6, 130.3, 129.6, 128.3, 128.1, 125.9, 121.7, 74.3, 73.5, 63.8, 27.5; HRMS (ESI-TOF) *m*/z: C₂₁H₂₃BrNaO₃ (M + Na)⁺ calcd for 425.0723, found 425.0745.

(*E*)-1-(*tert*-butoxy)-4-(4-(trifluoromethyl)phenyl)but-3-en-2-yl benzoate (3j), by silica gel column chromatography (hexane/ethyl acetate = 50:1), 45.5 mg, 58% yield, yellow solid (mp 123-125 °C), HPLC: 77% ee, $t_R = 6.627 \text{ min (minor)}, t_R = 9.179 \text{ min (major)}$ (Chiralcel AD-H column, hexane/isopropanol = 95/5, flow rate 1.0 mL/min, T = 28°C, 254 nm). ¹HNMR (400 MHz, CDCl₃) δ : 8.18 – 8.04 (m, 2H), 7.60-7.55 (m, 3H), 7.51 – 7.42 (m, 4H), 6.77 (d, *J* = 16.1 Hz, 1H), 6.43 (dd, *J* = 16.1, 6.5 Hz, 1H), 5.77 (q, *J* = 5.5 Hz, 1H), 3.78 – 3.58 (m, 2H), 1.21 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 165.8, 139.9, 133.0, 130.3, 129.9 (q, *J* = 44.6 Hz, 1C), 129.8, 128.4, 128.1, 126.8, 125.5 (q, *J* = 3,8 Hz, 1C), 121.5 (q, *J* = 270.8 Hz, 1C), 74.1, 73.5, 63.7, 27.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.5 (s, 3F); HRMS (ESI-TOF) *m*/*z*: C₂₂H₂₃F₃NaO₃ (M + Na)⁺ calcd for 415.1492, found 415.1511.

(*E*)-1-(*tert*-butoxy)-4-(2-methoxyphenyl)but-3-en-2-yl benzoate (3k), by silica gel column chromatography (hexane/ethyl acetate = 30:1), 40.4 mg, 57% yield, white solid (mp 98-91 °C), HPLC: 68% ee, t_R = 6.670 min (minor), t_R = 10.498 min (major) (Chiralcel AD-H column, hexane/isopropanol = 95/5, flow rate 1.0 mL/min, T = 28°C, 254 nm). ¹H NMR (400 MHz, CDCl₃) δ : 8.10 (d, *J* = 7.6 Hz, 2H), 7.55 (t, *J* = 7.4 Hz, 1H), 7.44 (t, *J* = 7.5 Hz, 3H), 7.23 (dd, *J* = 14.1, 5.9 Hz, 1H), 7.08 (d, *J* = 16.2 Hz, 1H), 6.91 (t, *J* = 7.4 Hz, 1H), 6.85 (d, *J* = 8.3 Hz, 1H), 6.35 (dd, *J* = 16.2, 7.0 Hz, 1H), 5.78 (m, 1H), 3.82 (s, 3H), 3.76 - 3.61 (m, 2H), 1.20 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 165.9, 156.9, 132.7, 130.7, 129.7, 129.0, 128.3, 128.2, 127.1, 125.5, 125.3, 120.5, 110.8, 75.1, 73.3, 64.0, 55.4, 27.5; HRMS (ESI-TOF) *m/z*: C₂₂H₂₆NaO4 (M + Na)⁺ calcd for 377.1723, found 377.1744.

(*E*)-1-(*tert*-butoxy)-4-(2-fluorophenyl)but-3-en-2-yl benzoate (3l), by silica gel column chromatography (hexane/ethyl acetate = 40:1), 45.2 mg, 66% yield, white solid (mp 101-103 °C), ¹H NMR (400 MHz, CDCl₃) δ :

8.13 – 8.06 (m, 2H), 7.60 – 7.53 (m, 1H), 7.45 (td, J = 7.7, 1.9 Hz, 3H), 7.23 – 7.17 (m, 1H), 7.11 – 6.98 (m, 2H), 6.89 (d, J = 16.2 Hz, 1H), 6.43 (dd, J = 16.2, 6.6 Hz, 1H), 5.77 (q, J = 5.6 Hz, 1H), 3.79 – 3.59 (m, 2H), 1.21 (s, 9H); ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) δ : 165.8, 160.3 (d, J = 247.5 Hz, 1C), 132.9, 130.5 (2C), 129.7, 129.2 (d, J = 8.5 Hz, 1C), 128.3, 127.9 (d, J = 5.3 Hz, 1C), 127.7 (d, J = 3.6 Hz, 1C), 125.5 (d, J = 3.5 Hz, 1C), 124.0 (d, J = 3.5 Hz, 1C), 115.7 (d, J = 21.9 Hz, 1C), 74.5, 73.4, 63.8, 27.5; ${}^{19}F$ NMR (376 MHz, CDCl₃) δ -117.5 (s, 1F); HRMS (ESI-TOF) m/z: C₂₁H₂₃FNaO₃ (M + Na)⁺ calcd for 365.1523, found 365.1544.

(*E*)-1-(*tert*-butoxy)-4-(2-chlorophenyl)but-3-en-2-yl benzoate (3m), by silica gel column chromatography (hexane/ethyl acetate = 40:1), 42.3 mg, 59% yield, white solid (mp 78-80 °C), ¹HNMR (400 MHz, CDCl₃) δ : 8.11 (d, *J* = 7.4 Hz, 2H), 7.58 – 7.52 (m, 2H), 7.45 (t, *J* = 7.6 Hz, 2H), 7.37 – 7.31 (m, 1H), 7.23-7.13 (m, 3H), 6.34 (dd, *J* = 16.1, 6.4 Hz, 1H), 5.79 (dd, *J* = 11.5, 5.6 Hz, 1H), 3.75-3.65 (m, 2H), 1.21 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 165.8, 134.6, 133.3, 132.9, 130.4, 129.7 (2C), 129.0, 128.8, 128.3, 128.1, 126.9, 126.8, 74.2, 73.4, 63.8, 27.5; HRMS (ESI-TOF) *m/z*: C₂₁H₂₃ClNaO₃ (M + Na)⁺ calcd for 381.1228, found 381.1245.

(*E*)-1-(*tert*-butoxy)-4-(3-methoxyphenyl)but-3-en-2-yl benzoate (3n), by silica gel column chromatography (hexane/ethyl acetate = 20:1), 50.3 mg, 71% yield: white solid (mp 98-100 °C), HPLC: 79% ee, $t_R = 7.520$ min (minor), $t_R = 13.732$ min (major) (Chiralcel AD-H column, hexane/isopropanol = 95/5, flow rate 1.0 mL/min, T = 28°C, 254 nm). ¹HNMR (400 MHz, CDCl₃) δ : 8.10 (d, J = 7.2 Hz, 2H), 7.56 (t, J = 7.4 Hz, 1H), 7.45 (t, J = 7.6 Hz, 2H), 7.26 – 7.18 (m, 1H), 6.99 (d, J = 7.6 Hz, 1H), 6.93 (s, 1H), 6.80 (dd, J = 8.2, 2.0 Hz, 1H), 6.72 (d, J = 16.0 Hz, 1H), 6.31 (dd, J = 16.0, 6.8 Hz, 1H), 5.76 (q, J = 5.8 Hz, 1H), 3.80 (s, 3H), 3.75 – 3.59 (m, 2H), 1.21 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 165.8, 159.7, 137.8, 133.1, 132.9, 130.5, 129.6, 129.5, 128.3, 125.4, 119.3, 113.7, 111.8, 74.5, 73.4, 63.9, 55.2, 27.5; HRMS (ESI-TOF) *m/z*: C₂₂H₂₆NaO₄ (M + Na)⁺ calcd for 377.1723, found 377.1738.

(*E*)-1-(*tert*-butoxy)-4-(3-fluorophenyl)but-3-en-2-yl benzoate (30), by silica gel column chromatography (hexane/ethyl acetate = 40:1), 28.7 mg, 42% yield, yellow solid (mp 92-94 °C), ¹HNMR (400 MHz, CDCl₃) δ : 8.14 – 8.07 (m, 2H), 7.57 (t, *J* = 7.4 Hz, 1H), 7.46 (t, *J* = 7.6 Hz, 2H), 7.26 (t, *J* = 3.9 Hz, 1H), 7.15 (d, *J* = 7.7 Hz, 1H), 7.10 (d, *J* = 10.1 Hz, 1H), 6.97 – 6.90 (m, 1H), 6.71 (d, *J* = 16.0 Hz, 1H), 6.34 (dd, *J* = 16.0, 6.7 Hz, 1H), 5.75 (q, *J* = 5.4 Hz, 1H), 3.77 – 3.57 (m, 2H), 1.21 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 165.8, 163.0 (d, *J* = 244.3 Hz, 1C), 138.8 (d, *J* = 8.9 Hz, 1C), 132.9, 131.9, 130.4, 130.0 (d, *J* = 8.6 Hz, 1C), 129.7, 128.3, 126.7,

122.6, 114.7 (d, J = 21.3 Hz, 1C), 113.0 (d, J = 21.6 Hz, 1C), 74.2, 73.5, 63.8, 27.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -113.5 (s, 1F); HRMS (ESI-TOF) m/z: C₂₁H₂₃FNaO₃ (M + Na)⁺ calcd for 365.1523, found 365.1541.

(*E*)-1-(*tert*-butoxy)-4-(2,4-dichlorophenyl)but-3-en-2-yl benzoate (3p), by silica gel column chromatography (hexane/ethyl acetate = 40:1), 40.8 mg, 52% yield, yellow oil, ¹HNMR (400 MHz, CDCl₃) δ : 8.09 (t, *J* = 6.6 Hz, 2H), 7.57 (t, *J* = 7.4 Hz, 1H), 7.49 – 7.44 (m, 3H), 7.36 (d, *J* = 2.0 Hz, 1H), 7.19 (dd, *J* = 8.4, 1.9 Hz, 1H), 7.08 (d, *J* = 16.1 Hz, 1H), 6.33 (dd, *J* = 16.0, 6.4 Hz, 1H), 5.79-5.75 (m, 1H), 3.74-3.64 (m, 2H), 1.21 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 165.8, 133.8, 133.8, 133.2, 133.0, 130.3, 129.7, 129.4, 128.7, 128.4, 127.9, 127.7, 127.2, 74.1, 73.5, 63.7, 27.5; HRMS (ESI-TOF) *m/z*: C₂₁H₂₂Cl₂NaO₃ (M + Na)⁺ calcd for 415.0838, found 415.0857.

(*E*)-4-(2-bromo-4-fluorophenyl)-1-(*tert*-butoxy)but-3-en-2-yl benzoate (3q), by silica gel column chromatography (hexane/ethyl acetate = 40:1), 27.7 mg, 33% yield, yellow oil, ¹HNMR (400 MHz, CDCl₃) δ : 8.11 (d, *J* = 7.5 Hz, 2H), 7.57 (t, *J* = 7.2 Hz, 1H), 7.53 – 7.44 (m, 3H), 7.33 – 7.21 (m, 1H), 7.01 (dd, *J* = 20.6, 11.9 Hz, 2H), 6.24 (dd, *J* = 16.0, 6.4 Hz, 1H), 5.77 (d, *J* = 5.7 Hz, 1H), 3.77 – 3.61 (m, 2H), 1.21 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 165.8, 161.8 (d, *J* = 250.0 Hz, 1C), 133.0, 132.7 (d, *J* = 3.6 Hz, 1C), 130.5, 130.4, 129.7, 128.4, 128.2, 128.1 (d, *J* = 8.4 Hz, 1C), 123.7 (d, *J* = 9.4 Hz, 1C), 120.0 (d, *J* = 24.2 Hz, 1C), 114.9 (d, *J* = 21.1 Hz, 1C), 74.1, 73.5, 63.8, 27.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -112.4 (s, 1F); HRMS (ESI-TOF) *m/z*: C₂₁H₂₂BrFNaO₃ (M + H)⁺ calcd for 443.0629, found 443.0616.

(*E*)-1-(*tert*-butoxy)-4-(thiophen-3-yl)but-3-en-2-yl benzoate (3r), by silica gel column chromatography (hexane/ethyl acetate = 40:1), 36.3 mg, 55% yield: yellow solid (mp 77-79 °C), HPLC: 57% ee, $t_R = 7.540$ min (minor), $t_R = 16.135$ min (major) (Chiralcel AD-H column, hexane/isopropanol = 95/5, flow rate 1.0 mL/min, T = 28°C, 254 nm). ¹HNMR (400 MHz, CDCl₃) δ : 8.12 – 8.06 (m, 2H), 7.56 (t, J = 7.4 Hz, 1H), 7.44 (t, J = 7.6 Hz, 2H), 7.25 (t, J = 3.9 Hz, 1H), 7.23 – 7.20 (m, 1H), 7.18 (d, J = 2.2 Hz, 1H), 6.76 (d, J = 15.9 Hz, 1H), 6.16 (dd, J = 16.0, 7.0 Hz, 1H), 5.72 (q, J = 6.0 Hz, 1H), 3.74 – 3.58 (m, 2H), 1.20 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 165.8, 139.0, 132.8, 130.5, 129.6, 128.3, 127.5, 126.0, 124.9, 124.8, 123.0, 74.5, 73.4, 63.9, 27.5; HRMS (ESI-TOF) m/z: C₁₉H₂₂NaO₃S (M + Na)⁺ calcd for 353.1182, found 353.1198.

(*E*)-1-(*tert*-butoxy)-3-methyl-4-phenylbut-3-en-2-yl benzoate (3s), by silica gel column chromatography (hexane/ethyl acetate = 50:1), 25.7 mg, 38% yield, yellow oil, HPLC: 90% ee, $t_R = 4.720$ min (minor), $t_R = 7.114$ min (major) (Chiralcel AD-H column, hexane/isopropanol = 95/5, flow rate 1.0 mL/min, T = 28°C, 254 nm). ¹HNMR (400 MHz, CDCl₃) δ :8.10 (d, J = 7.3 Hz, 2H), 7.56 (t, J = 7.4 Hz, 1H), 7.45 (t, J = 7.6 Hz, 2H), 7.35 – 7.24 (m, 4H), 7.21 (t, J = 7.1 Hz, 1H), 6.65 (s, 1H), 5.69 – 5.54 (m, 1H), 3.82 – 3.60 (m, 2H), 1.98 (s, 3H), 1.21 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 165.7, 137.2, 134.4, 132.8, 130.6, 129.6, 129.0, 128.3, 128.0 (2C), 126.6, 78.9, 73.3, 63.2, 27.5, 14.8.; HRMS (ESI-TOF) *m/z*: C₂₂H₂₆NaO₃ (M + Na)⁺ calcd for 361.1774, found 361.1792.

(*E*)-4-(*tert*-butoxy)-1-phenylpent-1-en-3-yl benzoate (3t), d.r 1:1.2, by silica gel column chromatography (hexane/ethyl acetate = 50:1), 44.6 mg, 66% yield, colorless oil, ¹HNMR (400 MHz, CDCl₃) δ : 8.20 – 8.02 (m, 2H), 7.57 (dd, *J* = 15.0, 7.4 Hz, 1H), 7.50 – 7.38 (m, 4H), 7.31 (t, *J* = 7.5 Hz, 2H), 7.26 – 7.19 (m, 1H), 6.70 (dd, *J* = 16.0, 9.3 Hz, 1H), 6.39 – 6.28 (m, 1H), 5.64 (t, *J* = 5.7 Hz, 0.55H), 5.55 (dd, *J* = 7.5, 3.8 Hz, 0.45H), 3.96 (dd, *J* = 12.0, 6.0 Hz, 1H), 1.25 (d, *J* = 5.2 Hz, 6.6H), 1.20 (d, *J* = 6.9 Hz, 5.4H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 165.9, 165.6, 136.6, 136.5, 133.8, 133.0, 132.9 (2C), 130.6, 130.5, 129.7 (2C), 128.5 (2C), 128.4, 128.3, 127.8, 127.7, 126.7, 126.6, 124.8, 124.4, 79.0, 77.4, 74.2, 74.0, 68.8, 68.0, 28.5 (2C), 19.3, 18.5; HRMS (ESI-TOF) *m/z*: C₂₂H₂₆NaO₃ (M + Na)⁺ calcd for 361.1774, found 361.1794.

(3E,5E)-1-(*tert*-butoxy)-6-phenylhexa-3,5-dien-2-yl benzoate (3u), by silica gel column chromatography (hexane/ethyl acetate = 30:1), 18.9 mg, 27% yield, white solid (mp 90-92 °C), ¹H NMR (400 MHz, CDCl₃) δ :7.57 (t, J = 7.3 Hz, 1H), 7.46 (t, J = 7.6 Hz, 2H), 7.39 (d, J = 7.7 Hz, 2H), 7.31 (t, J = 7.5 Hz, 2H), 7.27 – 7.19 (m, 1H), 6.78 (dd, J = 15.4, 10.7 Hz, 1H), 6.57 (dd, J = 15.6, 5.9 Hz, 2H), 5.92 (dd, J = 15.3, 6.8 Hz, 1H), 5.69 (q, J = 6.2 Hz, 1H), 3.76 – 3.53 (m, 2H), 1.21 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 165.8, 137.0, 133.6, 133.5, 132.9, 130.6, 129.7, 129.0, 128.6, 128.3, 128.0, 127.7, 126.4, 74.3, 73.4, 63.8, 27.5; HRMS (ESI-TOF) *m/z*: C₂₃H₂₆NaO₃ (M + Na)⁺ calcd for 373.1774, found 373.1791.

1-(*tert*-butoxy)-3-methylbut-3-en-2-yl benzoate (3v), by silica gel column chromatography (hexane/ethyl acetate = 50:1), 25.7 mg, 49% yield: colorless oil, ¹HNMR (400 MHz, CDCl₃) δ :8.02 (d, *J* = 7.5 Hz, 2H), 7.53 (t, *J* = 7.4 Hz, 1H), 7.42 (t, *J* = 7.6 Hz, 2H), 6.18 (dd, *J* = 17.6, 11.0 Hz, 1H), 5.26 (dd, *J* = 30.4, 14.3 Hz, 2H), 3.71 (d, *J* = 9.1 Hz, 1H), 3.59 (d, *J* = 9.1 Hz, 1H), 1.69 (s, 3H), 1.19 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 165.4, 139.8, 132.5, 131.5, 129.5, 128.2, 114.4, 82.7, 72.9, 67.1, 27.5, 21.3; HRMS (ESI-TOF) *m*/*z*: C₁₆H₂₂NaO₃ (M + Na)⁺ calcd for 285.1461, found 285.1476.

(*E*)-1-(*tert*-butoxy)-2-methyl-4-phenylbut-3-en-2-yl benzoate (3w), by silica gel column chromatography (hexane/ethyl acetate = 50:1), 39.9 mg, 59% yield: Colorless oil, ¹HNMR (400 MHz, CDCl₃) δ :8.04 (d, *J* = 8.0 Hz, 2H), 7.54 (t, *J* = 7.4 Hz, 1H), 7.42 (dd, *J* = 13.0, 7.5 Hz, 4H), 7.30 (t, *J* = 7.5 Hz, 2H), 7.23 (dd, *J* = 13.4, 5.9 Hz, 1H), 6.62 (q, *J* = 16.4 Hz, 2H), 3.81 (d, *J* = 9.1 Hz, 1H), 3.68 (d, *J* = 9.1 Hz, 1H), 1.79 (s, 3H), 1.20 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 165.3, 136.8, 132.6, 131.6, 131.3, 129.6 (2C), 128.5, 128.2, 127.6, 126.6, 82.7, 73.0, 67.2, 27.5, 21.8; HRMS (ESI-TOF) *m/z*: C₂₂H₂₆NaO₃ (M + Na)⁺ calcd for 361.1774, found 361.1793.

(*E*)-1-(*tert*-butoxy)-4-phenylbut-3-en-2-yl 4-methylbenzoate (4b), by silica gel column chromatography (hexane/ethyl acetate = 40:1), 52.8 mg, 78% yield, yellow oil, HPLC: 77% ee, $t_R = 4.882$ min (minor), $t_R = 17.292$ min (major) (Chiralcel AD-H column, hexane/isopropanol = 90/10, flow rate 1.0 mL/min, T = 28°C, 254 nm). ¹HNMR (400 MHz, CDCl₃) δ :7.98 (d, J = 8.1 Hz, 2H), 7.39 (d, J = 7.4 Hz, 2H), 7.29 (d, J = 7.7 Hz, 2H), 7.24 (d, J = 7.7 Hz, 3H), 6.74 (d, J = 16.0 Hz, 1H), 6.32 (dd, J = 16.0, 6.8 Hz, 1H), 5.75 (q, J = 5.8 Hz, 1H), 3.77 – 3.57 (m, 2H), 2.41 (s, 3H), 1.20 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 165.9, 143.5, 136.4, 133.0, 129.7, 129.0, 128.5, 127.8, 127.8, 126.6, 125.3, 74.3, 73.4, 63.9, 27.5, 21.6; HRMS (ESI-TOF) m/z: C₂₂H₂₆NaO₃ (M + Na)⁺ calcd for 361.1774, found 361.1793.

(*E*)-1-(*tert*-butoxy)-4-phenylbut-3-en-2-yl 4-(*tert*-butyl)benzoate (4c), by silica gel column chromatography (hexane/ethyl acetate = 50:1), 60.8 mg, 80% yield: yellow solid (mp 75-77 °C), HPLC: 71% ee, t_R = 5.131 min (minor), t_R = 12.052 min (major) (Chiralcel AD-H column, hexane/isopropanol = 90/10, flow rate 1.0 mL/min, T = 28°C, 254 nm), ¹H NMR (400 MHz, CDCl₃) δ : 8.03 (d, *J* = 8.4 Hz, 2H), 7.46 (d, *J* = 8.4 Hz, 2H), 7.38 (d, *J* = 7.4 Hz, 2H), 7.29 (t, *J* = 7.5 Hz, 2H), 7.25 – 7.19 (m, 1H), 6.74 (d, *J* = 16.0 Hz, 1H), 6.32 (dd, *J* = 16.0, 6.7 Hz, 1H), 5.75 (q, *J* = 5.9 Hz, 1H), 3.83 – 3.49 (m, 2H), 1.34 (s, 9H), 1.21 (s, 9H); ¹³C{¹H} NMR (100 MHz, 100 MHz).

CDCl₃) δ: 165.8, 156.5, 136.4, 132.9, 129.6, 129.5, 128.5, 127.8, 127.7, 126.6, 125.3, 74.2, 73.4, 63.9, 35.0, 31.1, 27.5; HRMS (ESI-TOF) *m*/*z*: C₂₅H₃₂NaO₃ (M + Na)⁺ calcd for 403.2244, found 403.2264.

(*E*)-1-(*tert*-butoxy)-4-phenylbut-3-en-2-yl 4-methoxybenzoate (4d), by silica gel column chromatography (hexane/ethyl acetate = 30:1), 29.8 mg, 42% yield, yellow oil, HPLC: 75% ee, $t_R = 6.681$ min (minor), $t_R = 23.375$ min (major) (Chiralcel AD-H column, hexane/isopropanol = 90/10, flow rate 1.0 mL/min, T = 28°C, 254 nm), ¹HNMR (400 MHz, CDCl₃) δ :8.05 (d, J = 8.8 Hz, 2H), 7.39 (d, J = 7.4 Hz, 2H), 7.30 (t, J = 7.4 Hz, 2H), 7.27 – 7.19 (m, 1H), 6.93 (d, J = 8.8 Hz, 2H), 6.74 (d, J = 16.0 Hz, 1H), 6.32 (dd, J = 16.0, 6.8 Hz, 1H), 5.73 (q, J = 5.9 Hz, 1H), 3.86 (s, 3H), 3.75 – 3.59 (m, 2H), 1.20 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 165.6, 163.3, 136.4, 132.9, 131.7, 128.5, 127.8, 126.6, 125.3, 122.9, 113.5, 74.2, 73.4, 64.0, 55.4, 27.5; HRMS (ESI-TOF) *m/z*: C₂₂H₂₆NaO₄ (M + Na)⁺ calcd for 377.1723, found 377.1747.

(*E*)-1-(*tert*-butoxy)-4-phenylbut-3-en-2-yl 4-fluorobenzoate (4e), by silica gel column chromatography (hexane/ethyl acetate = 40:1), 44.5 mg, 65% yield, yellow oil, HPLC: 59% ee, $t_R = 4.671$ min (minor), $t_R = 6.830$ min (major) (Chiralcel AD-H column, hexane/isopropanol = 90/10, flow rate 1.0 mL/min, T = 28°C, 254 nm), ¹HNMR (400 MHz, CDCl₃) δ :8.11 (dd, J = 8.5, 5.6 Hz, 2H), 7.39 (d, J = 7.3 Hz, 2H), 7.31 (t, J = 7.4 Hz, 2H), 7.27 – 7.22 (m, 1H), 7.11 (t, J = 8.6 Hz, 2H), 6.74 (d, J = 16.0 Hz, 1H), 6.31 (dd, J = 16.0, 6.9 Hz, 1H), 5.74 (q, J = 6.0 Hz, 1H), 3.76 – 3.57 (m, 2H), 1.20 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 165.7 (d, J = 252.1 Hz, 1C), 164.9, 136.3, 133.4, 132.2 (d, J = 9.3 Hz, 1C), 128.5, 128.0, 126.8 (d, J = 2.5 Hz, 1C), 126.6, 124.9, 115.5 (d, J = 21.8 Hz, 1C), 74.8, 73.4, 63.9, 27.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -105.8 (s, 1F); HRMS (ESI-TOF) *m/z*: C₂₁H₂₃FNaO₃ (M + Na)⁺ calcd for 365.1523, found 365.1545.

(*E*)-1-(*tert*-butoxy)-4-phenylbut-3-en-2-yl 4-chlorobenzoate (4f), by silica gel column chromatography (hexane/ethyl acetate = 40:1), 52.3 mg, 73% yield, yellow oil, ¹HNMR (400 MHz, CDCl₃) δ :8.02 (d, *J* = 8.5 Hz, 2H), 7.45 – 7.37 (m, 4H), 7.31 (t, *J* = 7.4 Hz, 2H), 7.25 (d, *J* = 7.1 Hz, 1H), 6.74 (d, *J* = 16.0 Hz, 1H), 6.30 (dd, *J* = 16.0, 7.0 Hz, 1H), 5.75 (q, *J* = 6.3 Hz, 1H), 3.67 (qd, *J* = 10.1, 5.7 Hz, 2H), 1.20 (s, 9H); ¹³C{¹H} NMR (100 MHz, 100 MHz,

CDCl₃) δ : 165.0, 139.3, 136.2, 133.5, 131.0, 129.0, 128.6, 128.5, 128.0, 126.6, 124.7, 74.9, 73.4, 63.9, 27.5; HRMS (ESI-TOF) *m*/*z*: C₂₁H₂₃ClNaO₃ (M + Na)⁺ calcd for 381.1228, found 381.1249.

(*E*)-1-(*tert*-butoxy)-4-phenylbut-3-en-2-yl 4-bromobenzoate (4g), by silica gel column chromatography (hexane/ethyl acetate = 40:1), 48.2 mg, 60% yield, yellow oil, HPLC: 59% ee, $t_R = 5.172 \text{ min (minor)}$, $t_R = 14.332 \text{ min (major)}$ (Chiralcel AD-H column, hexane/isopropanol = 90/10, flow rate 1.0 mL/min, T = 28°C, 254 nm), ¹HNMR (400 MHz, CDCl₃) δ :7.95 (d, J = 8.5 Hz, 2H), 7.58 (d, J = 8.6 Hz, 2H), 7.39 (d, J = 7.2 Hz, 2H), 7.31 (t, J = 7.4 Hz, 2H), 7.27 – 7.20 (m, 1H), 6.74 (d, J = 16.0 Hz, 1H), 6.30 (dd, J = 16.0, 7.0 Hz, 1H), 5.74 (q, J = 6.1 Hz, 1H), 3.67 (qd, J = 10.1, 5.7 Hz, 2H), 1.20 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 165.1, 136.2, 133.5, 131.6, 131.2, 129.5, 128.5, 128.0, 127.9, 126.6, 124.7, 75.0, 73.4, 63.9, 27.5; HRMS (ESI-TOF) *m*/*z*: C₂₁H₂₃BrNaO₃ (M + Na)⁺ calcd for 425.0723, found 425.0741.

(*E*)-1-(*tert*-butoxy)-4-phenylbut-3-en-2-yl 4-(trifluoromethyl)benzoate (4h), by silica gel column chromatography (hexane/ethyl acetate = 40:1), 45.5 mg, 58% yield, colorless oil, HPLC: 77% ee, t_R = 5.462 min (minor), t_R = 7.003 min (major) (Chiralcel AD-H column, hexane/isopropanol = 90/10, flow rate 1.0 mL/min, T = 28°C, 254 nm), ¹HNMR (400 MHz, CDCl₃) δ :8.20 (d, *J* = 8.1 Hz, 2H), 7.71 (d, *J* = 8.2 Hz, 2H), 7.40 (d, *J* = 7.2 Hz, 2H), 7.31 (t, *J* = 7.4 Hz, 2H), 7.25 (t, *J* = 7.2 Hz, 1H), 6.76 (d, *J* = 16.0 Hz, 1H), 6.31 (dd, *J* = 16.0, 7.1 Hz, 1H), 5.79 (q, *J* = 6.5 Hz, 1H), 3.69 (qd, *J* = 10.1, 5.6 Hz, 2H), 1.21 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 164.7, 136.1, 134.3 (q, *J* = 32.4 Hz, 1C), 133.8, 130.0, 128.6, 128.1, 126.6 (2C), 125.4 (q, *J* = 3.7 Hz, 1C), 124.4, 123.6 (q, *J* = 271.1 Hz, 1C), 75.4, 73.5, 63.8, 27.4; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.1 (s, 3F); HRMS (ESI-TOF) *m*/z: C₂₂H₂₃F₃NaO₃ (M + Na)⁺ calcd for 415.1492, found 415.1515.

(*E*)-1-(*tert*-butoxy)-4-phenylbut-3-en-2-yl 4-nitrobenzoate (4i), by silica gel column chromatography (hexane/ethyl acetate = 40:1), 20.7 mg, 28% yield, yellow solid (mp 102-104°C), ¹HNMR (400 MHz, CDCl₃) δ :8.28 (q, J = 8.7 Hz, 4H), 7.40 (d, J = 7.2 Hz, 2H), 7.32 (t, J = 7.3 Hz, 2H), 7.27 (d, J = 6.6 Hz, 1H), 6.77 (d, J = 16.0 Hz, 1H), 6.30 (dd, J = 16.0, 7.2 Hz, 1H), 5.79 (d, J = 4.4 Hz, 1H), 3.79 – 3.61 (m, 2H), 1.21 (s, 9H); ¹³C{¹H}

NMR (100 MHz, CDCl₃) δ: 164.0, 150.5, 136.0, 134.2, 130.7, 128.6 (2C), 128.2, 126.7, 124.0, 123.5, 75.9, 73.5, 63.8, 27.5; HRMS (ESI-TOF) *m/z*: C₂₁H₂₃NNaO₅ (M + Na)⁺ calcd for 392.1468, found 392.1496.

(*E*)-1-(*tert*-butoxy)-4-phenylbut-3-en-2-yl methyl terephthalate (4j), by silica gel column chromatography (hexane/ethyl acetate = 20:1), 48.2 mg, 63% yield, white solid (mp 121-123 °C), ¹HNMR (400 MHz, CDCl₃) δ :8.13 (q, J = 8.4 Hz, 4H), 7.40 (d, J = 7.4 Hz, 2H), 7.31 (t, J = 7.4 Hz, 2H), 7.27 – 7.20 (m, 1H), 6.76 (d, J = 16.0 Hz, 1H), 6.31 (dd, J = 16.0, 7.1 Hz, 1H), 5.77 (q, J = 6.3 Hz, 1H), 3.95 (s, 3H), 3.69 (ddt, J = 14.6, 10.1, 5.7 Hz, 2H), 1.21 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 166.3, 165.0, 136.2, 134.4, 133.8, 133.7, 129.6, 129.5, 128.5, 128.0, 126.6, 124.6, 75.2, 73.4, 63.9, 52.4, 27.4; HRMS (ESI-TOF) *m*/*z*: C₂₃H₂₆NaO₅ (M + Na)⁺ calcd for 405.1673, found 405.1698.

(*E*)-1-(*tert*-butoxy)-4-phenylbut-3-en-2-yl 2-methylbenzoate (4k), by silica gel column chromatography (hexane/ethyl acetate = 40:1), 38.6 mg, 57% yield, yellow oil, HPLC: 69% ee, $t_R = 4.119$ min (minor), $t_R = 5.259$ min (major) (Chiralcel AD-H column, hexane/isopropanol = 90/10, flow rate 1.0 mL/min, T = 28°C, 254 nm), ¹HNMR (400 MHz, CDCl₃) δ :7.96 (d, J = 7.3 Hz, 1H), 7.40 (d, J = 7.3 Hz, 3H), 7.31 (t, J = 7.4 Hz, 2H), 7.27 – 7.21 (m, 3H), 6.75 (d, J = 16.0 Hz, 1H), 6.32 (dd, J = 16.0, 6.9 Hz, 1H), 5.75 (q, J = 6.1 Hz, 1H), 3.66 (qd, J = 9.9, 5.7 Hz, 2H), 2.62 (s, 3H), 1.21 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 166.9, 140.1, 136.4, 133.2, 131.8, 131.6, 130.5, 130.1, 128.5, 127.9, 126.6, 125.6, 125.2, 74.5, 73.3, 63.9, 27.5, 21.7; HRMS (ESI-TOF) *m/z*: C₂₂H₂₆NaO₃ (M + Na)⁺ calcd for 361.1774, found 361.1798.

(*E*)-1-(*tert*-butoxy)-4-phenylbut-3-en-2-yl 3-methylbenzoate (4l), by silica gel column chromatography (hexane/ethyl acetate = 40:1), 42.6 mg, 63% yield: yellow oil, HPLC: 71% ee, $t_R = 4.485$ min (minor), $t_R = 6.196$ min (major) (Chiralcel AD-H column, hexane/isopropanol = 90/10, flow rate 1.0 mL/min, T = 28°C, 254 nm), ¹HNMR (400 MHz, CDCl₃) δ :7.89 (d, J = 8.0 Hz, 2H), 7.38 (t, J = 8.6 Hz, 3H), 7.35 – 7.27 (m, 3H), 7.24 (d, J = 7.7 Hz, 1H), 6.75 (d, J = 16.0 Hz, 1H), 6.32 (dd, J = 16.0, 6.8 Hz, 1H), 5.75 (q, J = 6.1 Hz, 1H), 3.75 – 3.60 (m, 2H), 2.41 (s, 3H), 1.21 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 166.0, 138.1, 136.4, 133.6, 133.1, 130.5,

130.2, 128.5, 128.2, 127.9, 126.8, 126.6, 125.2, 74.5, 73.4, 63.9, 27.5, 21.3; HRMS (ESI-TOF) *m/z*: C₂₂H₂₆NaO₃ (M + Na)⁺ calcd for 361.1774, found 361.1800.

(*E*)-1-(*tert*-butoxy)-4-phenylbut-3-en-2-yl 3,5-dimethylbenzoate (4m), by silica gel column chromatography (hexane/ethyl acetate = 40:1), 34.5 mg, 49% yield, colorless oil, HPLC: 57% ee, $t_R = 4.547$ min (minor), $t_R = 5,437$ min (major) (Chiralcel AD-H column, hexane/isopropanol = 90/10, flow rate 1.0 mL/min, T = 28°C, 254 nm), ¹HNMR (400 MHz, CDCl₃) δ :7.70 (s, 2H), 7.39 (d, J = 7.5 Hz, 2H), 7.30 (t, J = 7.4 Hz, 2H), 7.24 (d, J = 8.3 Hz, 1H), 7.19 (s, 1H), 6.74 (d, J = 16.1 Hz, 1H), 6.32 (dd, J = 16.0, 6.8 Hz, 1H), 5.75 (q, J = 6.1 Hz, 1H), 3.79 – 3.55 (m, 2H), 2.36 (s, 6H), 1.21 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 166.2, 137.9, 136.4, 134.5, 133.1, 130.4, 128.5, 127.9, 127.4, 126.6, 125.2, 74.3, 73.4, 63.9, 27.5, 21.2; HRMS (ESI-TOF) *m/z*: C₂₃H₂₈NaO₃ (M + Na)⁺ calcd for 375.1931, found 375.1956.

(*E*)-1-(*tert*-butoxy)-4-phenylbut-3-en-2-yl 3,5-dichlorobenzoate (4n), by silica gel column chromatography (hexane/ethyl acetate = 40:1), 32.9 mg, 42% yield, yellow oil, HPLC: 49% ee, $t_R = 3.793$ min (minor), $t_R = 4.152$ min (major) (Chiralcel AD-H column, hexane/isopropanol = 90/10, flow rate 1.0 mL/min, T = 28°C, 254 nm), ¹HNMR (400 MHz, CDCl₃) δ :7.94 (d, J = 1.6 Hz, 2H), 7.54 (s, 1H), 7.40 (d, J = 7.6 Hz, 2H), 7.32 (t, J = 7.4 Hz, 2H), 7.26 (d, J = 6.7 Hz, 1H), 6.75 (d, J = 16.0 Hz, 1H), 6.28 (dd, J = 16.0, 7.2 Hz, 1H), 5.74 (q, J = 6.7 Hz, 1H), 3.75 – 3.59 (m, 2H), 1.21 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 163.6, 136.0, 135.2, 134.1, 133.4, 132.7, 128.6, 128.1, 128.1, 126.7, 124.1, 75.7, 73.5, 63.8, 27.4; HRMS (ESI-TOF) *m/z*: C₂₁H₂₂Cl₂NaO₃ (M + Na)⁺ calcd for 415.0838, found 415.0865.

(*E*)-1-(*tert*-butoxy)-4-phenylbut-3-en-2-yl 2-chloro-4-fluorobenzoate (40), by silica gel column chromatography (hexane/ethyl acetate = 40:1), 33.8 mg, 45% yield, white solid (mp 90-92 °C), ¹HNMR (400 MHz, CDCl₃) δ :8.01 – 7.86 (m, 1H), 7.40 (d, *J* = 7.7 Hz, 2H), 7.32 (t, *J* = 7.3 Hz, 2H), 7.28 – 7.23 (m, 1H), 7.22 – 7.16 (m, 1H), 7.07 – 6.98 (m, 1H), 6.78 (d, *J* = 16.0 Hz, 1H), 6.30 (dd, *J* = 16.0, 7.2 Hz, 1H), 5.76 (q, *J* = 6.3 Hz, 1H), 3.66 (dt, *J* = 10.0, 6.1 Hz, 2H), 1.21 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 164.0, 164.0 (d, *J* = 254.3 Hz, 1C), 136.2, 135.7 (d, *J* = 10.6 Hz, 1C), 133.9, 133.5 (d, *J* = 9.5 Hz, 1C), 128.5, 128.0, 126.7, 126.6 (d, *J* = 3.5 Hz, 1C), 128.5, 128.0, 126.7, 126.6 (d, J = 3.5 Hz), 128.5, 128.0, 128.5, 128.0, 126.7, 126.6 (d, J = 3.5 Hz), 128.5, 128.0, 126.7, 126.7, 126.7, 126.7, 126.7, 126.7, 126.7, 126.7, 126.7, 126.7, 126.

1C), 124.4, 118.5 (d, J = 24.6 Hz, 1C), 114.0 (d, J = 21.2 Hz, 1C), 75.6, 73.4, 63.7, 27.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -105.7 (s, 1F); HRMS (ESI-TOF) m/z: C₂₁H₂₂ClFNaO₃ (M + Na)⁺ calcd for 399.1134, found 399.1160.

(*E*)-1-(*tert*-butoxy)-4-phenylbut-3-en-2-yl furan-2-carboxylate (4p), by silica gel column chromatography (hexane/ethyl acetate = 40:1), 27.0 mg, 43% yield, colorless oil, HPLC: 70% ee, $t_R = 6.750$ min (minor), $t_R = 8.378$ min (major) (Chiralcel AD-H column, hexane/isopropanol = 90/10, flow rate 1.0 mL/min, T = 28°C, 254 nm), ¹HNMR (400 MHz, CDCl₃) δ :7.62 – 7.54 (m, 1H), 7.39 (d, J = 7.3 Hz, 2H), 7.31 (t, J = 7.4 Hz, 2H), 7.23 (dd, J = 12.7, 5.3 Hz, 2H), 6.75 (d, J = 16.0 Hz, 1H), 6.51 (dd, J = 3.4, 1.6 Hz, 1H), 6.29 (dd, J = 16.0, 7.0 Hz, 1H), 5.74 (q, J = 6.1 Hz, 1H), 3.66 (qd, J = 10.1, 5.7 Hz, 2H), 1.20 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 158.0, 146.2, 144.8, 136.2, 133.7, 128.5, 128.0, 126.6, 124.6, 117.9, 111.8, 74.6, 73.5, 63.8, 27.4; HRMS (ESI-TOF) *m/z*: C₁₉H₂₂NaO₄ (M + Na)⁺ calcd for 337.1410, found 337.1435.

(*E*)-1-(*tert*-butoxy)-4-phenylbut-3-en-2-yl thiophene-2-carboxylate (4q), by silica gel column chromatography (hexane/ethyl acetate = 40:1), 35.7 mg, 54% yield, yellow oil, HPLC: 71% ee, $t_R = 5.487$ min (minor), $t_R = 7.711$ min (major) (Chiralcel AD-H column, hexane/isopropanol = 90/10, flow rate 1.0 mL/min, T = 28°C, 254 nm), ¹HNMR (400 MHz, CDCl₃) δ :7.84 (dd, J = 3.7, 1.1 Hz, 1H), 7.55 (dd, J = 5.0, 1.1 Hz, 1H), 7.39 (d, J = 7.3 Hz, 2H), 7.31 (t, J = 7.4 Hz, 2H), 7.26 – 7.21 (m, 1H), 7.10 (dd, J = 4.9, 3.8 Hz, 1H), 6.75 (d, J = 16.0 Hz, 1H), 6.29 (dd, J = 16.0, 6.9 Hz, 1H), 5.71 (q, J = 5.8 Hz, 1H), 3.75 – 3.54 (m, 2H), 1.21 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 161.5, 136.3, 134.1 (2C), 133.4, 132.3, 128.5, 127.9, 127.7, 126.6, 124.8, 74.8, 73.4, 63.9, 27.5; HRMS (ESI-TOF) m/z: C₁₉H₂₂NaO₃S (M + Na)⁺ calcd for 353.1182, found 353.1106.

(*E*)-1-(*tert*-butoxy)-4-phenylbut-3-en-2-yl 1-naphthoate (4r), by silica gel column chromatography (hexane/ethyl acetate = 30:1), 34.4 mg, 46% yield, yellow oil, HPLC: 69% ee, $t_R = 5.185$ min (minor), $t_R = 6.579$ min (major) (Chiralcel AD-H column, hexane/isopropanol = 90/10, flow rate 1.0 mL/min, T = 28°C, 254 nm), ¹HNMR (400 MHz, CDCl₃) δ :8.95 (d, J = 8.6 Hz, 1H), 8.21 (d, J = 7.2 Hz, 1H), 8.01 (d, J = 8.2 Hz, 1H), 7.88 (d, J = 8.1 Hz, 1H), 7.62 – 7.57 (m, 1H), 7.52 (q, J = 7.2 Hz, 2H), 7.41 (d, J = 7.7 Hz, 2H), 7.31 (t, J = 7.4 Hz, 2H), 7.25 (d, J = 7.0 Hz, 1H), 6.82 (d, J = 16.0 Hz, 1H), 6.37 (dd, J = 16.0, 7.0 Hz, 1H), 5.89 (q, J = 6.4 Hz, 1H), 3.83 –

3.61 (m, 2H), 1.25 (s, 9H); ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) δ : 167.1, 136.4, 133.8, 133.5, 133.1, 131.3, 130.0, 128.5, 128.4, 127.9, 127.6, 126.6 (2C), 126.1 (2C), 125.0, 124.5, 74.9, 73.4, 63.9, 27.5; HRMS (ESI-TOF) *m/z*: C₂₅H₂₆NaO₃ (M + Na)⁺ calcd for 397.1774, found 397.1802.

(*E*)-1-(tert-butoxy)-4-phenylbut-3-en-2-yl 2-naphthoate (4s), by silica gel column chromatography (hexane/ethyl acetate = 30:1), 39.7 mg, 53% yield, white solid (mp 95-97 °C), ¹HNMR (400 MHz, CDCl₃) δ :8.66 (s, 1H), 8.11 (d, J = 8.5 Hz, 1H), 7.96 (d, J = 7.9 Hz, 1H), 7.89 (dd, J = 8.2, 3.2 Hz, 2H), 7.56 (dq, J = 14.6, 6.9 Hz, 2H), 7.41 (d, J = 7.5 Hz, 2H), 7.31 (t, J = 7.4 Hz, 2H), 7.27 – 7.20 (m, 1H), 6.79 (d, J = 16.0 Hz, 1H), 6.37 (dd, J = 16.0, 6.8 Hz, 1H), 5.83 (q, J = 6.0 Hz, 1H), 3.84 – 3.61 (m, 2H), 1.22 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 166.0, 136.4, 135.5, 133.3, 132.5, 131.1, 129.4, 128.5, 128.2, 128.1, 127.9, 127.8, 127.7, 126.6 (2v), 125.4, 125.1, 74.7, 73.4, 64.0, 27.5; HRMS (ESI-TOF) *m/z*: C₂₅H₂₆NaO₃ (M + Na)⁺ calcd for 397.1774, found 397.1801.

(*E*)-1-(*tert*-butoxy)-4-phenylbut-3-en-2-ol (7), by silica gel column chromatography (hexane/ethyl acetate = 20:1), 34.3 mg, 78% yield, yellow oil, ¹HNMR (400 MHz, CDCl₃) δ : 7.39 (d, *J* = 7.6 Hz, 2H), 7.31 (t, *J* = 7.5 Hz, 2H), 7.26 – 7.20 (m, 1H), 6.70 (d, *J* = 16.0 Hz, 1H), 6.19 (dd, *J* = 16.0, 6.2 Hz, 1H), 4.41 (s, 1H), 3.49 (dd, *J* = 9.0, 3.3 Hz, 1H), 3.30 (t, *J* = 8.7 Hz, 1H), 2.81 (s, 1H), 1.23 (s, 9H); ¹³C{¹H} MMR (100 MHz, CDCl₃) δ : 136.7, 131.5, 128.5, 127.9, 127.6, 126.4, 73.5, 71.6, 65.9, 27.5; HRMS (ESI-TOF) *m/z*: C₁₄H₂₀NaO₂ (M + Na)⁺ calcd for 243.1356, found 243.1376.

2-hydroxy-1-(3-phenyloxiran-2-yl)ethyl 4-(*tert***-butyl)benzoate** (**8**), by silica gel column chromatography (hexane/ethyl acetate = 10:1), 41.2 mg, 52% yield, white solid (mp 98-100 °C), ¹HNMR (400 MHz, CDCl₃) δ : 7.89 (d, J = 8.5 Hz, 2H), 7.45 (t, J = 7.5 Hz, 4H), 7.36 (t, J = 7.3 Hz, 2H), 7.30 (d, J = 7.2 Hz, 1H), 5.31 – 5.21 (m, 1H), 4.77 (d, J = 6.2 Hz, 1H), 4.35 (t, J = 4.1 Hz, 2H), 4.22 (d, J = 4.2 Hz, 1H), 3.30 (s, 1H), 1.34 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 167.4, 157.3, 139.1, 129.6, 128.4, 127.9 (2C), 126.4, 125.9, 125.4, 99.9, 85.8, 84.0, 83.0, 71.1, 35.1, 31.1; HRMS (ESI-TOF) m/z: C₂₁H₂₄NaO₄ (M + Na)⁺ calcd for 363.1567, found 363.1599.

(2-(*tert*-butoxy)ethene-1,1-diyl)dibenzene (10), by silica gel column chromatography (hexane/ethyl acetate = 50:1), 9.1 mg, 52% yield, Colorless oil, ¹HNMR (400 MHz, CDCl₃) δ : 7.44 (d, *J* = 8.0 Hz, 2H), 7.29 (t, *J* = 7.2 Hz, 4H), 7.24 (dd, *J* = 6.1, 4.0 Hz, 3H), 7.19 (t, *J* = 7.4 Hz, 1H), 6.71 (s, 1H), 1.38 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 141.5, 139.8, 138.1, 129.8, 128.7, 128.2, 127.7, 126.2, 126.0, 120.3, 77.4, 28.1; HRMS (ESI-TOF) *m*/*z*: C₁₈H₂₀NaO (M + Na)⁺ calcd for 275.1406, found 275.1415.

1-phenylallyl benzoate (13)⁵, by silica gel column chromatography (hexane/ethyl acetate = 30:1), 16.7 mg, 35% yield: Yellow oil, ¹HNMR (400 MHz, CDCl₃) δ : 8.09 (d, *J* = 8.0 Hz, 2H), 7.57 (t, *J* = 7.4 Hz, 1H), 7.45 (dd, *J* = 15.3, 7.6 Hz, 4H), 7.34 (t, *J* = 7.6 Hz, 2H), 7.30 – 7.22 (m, 1H), 6.75 (d, *J* = 15.9 Hz, 1H), 6.42 (dt, *J* = 15.9, 6.4 Hz, 1H), 4.99 (d, *J* = 6.4 Hz, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 166.4, 136.2, 134.3, 133.0, 130.2, 129.6, 128.6, 128.4, 128.1, 126.6, 123.2, 65.5.

2-(*tert***-butoxy)-1-(naphthalen-2-yl)ethyl benzoate (17)**, by silica gel column chromatography (hexane/ethyl acetate = 30:1), 20.5 mg, 18% yield: Yellow oil, ¹HNMR (400 MHz, CDCl₃) δ : 8.13 (d, *J* = 7.3 Hz, 2H), 7.90 (s, 1H), 7.83 (t, *J* = 7.9 Hz, 3H), 7.57 (dd, *J* = 7.7, 5.9 Hz, 2H), 7.46 (t, *J* = 7.4 Hz, 4H), 6.24 (dd, *J* = 7.7, 4.2 Hz, 1H), 3.90 (dd, *J* = 10.2, 8.0 Hz, 1H), 3.75 (dd, *J* = 10.3, 4.2 Hz, 1H), 1.18 (s, 9H); HRMS (ESI-TOF) *m/z*: C₂₃H₂₄NaO₃ (M + Na)⁺ calcd for 371.1618, found 371.1584.

9. References

[1] P.-Z. Wang, X. Wu, Y. Cheng, M. Jiang, W.-J. Xiao, J.-R. Chen, *Angew. Chem. Int. Ed.* **2021**, *60*, 22956-22962

[2] L.-F. Fan, R. Liu, X.-Y. Ruan, P.-S. Wang, L.-Z. Gong, *Nat. Synth.* 2022, 1, 946-955.

[3] A. Lishchynskyi, K. Muñiz, Chem. Eur. J. 2012, 18, 2212-2216.

[4] A. Tortajada, O. Ninokata, R. Martin, J. Am. Chem. Soc. 2018, 140, 2050-2053.

[5] H. Mo, D. Chen, L. Xu, D. Chen, F. Pan, J. Yang, Synthesis, 2015, 47, 209-215.

10. NMR Spectra

(E)-1-(buta-1,3-dien-1-yl)-3-methoxybenzene (E-1n)

¹³C{¹H} NMR (100 MHz, CDCl₃)

1 2.04⊣ 1.02 - 11.02 - 11.00-[2.03-1.04 2.08-₫ 3.97 ∄ 9.09 ¥.90.6 6.0 5.0 4.5 fl (ppm) -0.8 10.0 8.0 6.5 5.5 3.5 3.0 1.5 9.5 9.0 8.5 7.5 7.0 4.0 2.5 2.0 1.0 0.5 0.0 -133.590 -133.125 -132.785 -132.785 -132.619 -129.642 -128.271 +128.271 +126.342 +125.427 -165.848-151.06277.318 77.000 76.682 74.714 73.364 -63.974 -34.550 -31.228 -27.473

¹³C{¹H} NMR (100 MHz, CDCl₃)

OCOPh O^tBu F ¹⁹F NMR (376 MHz, CDCl₃)

10 0 -10 -20 -30 -40 -50 -80 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

(E)-1-(tert-butoxy)-4-(2-methoxyphenyl)but-3-en-2-yl benzoate (3k)

(*E*)-1-(*tert*-butoxy)-4-(2-fluorophenyl)but-3-en-2-yl benzoate (3l)

95 91	5 2 2 8 1 8 2 9 4 7 9 8 4 7 9 8 4 7 9 8 4 7 9 8 4 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1	3492499540	08	81
- 0 0	00844446	0,0,0,0,0,0,0	5	öö
$\infty \infty \infty$	<u>~~~~~~~~</u>	ოოოოოო ო	-	00
\checkmark				52

¹HNMR (400 MHz, CDCl₃)

_O^tBu Ē

¹³C{¹H} NMR (100 MHz, CDCl₃)

OCOPh F ¹⁹F NMR (376 MHz, CDCl₃)

(E)-1-(*tert*-butoxy)-4-(2-chlorophenyl)but-3-en-2-yl benzoate (3m)

18	71 8 9 9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	48 22 22 25 25 25 25 25 25 25 25 25 25 25	13	6 0
	0 4 4 T T 0 0 00 L L L	0000	7	0.0
~ ~	<u> </u>		-	00
\sim				57

¹HNMR (400 MHz, CDCl₃)

¹⁹F NMR (376 MHz, CDCl₃)

OCOPh O^tBu Br F

--112.350

(*E*)-1-(*tert*-butoxy)-3-methyl-4-phenylbut-3-en-2-yl benzoate (3s)

110	151 818 800 547	529 516 512 500	749 731 731 584 558 547 547	985	207	000
8.0	4.6.6.69	5.5.5		1.5	17	9.0
\sim	1 2001	\sim		1		57

¹HNMR (400 MHz, CDCl₃)

13C{1H} NMR (100 MHz, CDCI3)

ò 100 90 fl (ppm)

0 1	014 001 00 01 0	40004001	P P	8 5
40	<u> て ろ ち ろ ち ろ ち ろ ち ろ ち ろ ち ろ ち ろ ち ろ ち ろ</u>	0000v40-	0 3	~ ~
00	44000000000	0000011	6 0	0 4
ര്ത്	ה ה ה ה ה ה ה ה ה ה ה			<u> </u>
~~~~~			· ( ) /	Ϋ́,
2			) (	















--63.065

Ph o^tBu

¹⁹F NMR (376 MHz, CDCl₃)



# (E)-1-(*tert*-butoxy)-4-phenylbut-3-en-2-yl 4-nitrobenzoate (4i)

311 289 262 240	.412 .394 .323	.794 .754 .331 .333 .333 .333 .784	.744 .719 .697 .660 .660	.672	.209	.077 0.000
$\infty \infty \infty \infty$		$\circ$ $\circ$ $\circ$ $\circ$ $\circ$		-	-	Οĭ
$\sim$	1	$\mu$ $\mu$ $\vee$		1	1	57



¹HNMR (400 MHz, CDCl₃)














## S77







S80







90 80 fl (ppm) 



S84

## 11. HPLC trace













 Time/
 Width/

 [min]
 Type
 [min]
 Area/mAU*s
 Height/mAU
 Area%

 6.690
 VV R
 0.1493
 6656.41064
 671.85382
 50.3839

 10.628
 BB
 0.2459
 6554.97998
 409.25833
 49.6161

1 2

2



10.498 BB 0.2627 4.28044e4 2512.91187 84.0568











 Time/
 Width/

 [min]
 Type
 [min]
 Area/mAU*s
 Height/mAU
 Area%

 1
 5.115
 VV R
 0.1172
 1.58334e4
 2012.98816
 49.9647

 2
 13.399
 BB
 0.3496
 1.58557e4
 701.73688
 50.0353











 Time/
 Width/

 [min]
 Type
 [min]
 Area/mAU*s
 Height/mAU
 Area%

 1
 5.516
 VV R
 0.1187
 1.28868e4
 1630.63220
 49.7623

 2
 7.770
 BV R
 0.1714
 1.30099e4
 1145.01086
 50.2377





 Time/
 Width/

 [min]
 Type
 [min]
 Area/mAU*s
 Height/mAU
 Area%

 1
 4.124
 VV R
 0.0958
 6727.58545
 1047.76965
 49.1409

 2
 5.273
 VV R
 0.1184
 7049.00098
 869.52899
 50.8591













 Time/
 Width/

 [min]
 Type
 [min]
 Area/mAU*s
 Height/mAU
 Area%

 1
 5.516
 VV R
 0.1187
 1.28868e4
 1630.63220
 49.7623

 2
 7.770
 BV R
 0.1714
 1.30099e4
 1145.01086
 50.2377



2 7.711 BB 0.1682 6860.93018 619.58044 85.7690





	Time/		Width/			
	[min]	Type	[min]	Area/mAU*s	Height/mAU	Area%
1	5.185	VV R	0.1149	840.35992	110.23548	15.7824
2	6.579	VV R	0.1312	4484.29102	504.35605	84.2176