Electronic Supplementary Information

Biosynthesis of retinyl esters in *Yarrowia lipolytica* through metabolic engineering and fermentation condition optimization

Jin Zhang,^a Lingxuan Sun,^a Wenli Yang,^{a, b} Huangwei Xu,^a Juzheng Sheng,^b Mengmeng Liu,^a Qingsheng Qi,^a Jin Hou*^a

^a Shandong University, State Key Laboratory of Microbial Technology, Binhai Road 72, Qingdao, 266237, P. R. China

^b Shandong University, School of Pharmaceutical Sciences, Wenhua West Road 44, Jinan, 250012, P. R. China

*Corresponding contributor. E-mail: houjin@sdu.edu.cn

A1 Plasmids and strains construction details

For Y. lipolytica transformants selection, the selection marker LEU2 in plasmid pKi-1 was replaced by TRP1 and HYG to construct pKi1-TRP and pKi1-HYG, and the selection marker URA3 in plasmid 113-GPD-TEF was replaced by LEU2 to construct 113-LEU-GPD-TEF. To screen β-carotene 15,15'-dioxygenase (BCO) and retinol dehydrogenase (RDH) with high activity in Y. lipolytica, enzymes from different organisms found in the BRENDA enzyme database were considered. BCO genes derived from the uncultured marine bacterium 66A03 (BLH, GenBank: AAY68319.1), Danio rerio (DrBCO1, GenBank: AAH49331.1), Gallus gallus (GgBCO1, GenBank: CAB90825.1), Homo sapiens (HsBCO1, GenBank: AAG15380.1) and Rattus norvegicus (RnBCO1, GenBank: BAB60807.1) were codon-optimized and synthesized (Tsingke, Beijing, China). RDH genes derived from E. coli K12 (YBBO, GenBank: NP 415026.1) and Homo sapiens (ADH1B, GenBank: NP 000659.2; DHRS3, GenBank: NP 004744.2; RDH8, GenBank: NP 056540.3; RDH12 GenBank: NP 689656.2) were also codon-optimized and synthesized (Tsingke, Beijing, China). These genes were ligated with the expression plasmid pKi1-TRP under the control of the *ut8* promoter and the *CYC1* terminator. Linear plasmids were transformed into the T3 strain,¹ which overexpresses all genes in the biosynthetic pathway from acetyl-CoA to β-carotene (AtoB, HMGS, HMGR, ERG12, ERG8, ERG19, IDI1, ERG20, GGS1, CarRP, and CarB), and integrated into the genome randomly. Transformants were selected on SC-TRP plates and verified by clone PCR to generate strains named VA1 to VA9. Twenty transformants from each transformant plate were selected randomly and fermented in shake flasks to detect retinoid production.

To verify the ability of different β -carotene-producing strains to produce retinol, we used four strains. Of genes in the β -carotene synthesis pathway, the T1 strain² expresses *CarRP* and *CarB*; the T1GI12VC strain² overexpresses *ERG12, ERG8, ERG19, IDI1, GGS1, GPS, CarRP,* and *VHb*; and the T3 strain¹ overexpresses all genes in the biosynthetic pathway from acetyl-CoA to β -carotene including *AtoB, HMGS, HMGR, ERG12, ERG8, ERG19, IDI1, ERG20, GGS1, CarRP,* and *CarB.* The T3GI12VC- Δ CLA4/MHY1 strain² overexpresses all genes of the mevalonate and carotenoid pathways, and has the endogenous *CLA4* and *MHY1* genes, which control filament formation, deleted. We expressed *BLH* from the uncultured marine bacterium 66A03 and *RDH12* from *Homo sapiens* in these strains and obtained the VAT1, VATIGI12VC, VAT3 and VAT3GI12VC- Δ CLA4/MHY1 strains, respectively. To obtain higher expression of *BLH* and *RDH12*, we transformed *BLH*- and *RDH12*-containing DNA fragments into the T3GI12VC- Δ CLA4/MHY1 strain via non-homologous end joining (NHEJ), and screened out multiple transformants with different retinoid production including the VA1-1, VA1-2 and VA1-3 strain.

To strengthen the mevalonate pathway, the p-car-M1 plasmid¹ containing acetyl-CoA acetyltransferase gene (*AtoB*, GenBank: b2224), HMG-CoA synthase gene (*HMGS*, Genbank: YALI0_F30481g), HMG-CoA reductase gene (*HMGR*, GenBank: Bpet3342), mevalonate kinase gene (*ERG12*, GenBank: YALI0_B16038g) was transformed into the VA1-3 strain to obtain the VA10 strain. To strengthen the carotenoid pathway, the geranylgeranyl diphosphate synthase gene from *Haematococcus pluvialis* (*HpGGPPs*, Genbank: KP759940.1) under the control of the *TEF1* promoter and the *CYC1* terminator was codon-optimized and synthesized (Tsingke, Beijing, China). The

gene for the bifunctional enzyme phytoene synthase/lycopene cyclase (*CarRP*; GenBank: AJ250827.1), under the control of the *GPD1* promoter and the *XPR2* terminator was amplified from the p-car-M3 plasmid.¹ 113-LEU-HpGGPPs-CarRP was transformed into the VA10 strain to obtain the VA11 strain.

To improve the production of retinyl esters, the endogenous diacylglycerol acyltransferase 1/2 genes (*DGA1*, Genbank: YALI0_E32769g; *DGA2*, Genbank: YALI0_D07986g) were amplified from the *Y. lipolytica* genome. Lecithin retinol acyltransferase genes derived from *Homo sapiens* (*HsLRAT*, Genbank: AF071510) and *Rattus norvegicus* (*RnLRAT*, Genbank: AF255060) and retinol-binding protein 1 gene derived from *Homo sapiens* (*RBP1*, Genbank: M11433) were codon-optimized and synthesized (Tsingke, Beijing, China). These genes were constructed into the plasmid pKi1-HYG under the control of the *ut8* promoter and the *CYC1* terminator. HsLRAT was fused with RBP1 via a GGGGS amino acid linker and ligated into the plasmid pKi1-HYG to obtain the plasmid pKi1-HYG-HsLRATRBP1. These plasmids were transformed into the VA11 strain to obtain the VA12 to VA17 strain.

A2 Shake-flask cultivations details

For shake-flask cultivations, single colonies were inoculated in 24-well plates containing 1.5 mL YPD medium. Next, 1 mL of the culture was inoculated in a 300-mL shake flask containing 50 mL medium and cultured for 96 h at 30 °C and 200 rpm. 10% dodecane was added to collect retinoids. YP (20 g/L tryptone, 10 g/L yeast extract) was used as the basic component of the fermentation medium, and different carbon sources, including glucose, oleic acid, palmitic acid, palm oil, peanut oil and olive oil (50 g/L), were added to YP when necessary. Tween 80 (0.1%) was added to the medium as an emulsifier when lipid carbon sources were used. For retinol fermentation, different fermentation conditions were optimized in shake flasks, including the addition of different metal ions, antioxidants and cultivation temperatures. Metal ions, including Zn^{2+} and Fe^{2+} , were added to the medium in the form of sulfates with final concentration of 1.5, 3 and 6 mM; the doses of the antioxidant butylated hydroxytoluene (BHT) tested were 0.1%, 0.5%, 1.0% and 2.0%; and the cultivation temperatures tested were 26 °C, 28 °C, 30 °C and 32 °C for 96 h, as well as 30 °C for 48 h and 35 °C for another 48 h.

Fig. S1 The effect of adding dodecane on the production of retinoids and OD_{600} . Data represent the mean \pm SD of two biological replicates. Statistical analysis was performed by using Student's *t*-test (*p < 0.05, **p < 0.01, ***p < 0.001).

Fig. S2 Selection of transformants transformed *BLH* and *RDH12* via NHEJ in T3GI12VC- Δ CLA4/MHY1. (a) Appearance of the 24-well plate fermentation of different transformants. (b) The retinoid production and OD₆₀₀ of different transformants. Data of control represent the mean \pm SD of two biological replicates.

Fig. S3 Optimization of the cultivation conditions for retinol production in VA11 using glucose as the carbon source in shake flasks. (a) The retinoid production and OD_{600} with adding different concentrations of Zn^{2+} and Fe^{2+} . (b) The retinoid production and OD_{600} with adding different concentrations of BHT. (c) The retinoid production and OD_{600} under different culture temperatures. Data represent the mean \pm SD of three biological replicates. Statistical analysis was performed by using one-way ANOVA (*p < 0.05, **p < 0.01, ***p < 0.001).

Fig. S4 Accumulation of retinyl esters in retinol-producing strains. (a) HPLC analysis of retinyl ester standards and the fermented product of VA1-2 and VA11 strains. (b) The retinoid production of retinol-producing strains. Data represent the mean \pm SD of three biological replicates.

Fig. S5 The LC-MS spectra of standard and purified retinoids. (a) HPLC spectra of standard and purified retinoids. (b) MS spectra of retinol standard. (c) MS spectra of purified retinol. (d) MS spectra of retinyl palmitate standard. (e) MS spectra of purified retinyl palmitate. (f) MS spectra of retinyl oleate standard. (g) MS spectra of purified retinyl oleate.

Fig. S6 The NMR spectra of standard and purified retinol. (a) The ¹H NMR spectra of retinol standard. ¹H NMR (400 MHz, CDCl₃) δ 6.69 – 6.54 (m, 1H), 6.29 (d, J = 15.2 Hz, 1H), 6.15 (s, 1H), 6.13 – 6.04 (m, 2H), 5.69 (s, 1H), 4.31 (d, J = 7.0 Hz, 2H), 2.01 (s, 2H), 1.96 (s, 3H), 1.87 (s, 3H), 1.71 (s, 3H), 1.61 (s, 2H), 1.46 (d, J = 5.8 Hz, 2H), 1.02 (s, 6H). (b) The ¹³C NMR spectra of retinol standard. ¹³C NMR (400 MHz, CDCl₃) δ 137.84 (s), 137.64 (s), 137.00 (s), 136.29 (s), 136.22 (s), 130.06 (s), 129.92 (s), 129.30 (s), 126.81 (s), 125.24 (s), 59.52 (s), 39.63 (s), 34.27 (s), 33.07 (s), 28.96 (s), 21.74 (s), 19.28 (s), 12.74 (s), 12.66 (s). (c) The ¹H NMR spectra of purified retinol. ¹H NMR (400 MHz, CDCl₃) δ 6.66 – 6.56 (m, 1H), 6.29 (d, J = 15.2 Hz, 1H), 6.15 (s, 1H), 6.13 – 6.05 (m, 2H), 5.69 (s, 1H), 4.31 (d, J = 7.0 Hz, 2H), 2.01 (s, 2H), 1.96 (s, 3H), 1.87 (s, 3H), 1.71 (s, 3H), 1.61 (s, 2H), 1.48 – 1.45 (m, 2H), 1.02 (s, 6H). (d) The ¹³C NMR spectra of purified retinol. ¹³C NMR (400 MHz, CDCl₃) δ 137.84 (s), 137.64 (s), 137.64 (s), 137.01 (s), 136.28 (s), 136.23 (s), 130.06 (s), 129.91 (s), 129.31 (s), 126.81 (s), 125.24 (s), 59.52 (s), 39.62 (s), 33.07 (s), 28.96 (s), 21.74 (s), 125.24 (s), 59.52 (s), 39.62 (s), 33.07 (s), 28.96 (s), 21.74 (s), 125.24 (s), 59.52 (s), 39.62 (s), 33.07 (s), 28.96 (s), 21.74 (s), 125.24 (s), 59.52 (s), 39.62 (s), 33.07 (s), 28.96 (s), 21.74 (s), 125.24 (s), 59.52 (s), 39.62 (s), 34.27 (s), 33.07 (s), 28.96 (s), 21.74 (s), 19.27 (s), 12.74 (s), 12.65 (s).

Fig. S7 The NMR spectra of standard and purified retinyl palmitate. (a) The ¹H NMR spectra of retinyl palmitate standard. ¹H NMR (400 MHz, CDCl₃) δ 6.64 (dd, J = 15.1, 11.3 Hz, 1H), 6.28 (d, J = 15.2 Hz, 1H), 6.16 (s, 1H), 6.10 (dd, J = 13.6, 10.0 Hz, 2H), 5.61 (s, 1H), 4.73 (d, J = 7.2 Hz, 2H), 2.30 (s, 2H), 2.01 (s, 2H), 1.96 (s, 3H), 1.89 (s, 3H), 1.73 - 1.69 (m, 3H), 1.61 (d, J = 3.4 Hz, 2H), 1.48 - 1.45 (m, 2H), 1.25 (s, 26H), 1.02 (s, 6H), 0.88 (s, 3H). (b) The ¹³C NMR spectra of retinyl palmitate standard. ¹³C NMR (400 MHz, CDCl₃) δ 173.85 (s), 139.02 (s), 137.82 (s), 137.61 (s), 136.55 (s), 135.86 (s), 129.97 (s), 129.34 (s), 126.96 (s), 125.72 (s), 124.68 (s), 61.09 (s), 39.63 (s), 34.37 (s), 34.26 (s), 33.07 (s), 31.94 (s), 29.70 (s), 29.47 (s), 29.37 (s), 29.27 (s), 29.15 (s), 28.96 (s), 25.01 (s), 22.70 (s), 21.73 (s), 19.27 (s), 14.13 (s), 12.75 (d, J = 3.2 Hz). (c) The ¹H NMR spectra of purified retinyl palmitate. ¹H NMR (400 MHz, CDCl₃) δ 6.71 - 6.58 (m, 1H), 6.28 (d, J = 15.2 Hz, 1H), 6.16 (s, 1H), 6.15 - 6.01 (m, 2H), 5.61 (s, 1H), 4.73 (d, J = 7.2 Hz, 2H), 2.30 (d, J = 7.1 Hz, 2H), 2.01 (s, 2H), 1.96 (s, 3H), 1.89 (s, 3H), 1.71 (s, 3H), 1.62 (s, 2H), 1.47 (d, J = 5.5 Hz, 2H), 1.30 - 1.25 (m, 26H), 1.02 (s, 6H), 0.88 (s, 3H). (d) The ¹³C NMR spectra of purified retinyl palmitate. ¹³C NMR (400 MHz, CDCl₃) δ 173.85 (s), 139.03 (s), 137.83 (s), 137.60 (s), 136.57 (s), 135.87 (s), 129.97 (s), 129.37 (s), 126.97 (s), 125.72 (s), 124.69 (s), 61.09 (s), 39.63 (s), 34.38 (s), 34.27 (s), 33.08 (s), 31.94 (s), 29.71 (s), 29.71 (s), 29.74 (s), 29.71 (s), 21.74 (s), 19.28 (s), 14.14 (s), 12.77 (d, J = 3.1 Hz).

Fig. 88 The NMR spectra of standard and purified retinyl oleate. (a) The ¹H NMR spectra of retinyl oleate standard. ¹H NMR (400 MHz, CDCl₃) δ 6.63 (d, J = 15.1 Hz, 1H), 6.28 (d, J = 15.3 Hz, 1H), 6.18 (d, J = 16.1 Hz, 1H), 6.12 (s, 1H), 5.64 (s, 1H), 5.34 (d, J = 1.8 Hz, 2H), 4.79 – 4.60 (m, 1H), 2.29 (s, 2H), 2.01 (d, J = 6.1 Hz, 6H), 1.96 (s, 2H), 1.89 (s, 2H), 1.71 (s, 3H), 1.63 – 1.59 (m, 4H), 1.49 – 1.44 (m, 2H), 1.28 (d, J = 16.9 Hz, 24H), 1.02 (s, 6H), 0.87 (d, J = 7.1 Hz, 3H). (b) The ¹³C NMR spectra of retinyl oleate standard. ¹³C NMR (400 MHz, CDCl₃) δ 173.81 (s), 139.03 (s), 137.82 (s), 137.60 (s), 136.57 (s), 135.85 (s), 130.01 (s), 129.73 (s), 126.97 (s), 125.73 (s), 124.67 (s), 61.10 (s), 39.63 (s), 34.27 (s), 33.07 (s), 31.91 (s), 29.78 (s), 29.70 (s), 29.53 (s), 29.13 (s), 28.96 (s), 27.23 (s), 24.96 (d, J = 9.4 Hz), 22.69 (s), 21.74 (s), 19.27 (s), 14.13 (s), 12.77 (s). (c) The ¹H NMR spectra of purified retinyl oleate. ¹H NMR (400 MHz, CDCl₃) δ 6.70 – 6.55 (m, 1H), 6.28 (d, J = 15.3 Hz, 1H), 6.18 (d, J = 15.8 Hz, 1H), 6.12 – 6.05 (m, 1H), 5.61 (s, 1H), 5.34 (s, 2H), 4.82 – 4.53 (m, 2H), 2.30 (d, J = 7.0 Hz, 2H), 2.01 (d, J = 5.6 Hz, 6H), 1.96 (s, 2H), 1.89 (s, 2H), 1.71 (s, 3H), 1.62 (s, 4H), 1.46 (d, J = 6.7 Hz, 2H), 1.28 (d, J = 17.1 Hz, 24H), 1.02 (s, 6H), 0.88 (s, 3H). (d) The ¹³C NMR spectra of purified retinyl oleate. ¹³C NMR (400 MHz, CDCl₃) δ 173.82 (s), 139.03 (s), 137.83 (s), 137.60 (s), 136.57 (s), 135.86 (s), 130.01 (s), 129.74 (s), 126.99 – 125.19 (m), 124.68 (s), 61.10 (s), 39.63 (s), 34.27 (s), 33.09 (s), 29.78 (s), 29.71 (s), 29.54 (s), 29.33 (s), 29.14 (s), 28.97 (s), 27.24 (s), 24.89 – 24.68 (m), 22.70 (s), 21.74 (s), 19.28 (s), 14.13 (s), 12.76 (s).

Fig. S9 Optimization of the cultivation conditions for retinyl ester production in VA11 using palmitic acid as the carbon source in shake flasks. (a) The retinoid production and OD_{600} with adding different ratios of dodecane. (b) The retinoid production and OD_{600} under different culture temperatures. Data represent the mean \pm SD of three biological replicates. Statistical analysis was performed by using one-way ANOVA (*p < 0.05, **p < 0.01, ***p < 0.001).

Fig. S10 The content of intracellular lipids and retinyl palmitate of fed-batch cultivation for retinyl palmitate production. Data represent the mean \pm SD of two biological replicates.

Main	Organism	Metabolic engineering strategies Titer		Content	Composition of retinoids	Reference
product			(g/L)	(mg/g DCW)		
Retinal	Saccharomyces	Inactivated alcohol dehydrogenases (Adh6, Adh7,	0.07	-	0.07 g/L retinal	3
	cerevisiae	Sfa1 and Gre2) and aldehyde dehydrogenase (Hfd1),				
		and optimized β -carotene synthesis.				
Retinoic acid	Saccharomyces	Mined endogenous aldehyde dehydrogenase (Hfd1)	0.65	10	0.55 g/L retinoic acid, 0.1 g/L	4
	cerevisiae	and overexpressed in multiple copies.			retinol and retinal	
Retinol	Saccharomyces	Identification and combinational expression of two	5.21	-	4.12 g/L retinol and 1.09 g/L	5
	cerevisiae	isoenzymes Mbblh and Ssbco, multi-copy integration			retinal	
		and engineering precursor supply.				
	Yarrowia	Multi-copy integration of Mb.blh, optimized	5.12	42	4.86 g/L retinol and 0.26 g/L	6
	lipolytica	metabolic pathway, and increased retinol stability			retinal	
		using antioxidant and detergent extraction.				
	Yarrowia	Improved the metabolic flux of β -carotene, and	5.4	-	5.4 g/L retinol	7
	lipolytica	optimized the expression level of <i>Mb.blh</i> and <i>RDH12</i>				
		and the fermentation process.				
	Yarrowia	Screened BCOs and RDHs, adjusted copy numbers	6.69	66	5.89 g/L retinol, 0.08 g/L	This study
	lipolytica	of the key genes, strengthened metabolic flux of the			retinal and 0.72 g/L retinyl	
		precursor, and optimized the cultivation conditions.			esters	
Retinyl esters	Escherichia	Expressing of CrtEBIY, BLH, LRAT and CRBP,	0.08	-	0.07 g/L retinyl palmitate, 0.01	8
	coli	reconstructed heterologous retinyl palmitate			g/L retinyl acetate, retinol and	
		biosynthetic pathway.			retinal	
	Yarrowia	Changed the cultivation conditions from nitrogen-	9.11	109	8.18 g/L retinyl esters, 0.9 g/L	This study

Table ST characteristics of retinoids in different strains of the main reports.
--

lipolytica	rich to nitrogen-limited condition using glucose as	retinol and 0.03 g/L retinal	
	the carbon source.		
Yarrowia	Adjusted carbon source and introduced retinol- 4.68 68	4.53 g/L retinyl palmitate and This study	
lipolytica	binding protein.	0.15 g/L retinol	

Table S2 The yeast strains used in this study.

Name	Description	Referenc
		e
T1	Heterologous expression CarB and CarRP genes in Polf at TRP1 site	2
T1GI12VC	T1 with integrated linearized plasmids JMP-HYG-GPS-IDI1-ERG12, 114-VHb-	2
	ERG8-ERG19 and 113-URA3-CarRP-GGS1 then removed URA3, LEU2 and	
	HYG markers using the Cre-loxP system	
T3	Polf with integrated linearized plasmids p-car-M1, p-car-M2 and p-car-M3 then	1
	removed URA3, LEU2 and TRP1 markers using the Cre-loxP system	
T3GI12VC-	T3 with integrated linearized plasmids JMP-HYG-GPS-IDI1-ERG12, 114-VHb-	2
∆CLA4/MHY1	ERG8-ERG19 and 113-URA3-CarRP-GGS1 then knocked out CLA4 and MHY1	
	genes	
VA1	T3 with integrated linearized plasmid pKi1-TRP-BLH-RDH12	This stduy
VA2	T3 with integrated linearized plasmid pKi1-TRP-DrBCO1-RDH12	This study
VA3	T3 with integrated linearized plasmid pKi1-TRP-GgBCO1-RDH12	This study
VA4	T3 with integrated linearized plasmid pKi1-TRP-HsBCO1-RDH12	This study
VA5	T3 with integrated linearized plasmid pKi1-TRP-RnBCO1-RDH12	This study
VA6	T3 with integrated linearized plasmid pKi1-TRP-BLH-YBBO	This study
VA7	T3 with integrated linearized plasmid pKi1-TRP-BLH-ADH1B	This study
VA8	T3 with integrated linearized plasmid pKi1-TRP-BLH-DHRS3	This study
VA9	T3 with integrated linearized plasmid pKi1-TRP-BLH-RDH8	This study
VAT1	T1 with integrated linearized plasmid pKi1-TRP-BLH-RDH12	This stduy
VAT1GI12VC	T1GI12VC with integrated linearized plasmid pKi1-TRP-BLH-RDH12	This study
VAT3	T3 with integrated linearized plasmid pKi1-TRP-BLH-RDH12	This study
VAT3GI12VC-	T3GI12VC-ΔCLA4/MHY1 with integrated linearized plasmid pKi1-TRP-BLH-	This study
∆CLA4/MHY1	RDH12	
VA1-1	T3GI12VC-ΔCLA4/MHY1 with integrated linearized plasmid pKi1-TRP-BLH-	This study
	RDH12, transformant 1	
VA1-2	T3GI12VC-ΔCLA4/MHY1 with integrated linearized plasmid pKi1-TRP-BLH-	This study
	RDH12, transformant 2	
VA1-3	T3GI12VC-ΔCLA4/MHY1 with integrated linearized plasmid pKi1-TRP-BLH-	This study
	RDH12, transformant 3	
VA10	VA1-3 with integrated linearized plasmid p-car-M1	This study
VA11	VA10 with integrated linearized plasmid 113-LEU-HpGGPPs-CarRP	This study
VA12	VA11 with integrated linearized plasmid pKi1-HYG-DGA1	This study

VA13	VA11 with integrated linearized plasmid pKi1-HYG-DGA2	This study
VA14	VA11 with integrated linearized plasmid pKi1-HYG-HsLRAT	This study
VA15	VA11 with integrated linearized plasmid pKi1-HYG-RBP1	This study
VA16	VA11 with integrated linearized plasmid pKi1-HYG-HsLRATRBP1	This study
VA17	VA11 with integrated linearized plasmid pKi1-HYG-RnLRAT	This study

Table S3 The primers used in this study.

Name	Sequence (5'-3')	Description
Trp-F	ATGGACTTTCTCTACTCTTCGACATGT	To amplified TRP1 from Y. lipolytica
	CTAC	genome
Trp-R	TTACCCCCTGGCGTTTTTGACAAACAG	To amplified TRP1 from Y. lipolytica
	С	genome
pKi1-Trp-F	GTTTGTCAAAAACGCCAGGGGGGTAAG	To amplified vector of pKi1-TRP
	TCGTTTCTACGACGCATTGATG	
pKi1-Trp-R	ATGTCGAAGAGTAGAGAAAGTCCATT	To amplified vector of pKi1-TRP
	GTGGATGTGTGTGGGTTGTATG	
HYG-F	ATGAAAAAGCCTGAACTCACCGC	To amplified <i>HYG</i> from <i>Y. lipolytica</i> genome
HYG-R	CTATTCCTTTGCCCTCGGACG	To amplified <i>HYG</i> from <i>Y. lipolytica</i> genome
pKil-HYG-F	CACTCGTCCGAGGGCAAAGGAATAGG	To amplified vector of pKi1-HYG
	TCGTTTCTACGACGCATTGATG	
pKil-HYG-R	TCGCGGTGAGTTCAGGCTTTTTCATTG	To amplified vector of pKil-HYG
	TGGATGTGTGTGGGTTGTATG	
LEU-113-F	TTTCAGTCTCCTCTTCACCACCAAAAT	To amplified LEU2 from Y. lipolytica
	GCAGATCTTTGTTAAGACTTTGACCG	genome
LEU-113-R	AAATTACATATCCATAGTCTAACCTTT	To amplified LEU2 from Y. lipolytica
	ACTCCTTCTTGAGCAGCTCCTTG	genome
11 3- F	AGGTTAGACTATGGATATGTAATTTAA	To amplified vector of 113-LEU-GPD-
	CT	TEF
113-R	TTTGGTGGTGAAGAGGAGACTG	To amplified vector of 113-LEU-GPD- TEF
UT8-pKi1-F	TCTAGAACTAGTGGATCCTAGTCATAT	To amplified BCOs and RDHs cassettes
	GGGTACCAAGGAAGCATGCGGT	from synthesized plasmids for construction of pKi1-TRP-BCOs-RDHs
CYC1-pKi1-R	ACCGCATGCTTCCTTGGTACCTTCACG	To amplified BCOs and RDHs cassettes
	CGCAAATTAAAGCCTTCGAG	from synthesized plasmids for construction of pKi1-TRP-BCOs-RDHs
HpGGPPs-TEF-F	ACTTTTTGCAGTACTAACCGCAGATTT	To amplified HpGGPPs from synthesized
	ATGATCCGAGCGATGCACAAC	plasmids
HpGGPPs-TEF-R	TGACATAACTAATTACATGAATTTTCA	To amplified HpGGPPs from synthesized
	GTTCTTCCGGTAGCCAATCAG	plasmids
CarRP-GPD-F	ATTAAACACACATCAACAGATGCTGCT	To amplified <i>CarRP</i> from p-car-M3
	GACCTACATGGA	
CarRP-GPD-R	GACAGGCCATGGAGGTACGTTAGATG	To amplified <i>CarRP</i> from p-car-M3
	GTGTTCAGGTTTC	
DGA1-ut8-F	TTCTGAGTATAAGAATCATTCAAAGAT	To amplified DGA1 from Y. lipolytica
	GACTATCGACTCACAATACTACAAG	genome
DGA1-CYC1-R	GACATAACTAATTACATGAATCGATTT	To amplified DGA1 from Y. lipolytica
	ACTCAATCATTCGGAACTCTGG	genome

DGA2-ut8-F	GAGTATAAGAATCATTCAAAGATTTAT	To amplified DGA2 from Y. lipolytica
	GGAAGTCCGACGACGAAAAATCG	genome
DGA2-CYC1-R	GTGACATAACTAATTACATGAATTTCT	To amplified DGA2 from Y. lipolytica
	ACTGGTTCTGCTTGTAGTTGTAAG	genome
HsLRAT-ut8-F	TTCTGAGTATAAGAATCATTCAAAGAT	To amplified HsLRAT from synthesized
	GAAGAACCCTATGCTGGAGGTC	plasmids for fused with RBP1
HsLRAT(GS)RBP	GGCATGGAGCCACCACCGCCGCCAGC	To amplified HsLRAT from synthesized
1-R	CATCCACAGAAAG	plasmids for fused with RBP1
RBP1(GS)HsLRA	CTGGCGGCGGTGGTGGCTCCATGCCTG	To amplified RBP1 from synthesized
T-F	TCGATTTCACCGGAT	plasmids for fused with HsLRAT
RBP1-CYC1-R	GACATAACTAATTACATGAATCGATTT	To amplified RBP1 from synthesized
	ACTGGACCTTCTTGAACACCTGC	plasmids for fused with HsLRAT
RT-GAPDH-F	CGGACGAATCGGACGAATTGTGA	The reference gene for detection of the
		copy number
КІ-GAPDH-К	CAGCGTACTCGGTGTCGATGAAG	conv number
RT-BLH-F	CATEGECTTEGAGETEATEG	To detected the copy number and relative
		expression of <i>BLH</i>
RT-BLH-R	CCTCGGAAGCGATCATCTTGG	To detected the copy number of <i>BLH</i>
RT-BLH-R1	ACGAAGGAGAAGTGTCGTCG	To detected the relative expression of <i>BLH</i>
RT-RDH12-F	CCAACGTCCTCTTCACCCGAG	To detected the copy number and relative
		expression of <i>RDH12</i>
RT-RDH12-R	CGCTTGCAGTCGGAGAAGTAC	To detected the copy number of <i>RDH12</i>
RT-RDH12-R1	AGGGAGGAGTGTCGGACAAG	To detected the relative expression of <i>RDH12</i>
RT-Actin-F	CTACGAGCTTCCCGATGGCC	The reference gene for detection of the
		relative expression
RT-Actin-R	CGTGGATACCAGCAGCCTCA	The reference gene for detection of the
		relative expression
RT-DGA1-F	TCGCGGGAATCCGATATGCC	To detected the relative expression of
		DGAI
RT-DGA1-R	GTGGAATTGCGCAGCATAGC	To detected the relative expression of DGA1
RT-DGA2-F	TCTCGACAATCGTCGCAGCC	To detected the relative expression of
		DGA2
RT-DGA2-R	CCCGCAGGTTTCTTCTGGAC	To detected the relative expression of
		DGA2
RT-ARE1-F	CGGAGAAGAGCTCAATGTGCC	To detected the relative expression of <i>ARE1</i>
RT-ARE1-R	TTCCTTCTCGTCGTCCGAGTC	To detected the relative expression of
		AREI
RT-LRO1-F	CAGCAGTGGAGGTGGCTGAC	To detected the relative expression of <i>LRO1</i>
RT-LRO1-R	TGAGAATCTTGCCCTTGACGG	To detected the relative expression of

		LRO1
RT-SCT1-F	CCCGAAAATCAGTGGACACGG	To detected the relative expression of
		SCT1
RT-SCT1-R	CACGTGGCCGGATTTCTCTG	To detected the relative expression of
		SCT1
RT-GPAT-like-F	AGGGTCTCGCTGAGGAATCC	To detected the relative expression of
		GPAT-like
RT-GPAT-like-R	TCGAGCATGTCGGCCTAGATC	To detected the relative expression of
		GPAT-like
RT-LAC1-F	TCACCGAGTTTGCCACCGTC	To detected the relative expression of
		LACI
RT-LAC1-R	CTGCAGAGCCGCCAGAAGAC	To detected the relative expression of
		LACI
RT-LAG1-F	GCGCGATGAAGATGGCCAGG	To detected the relative expression of
		LAGI
RT-LAG1-R	CTCGCACAATCATGTACAGCC	To detected the relative expression of
		LAGI

Table S4 The plasmids used in this study.

Name	Description	Referenc
		e
pKi-1	Y. lipolytica integrative vector, ut8 promoter with CYC1 terminator, LEU2	1
	selection marker	
pKil-TRP	Y. lipolytica integrative vector, ut8 promoter with CYC1 terminator, TRP1	This stduy
	selection marker	
pKi1-HYG	Y. lipolytica integrative vector, ut8 promoter with CYC1 terminator, HYG	This stduy
	selection marker	
113-GPD-TEF	Y. lipolytica integrative vector, GPD promoter with XPR2 terminator, TEF	1
	promoter with CYC1 terminator, URA3 selection marker	
113-LEU-GPD-TEF	Y. lipolytica integrative vector, GPD promoter with XPR2 terminator, TEF	This stduy
	promoter with CYC1 terminator, LEU2 selection marker	
pKil-TRP-BLH-	pKi1-TRP vector containing ut8p-BLH-CYC1t and ut8p-RDH12-CYC1t	This stduy
RDH12		
pKil-TRP-DrBCO1-	pKi1-TRP vector containing ut8p-DrBCO1-CYC1t and ut8p-RDH12-	This study
RDH12	CYC1t	
pKil-TRP-GgBCO1-	pKi1-TRP vector containing ut8p-GgBCO1-CYC1t and ut8p-RDH12-	This study
RDH12	CYC1t	
pKil-TRP-HsBCO1-	pKi1-TRP vector containing ut8p-HsBCO1-CYC1t and ut8p-RDH12-	This study
RDH12	CYC1t	
pKil-TRP-RnBCO1-	pKi1-TRP vector containing ut8p-RnBCO1-CYC1t and ut8p-RDH12-	This study
RDH12	CYClt	
pKil-TRP-BLH-	pKi1-TRP vector containing <i>ut8p-BLH-CYC1t</i> and <i>ut8p-YBBO-CYC1t</i>	This stduy
YBBO		
pKil-TRP-BLH-	pKi1-TRP vector containing <i>ut8p-BLH-CYC1t</i> and <i>ut8p-ADH1B-CYC1t</i>	This study
ADH1B		
pKil-TRP-BLH-	pKi1-TRP vector containing <i>ut8p-BLH-CYC1t</i> and <i>ut8p-DHRS3-CYC1t</i>	This study
DHRS3		
pKil-TRP-BLH-	pKi1-TRP vector containing <i>ut8p-BLH-CYC1t</i> and <i>ut8p-RDH8-CYC1t</i>	This study
RDH8		
YLEP-BleoR-Cre	Episomal overexpression for Cre recombinase	Lab stock
p-car-M1	Integrative vector containing the Module 1 of β -carotene biosynthetic	1
	pathway	
113-LEU-HpGGPPs-	113-LEU-GPD-TEF vector containing TEFp-HpGGPPs-CYC1t and	This study

CarRP	GPDp-CarRP-XPR2t	
pKil-HYG-DGA1	pKi1-HYG vector containing ut8p-DGA1-CYC1t	This study
pKi1-HYG-DGA2	pKi1-HYG vector containing ut8p-DGA2-CYC1t	This study
pKil-HYG-HsLRAT	pKi1-HYG vector containing ut8p-HsLRAT-CYC1t	This study
pKi1-HYG-RBP1	pKi1-HYG vector containing ut8p-RBP1-CYC1t	This study
pKi1-HYG-	pKil-HYG vector containing ut8p-HsLRATRBP1-CYC1t (fusion HsLRAT	This study
HsLRATRBP1	and <i>RBP1</i> with GGGGS linker)	
pKi1-HYG-RnLRAT	pKi1-HYG vector containing ut8p-RnLRAT-CYC1t	This study

Product	Titer	Yield (g/g	Feedstock price	Estimated feedstock	Market price
	(mg/L)	carbon source)	(dollar/ton)	cost (dollar/kg)	(dollar/kg)
Retinol	5.89	0.013	478	37	13-38
Retinyl oleate	8.18	0.015	478	32	-
Retinyl palmitate	4.53	0.018	1011	56	17-45

 Table S5 The bioproduction cost evaluation of retinoids.

References

- 1. Z. Cui, X. Jiang, H. Zheng, Q. Qi and J. Hou, *Biotechnol Bioeng*, 2019, **116**, 354-363.
- 2. M. Liu, J. Zhang, J. Ye, Q. Qi and J. Hou, ACS Synth Biol, 2021, 10, 3551-3560.
- 3. Q. Mo, W. Song, Z. Xue and J. Yuan, *Green Chemistry*, 2022, 24, 8259-8263.
- 4. Q. Hu, H. Yu and L. Ye, *Biotechnol Bioeng*, 2022, **119**, 3241-3251.
- 5. Y. Shi, S. Lu, X. Zhou, X. Wang, C. Zhang, N. Wu, T. Dong, S. Xing, Y. Wang, W. Xiao and M. Yao, *Synthetic and Systems Biotechnology*, 2025, **10**, 58-67.
- H. Park, D. Lee, J. E. Kim, S. Park, J. H. Park, C. W. Ha, M. Baek, S. H. Yoon, K. H. Park, P. Lee and J. S. Hahn, *Metab Eng*, 2022, 73, 26-37.
- 7. X. Ren, M. Liu, M. Yue, W. Zeng, S. Zhou, J. Zhou and S. Xu, J Agric Food Chem, 2024, 72, 8664-8673.
- 8. B. H. Choi, H. J. Hwang, J. E. Lee, S. H. Oh, J. S. Hwang, B. Y. Lee and P. C. Lee, *Antioxidants (Basel, Switzerland)*, 2020, 9, 1130.