Supporting Information

for:

A Fundamental Study of Lignin Reactions with Formaldehyde and Glyoxal

Mohsen Siahkamari^{a#}, Debkumar Debnath^{b#}, Tuo Wang^{b*}, Mojgan Nejad^{a, c*}

^a Department of Forestry, Michigan State University, East Lansing, MI, 48224, USA

^bDepartment of Chemistry, Michigan State University, East Lansing, MI 48824, USA

^c Department of Chemical Engineering and Material Science, Michigan State University, East Lansing, MI, 48224, USA

[#] These authors contribute equally

* Corresponding Authors: nejad@msu.edu; wangtuo1@msu.edu

This file (8 pages) contains:

Supporting Figures S1 – S6

Supporting Tables S1 – S2

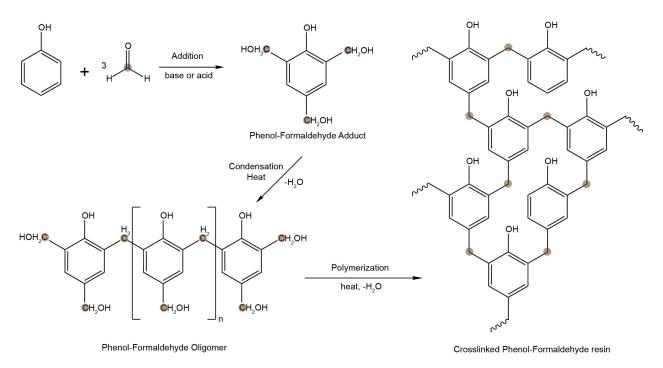


Figure S1: Schematic representation of the Phenol-Formaldehyde resin formation.

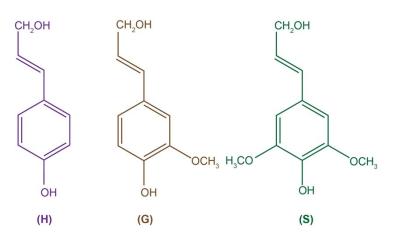


Figure S2: Major phenylpropanoid units of lignin.

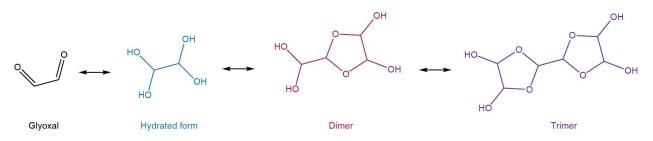
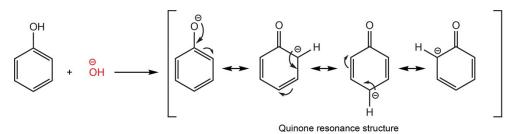
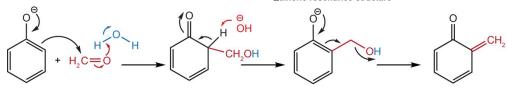
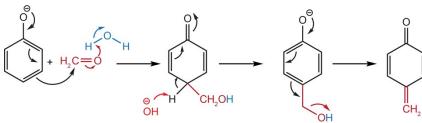
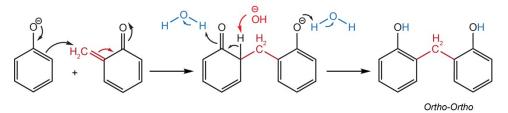
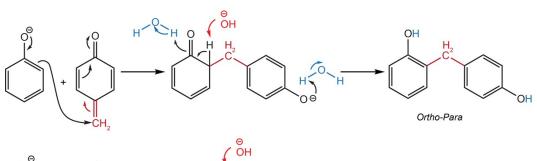





Figure S3: Structure of glyoxal and major hydrated oligomers.




o-Quinone methide

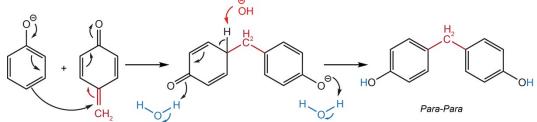
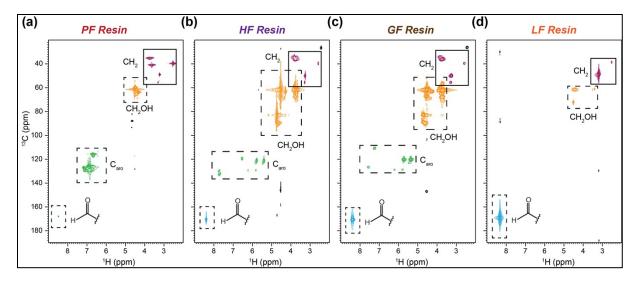
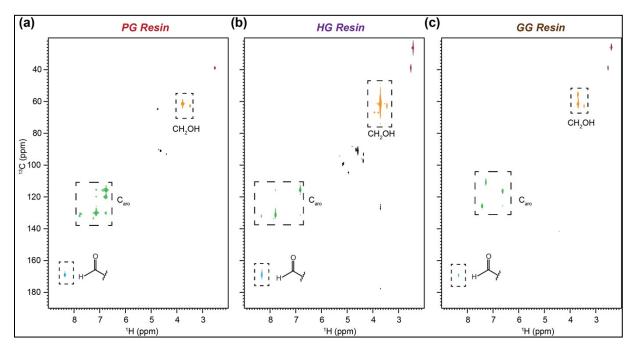




Figure S4: Mechanism of dimer formation through quinone methide intermediate.

Figure S5: HSQC spectra of formaldehyde resins. (a) PF resin with C_{aro} , CH₂OH, and CH₂ peaks. (b) HF resin and (c) GF resin have similar peaks. (d) LF resin has two major peaks of formate ester and CH₃OH, along with CH₂OH.

Figure S6: HSQC spectra of glyoxal resins. (a) PG resin with -CHO, C_{aro,} and CH₂OH peaks, (b) HG resin, and (c) GG resin have similar peaks of -CHO, Caro, and CH₂OH.

Compounds	C 1*	C2	C3	C4	C 5	C6	Carbonyl	Methyl (CH ₃)	Methoxy (OCH₃)	Structure
Phenol	157.3	115.2	129.4	118.8	/	/	/	/	/	OH
H-monomer	162.0	115.2	130.7	128.6	/	/	196.0	26.2	/	O
G-monomer	151.7	147.5	111.1	128.9	123.4	114.9	196.0	26.2	55.6	H3CO OH

 Table S1: ¹³C Chemical shifts (in ppm) of precursor compounds. Not applicable (/).

*Aromatic carbon attached to -OH group

Compounds	Caro	CH ₂ OH	Ether and -CHOH	-CH ₂ - ^a	-CH ₂ -b	Carbonyl#	Quinonoid	Methyl (CH ₃)	Methoxy (OCH ₃)	Unreacted formaldehyde	Structure
PF* resin (cured)	C**: 156.6; 117.7; 130.3	63.2	70	34.7	40.2	173.1	184.3	/	/	-	ОН 34.7 40.2 HO 0 0 0 0 0 0 0 0 0 0 0 0 0
HF* resin (cured)	120.6; 129.0	63.3	70.3	34.3	/	172.5; Cα: 199.1	-	26.2	/	-	HO HO HO HO HO HO HO HO HO HO
GF* resin (cured)	119.9; 125.9	62.9	70.1	34.5	/	171.6, Cα: 197.7 S6	-	26.2	55.6	89.5 <i>,</i> 84.3	$\begin{array}{c} \begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & $

Table S2: ¹³C Chemical shifts (in ppm) of cured resins acquired by 3.2 mm probe in 400 MHz solid-state NMR. Not applicable (/). Unidentified (-).

LF* resin (cured)	128.7; 123.5; 111.4	64.7	75.7	34.5	41.31	172.0	-	23.7	-	94.1	H ₃ CO H ₃ CO H ₃ CO H ₃ CO H ₃ CO H ₃ CO H ₃ CO H H ₃ CO H H H ₃ CO H H C H H H H H H H H H H H H H H H H
PG*** resin (cured)	C*: 165.5; 130.4; 116.1; 104.5; 102.7	61.9	73.2	37.5, 34.9	-	172.9	181.2	/	/	-	HO HO T3.2 OH T3.2 OH G1.9 G1.
HG*** resin (cured)	133.4; 131.1; 128.3; 116.4; 101.8	62.2	71.5	32.4, 30.8	/	175.1	182.1	25.3	/	-	$HO = \begin{array}{c} CH_3 & O & CH_3 \\ HO & 71.5 & OH \\ HO & 62.2 & OH \\ HO & 0 \end{array}$
GG*** resin (cured)	C*: 149.8; 128; 123.3; 116.4; 112.1; 108.4	62.1	71.6	37.2	/	175.6	182.2	25.6	54.1	-	H ₃ CO CH ₃ CH ₃ OH HO 62.1 OH CH ₃ OCH ₃ OCH ₃

LG*** resin (cured)	C*: 150.4; 119.8; 111.7	63.2	72.1	37.2	44.9	171.5	181.8	-	55.5	-	H0 72.1 H0 H0 H0 H0 H0 H0 H0 H0 H0 H0 H0 H0 H0 H
------------------------	----------------------------	------	------	------	------	-------	-------	---	------	---	---

*PF (Phenol-Formaldehyde), HF (Lignin H Monomer-Formaldehyde), GF (Lignin G monomer-Formaldehyde), and LF (K-SW Lignin-Formaldehyde) resins were prepared under identical synthesis procedures.

**Aromatic carbon attached to -OH group

***PG (Phenol-Glyoxal), HG (Lignin H monomer-Glyoxal), GG (Lignin G monomer-Glyoxal), and LG (K-SW Lignin-Glyoxal) resins were prepared under identical synthesis procedures.

[#]Carbonyl groups are arising due to formate (HCOO-) formation and -COCH₃ group of H and G-lignin monomers which has ¹³C chemical shifts of 172-176 ppm and 196-199 ppm, respectively.

^a ortho-ortho, ortho-para methylene linkage.

^b para-pare methylene linkage.