Supplementary Information

A Catalyst- and Thiol-Free Protocol for Arene C–H Thioetherification *via* Photoactive Electron Donor– Acceptor Complexes

Ang Gao,^a He-Xiang Liu,^a Ya-Nan Zhou,^{*b} and Ming-Chen Fu^{*a}

^{a.} School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Department Flexible Composite Materials Key Technology Center, Hefei University of Technology, Hefei 230009, China. E-mail: mcfu@hfut.edu.cn

^{b.} College of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, China. E-mail: zynzyn@tju.edu.cn

Table of	Contents
----------	----------

1. General Information	S3
1.1 Analytical Methods	S3
1.2 Materials	
2. Procedure for the Synthesis of Substrates	S4
3. Investigation of the Key Reaction Parameters	S6
4. General Procedure and Spectral Data	S8
4.1 General Procedure A	S8
4.2 General Procedure B	S8
4.3 General Procedure C	S8
4.3 Characterization data for the products	S10
5. Synthetic Applications	
5.1 Two-step one-pot for arene C-H thioetherification	
5.2 Gram-scale methylthiolation of Flurbiprofen and its subsequent de	erivatizationS32
5.3 Synthesis of thioethers using a continuous-flow process	S34
6. Preliminary Mechanistic Studies	S36
6.1 Aryl radical trapping experiment	S36
6.2 TEMPO experiment	S36
6.3 Control experiments	
6.4 ¹ H NMR spectrometry of titration experiments	S38
6.5 UV-vis absorption spectra	S38
6.6 Job's plot	S39
7. References	S40
8. NMR Spectra	S41

1. General Information

1.1 Analytical Methods

The NMR spectra were recorded on Bruker 600 MHz spectrometer and Agilent 600 MHz spectrometer. The chemical shifts (δ) in ¹H NMR were reported in ppm relative to tetramethylsilane (Me₄Si) as internal standard (0.0 ppm) or proton resonance resulting from incomplete deuteration of NMR solvent: CDCl₃ (7.26 ppm). Coupling constants (*J*) are expressed in hertz. ¹³C NMR spectra were recorded at 151 MHz, and the chemical shifts (δ) were reported in ppm relative to CDCl₃ (77.10 ppm). ¹⁹F NMR spectra were recorded at 565 MHz. The absorption spectra in solution were recorded on a UNIC 4802 UV/VIS double beam spectrophotometer in a 1.0 cm length quartz cell, all compounds were dissolved in CH₃CN and measured at 25 °C. HRMS analysis was performed on Finnigan LCQ advantage Max Series MS System. ESI-mass data was acquired using a Thermo LTQ Orbitrap XL Instrument equipped with an ESI source and controlled by Xcalibur software. GC chromatograms were recorded on Shimadzu GC-2014.

1.2 Materials

All reactions were carried out in oven-dried Schlenk tubes under argon atmosphere (purity \geq 99.99%) unless otherwise mentioned. Other Commercial reagents were purchased from Adamas-beta, Energy Chemical, TCI and Aldrich. Organic solutions were concentrated under reduced pressure on Buchi rotary evaporator. Flash column chromatographic purification of products was accomplished using forced-flow chromatography on silica gel (200-300 mesh). The flow photocatalytic reactor was purchased from Anhui Kexin Microfluidic Chemical Technology Co., Ltd. The LED lamps were purchased from Kessil (427 nm, 440 nm), HepatoChem (450 nm), Anhui Kemi Instrument Co., Ltd. (420 nm, 455 nm, 467 nm, 520 nm) and Bibby Scientific Ltd. (565 nm). The Photo Reaction Setup was purchased from HepatoChem.

2. Procedure for the Synthesis of Substrates

A. Synthesis of Sulfoxides¹

Sulfide (1.0 equiv.), was dissolved in CH_2Cl_2 (0.1 M) and cooled to 0 °C. *m*-CPBA (1.05 equiv.) was added portion wise over 30 minutes at 0 °C and the resulting suspension stirred for 2 h. The mixture was diluted with DCM, washed with brine, and dried over Na₂SO₄. Upon filtration, the organic layers were combined and concentrated on rotary evaporator. The residue was purified by silica gel column chromatography to give the product (petroleum ether/ethyl acetate = 5:1).

B. Synthesis of Aryldibenzothiophenium Salts from Arenes¹⁻³

Tf₂O (1.2 equiv.) was slowly added to a stirred solution of the arene (1.0 equiv.) and the S-oxide (1.1 equiv.) in dry CH₂Cl₂ (0.1 M) at -78 °C under a argon atmosphere. The resulting solution was stirred at this temperature for 15 minutes before warming to room temperature. After stirring for 1 h, the reaction was quenched with the addition of methanol which removed the dark colour of the reaction mixture. At this point, the solvent was removed under vacuum while keeping the water bath at 30 °C. The sulfonium salt was then precipitated by the addition of cold Et₂O to the mixture while stirring (occasionally vigorous stirring was needed). The Et₂O was then decanted off and the resulting solid was washed with further portions of Et₂O. In case of an unsuccessful precipitation, the desired sulfonium salt was purified from the crude mixture by column chromatography (CH₂Cl₂/methanol = 15:1).

C. Synthesis of 5-(4-(methoxycarbonyl)phenyl)-5H-thianthren-5-ium trifluoromethanesulfonate

Tf₂O (1.2 mmol, 1.2 equiv.) was slowly added to a stirred solution of the (4-(methoxycarbonyl)phenyl)boronic acid (1.0 mmol, 1.0 equiv.) and the S-oxide (1.0 mmol, 1.0 equiv.) in dry DCM (4.0 mL, 0.25 M) at -78 °C under a argon atmosphere. The resulting solution was stirred at this temperature for 1 h before warming to room temperature. After stirring for 2 h, the reaction was quenched with the addition of methanol which removed the dark colour of the reaction mixture. At this point, the solvent was removed under vacuum while keeping the water bath at 30 °C. The residue was purified by silica gel column chromatography to give the product (white solid, 265 mg, 53%, CH₂Cl₂/methanol = 15:1). ¹**H NMR (600 MHz, Chloroform-***d***)** δ 8.86 (d, *J* = 6.9 Hz, 2H), 8.02 (d, *J* = 7.4 Hz, 2H), 7.83 – 7.79 (m, 6H), 7.23 (d, *J* = 8.4 Hz, 2H), 3.89 (s, 3H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 164.92, 136.76, 136.42, 134.96, 134.07, 131.13, 130.34, 130.26, 129.16, 128.20, 119.11, 52.81.

HRMS (ESI) (m/z): $[M-CF_3O_3S]^+$ Calcd for $C_{20}H_{15}O_2S_2^+$, 351.0508; found:351.0505.

Melting point: 130–132 °C.

3. Investigation of the Key Reaction Parameters

K₃PO₄ (0.2 mmol) solvent (0.5 mL) LEDs (420 nm), 20 h t-Bu t-Ri **1a,** 0.15 mmol 2a, 0.3 mmol 3, 0.1 mmol 4 solvent Yield of 4 (%)^a Entry 1 CH₃CN 81 2 63 Acetone 3 DMSO 52 4 THF Trace 5 Dioxane 28 6 DCM Trace 7 CHCl₃ Trace 25 8 DCE 9 DMF Trace 10 DMA Trace 11 NMP Trace 12 0.25 mL CH₃CN+0.25 mL Acetone 80

Table S1. Screening of solvents

Reaction conditions: **1a** (0.15 mmol, 1.5 equiv.), **2a** (0.3 mmol, 3.0 equiv.), **3** (0.1 mmol, 1.0 equiv.), K_3PO_4 (0.2 mmol, 2.0 equiv.), solvent (0.5 mL), stirred at room temperature for 20 h under LEDs (420 nm, 40 W) irradiation. ^aThe yield was determined by GC using benzophenone as an internal standard.

Table S2. Screening of bases

t-Bu		- ССС-он	base (0.2 mmol) CH ₃ CN (0.5 mL) LEDs (420 nm), 20 h	3
1a , 0.1	15 mmol 2a , 0.3 mmol	3 , 0.1 mmol		4
	Entry	base	Yield of 4 (%) ^a	
	1	K ₃ PO ₄	81	-
	2	Cs_2CO_3	90	
	3	t-BuONa	39	
	4	Na ₂ CO ₃	35	
	5	BTMG	72	
	6	DABCO	Trace	
	7	2,6-Lutidine	Trace	
	8	DBU	39	
	9	K ₂ HPO ₄	21	
	10	KOAc	Trace	

Reaction conditions: **1a** (0.15 mmol, 1.5 equiv.), **2a** (0.3 mmol, 3.0 equiv.), **3** (0.1 mmol, 1.0 equiv.), base (0.2 mmol, 2.0 equiv.), CH₃CN (0.5 mL), stirred at room temperature for 20 h under LEDs (420 nm, 40 W) irradiation. ^a The yield was determined by GC using benzophenone as an internal standard.

Table S3. Screening of light sources

Reaction conditions: **1a** (0.15 mmol, 1.5 equiv.), **2a** (0.3 mmol, 3.0 equiv.), **3** (0.1 mmol, 1.0 equiv.), Cs₂CO₃ (0.2 mmol, 2.0 equiv.), CH₃CN (0.5 mL), stirred at room temperature for 20 h under LEDs irradiation. ^a The yield was determined by GC using benzophenone as an internal standard.

Table S4. Control experiments

Reaction conditions: **1a** (0.15 mmol, 1.5 equiv.), **2a** (0.3 mmol, 3.0 equiv.), **3** (0.1 mmol, 1.0 equiv.), Cs_2CO_3 (0.2 mmol, 2.0 equiv.), CH_3CN (0.5 mL), stirred at room temperature for 20 h under LEDs (420 nm, 40 W) irradiation. ^a The yield was determined by GC using benzophenone as an internal standard. n.d. = not detected. ^b Isolated yield.

4. General Procedure and Spectral Data

4.1 General Procedure A

General Procedure A: A mixture of aryldibenzothiophenium salt (0.15 mmol, 1.5 equiv.), 1,1,3,3tetramethylthiourea (0.3 mmol, 3.0 equiv.), Cs_2CO_3 (0.2 mmol, 2.0 equiv.) and corresponding alcohol (if solid, 0.1 mmol, 1.0 equiv.) were added in 10 mL Schlenk tube equipped with a stirring bar. The tube was evacuated and filled with argon (repeated for three times). To this solid, anhydrous CH_3CN (0.5 mL) and corresponding alcohol (if liquid., 0.1 mmol, 1.0 equiv.) were added using a gastight syringe under argon atmosphere. The reaction mixture was stirred under LEDs (420 nm, 40 W) irradiation, maintained at approximately room temperature in the air-conditioned room of 25 °C. After 20 h, the mixture was diluted with EtOAc (approximately 4 mL), washed with brine (approximately 3 mL), and dried over Na_2SO_4 . Upon filtration, the organic layers were combined and concentrated on rotary evaporator. The residue was purified by silica gel column chromatography to give the product.

4.2 General Procedure B

General Procedure B: A mixture of aryldibenzothiophenium salt (0.15 mmol, 1.5 equiv.), 1,1,3,3tetramethylthiourea (0.3 mmol, 3.0 equiv.) and Cs_2CO_3 (0.2 mmol, 2.0 equiv.) were added in 10 mL Schlenk tube equipped with a stirring bar. The tube was evacuated and filled with argon (repeated for three times). To this solid, anhydrous CH_3CN (0.5 mL) and CD_3OD (0.1 mmol, 1.0 equiv., 99.8 atom%D) were added using a gastight syringe under argon atmosphere. The reaction mixture was stirred under LEDs (420 nm, 40 W) irradiation, maintained at approximately room temperature in the air-conditioned room of 25 °C. After 20 h, the mixture was diluted with EtOAc (approximately 4 mL), washed with brine (approximately 3 mL), and dried over Na_2SO_4 . Upon filtration, the organic layers were combined and concentrated on rotary evaporator. The residue was purified by silica gel column chromatography to give the product.

4.3 General Procedure C

General Procedure C: A mixture of aryldibenzothiophenium salt (0.15 mmol, 1.5 equiv.), 1,1,3,3-tetramethylthiourea (0.3 mmol, 3.0 equiv.), ferrocenemethanol (0.1 mmol, 1.0 equiv.) and Cs₂CO₃ (0.2

mmol, 2.0 equiv.) were added in 10 mL Schlenk tube equipped with a stirring bar. The tube was evacuated and filled with argon (repeated for three times). To this solid, anhydrous CH_3CN (0.5 mL) were added using a gastight syringe under argon atmosphere. The reaction mixture was stirred under LEDs (420 nm, 40 W) irradiation, maintained at approximately room temperature in the air-conditioned room of 25 °C. After 20 h, the mixture was diluted with EtOAc (approximately 4 mL), washed with brine (approximately 3 mL), and dried over Na₂SO₄. Upon filtration, the organic layers were combined and concentrated on rotary evaporator. The residue was purified by silica gel column chromatography to give the product.

Reaction Setup

Figure S1. Photo-reaction setup and reaction tube

4.3 Characterization data for the products

(4-(tert-butyl)phenyl)(2-methylphenethyl)sulfane (4)

General procedure A was followed to obtain 4 (23.6 mg, 83%, petroleum ether/ethyl acetate = 20:1) as a colorless oil.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.34 (s, 4H), 7.18 – 7.10 (m, 4H), 3.23 – 3.06 (m, 2H), 2.97 – 2.87 (m, 2H), 2.28 (s, 3H), 1.32 (s, 9H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 149.4, 138.6, 136.0, 132.7, 130.3, 129.5, 129.0, 126.6, 126.1, 126.0, 34.5, 34.3, 33.3, 31.3, 19.2.

HRMS (ESI) (m/z): $[M+H]^+$ Calcd for $C_{19}H_{25}S^+$, 285.1671; found: 285.1670.

(3-bromo-4-methoxyphenyl)(methyl)sulfane (5)

General procedure A was followed to obtain **5** (20.9 mg, 90%, petroleum ether/ethyl acetate = 15:1) as a colorless oil.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.50 (d, J = 2.1 Hz, 1H), 7.22 (dd, J = 8.6, 2.3 Hz, 1H), 6.83 (d, J = 8.5 Hz, 1H), 3.87 (s, 3H), 2.44 (s, 3H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 154.3, 133.0, 130.6, 128.7, 112.4, 112.1, 56.4, 17.7. HRMS (ESI) (m/z): [M+H]⁺ Calcd for C₈H₁₀BrOS⁺, 232.9630; found: 232.9629.

(3-bromo-4-methoxyphenyl)(ethyl)sulfane (6)

General procedure A was followed to obtain **6** (21.2 mg, 86%, petroleum ether/ethyl acetate = 15:1) as a colorless oil.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.58 (d, *J* = 2.2 Hz, 1H), 7.30 (dd, *J* = 7.6, 2.2 Hz, 1H), 6.82 (d, *J* = 8.5 Hz, 1H), 3.88 (s, 3H), 2.84 (q, *J* = 7.3 Hz, 2H), 1.25 (t, *J* = 7.8 Hz, 3H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 155.0, 135.8, 131.7, 128.3, 112.2, 111.9, 56.3, 29.6, 14.5. HRMS (ESI) (m/z): [M+H]⁺ Calcd for C₉H₁₂BrOS⁺, 246.9787; found: 246.9785.

(3-bromo-4-methoxyphenyl)(cyclopropylmethyl)sulfane (7)

General procedure A was followed to obtain 7 (17.1 mg, 63%, petroleum ether/ethyl acetate = 15:1) as a colorless oil.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.63 (d, *J* = 2.3 Hz, 1H), 7.34 (dd, *J* = 8.5, 2.3 Hz, 1H), 6.82 (d, *J* = 8.5 Hz, 1H), 3.88 (s, 3H), 2.76 (d, *J* = 7.2 Hz, 2H), 1.02 – 0.95 (m, 1H), 0.59 – 0.51 (m, 2H), 0.19 (q, *J* = 5.5, 5.0 Hz, 2H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 155.0, 136.2, 132.0, 128.7, 112.1, 111.8, 56.3, 41.6, 10.9, 5.5. HRMS (ESI) (m/z): [M+H]⁺ Calcd for C₁₁H₁₄BrOS⁺, 272.9943; found: 272.9945.

(3-bromo-4-methoxyphenyl)(2-fluoroethyl)sulfane (8)

B MeC

General procedure A was followed to obtain **8** (24.5 mg, 93%, petroleum ether/ethyl acetate = 15:1) as a colorless oil.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.65 (d, J = 2.2 Hz, 1H), 7.37 (dd, J = 8.5, 2.3 Hz, 1H), 6.83 (d, J = 8.6 Hz, 1H), 4.53 (t, J = 6.7 Hz, 1H), 4.45 (t, J = 6.7 Hz, 1H), 3.88 (s, 3H), 3.10 (t, J = 6.7 Hz, 1H), 3.07 (t, J = 6.7 Hz, 1H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 155.8, 137.0, 132.9, 126.5, 112.3, 112.1, 81.5 (d, *J* = 172.4 Hz), 56.4, 35.5 (d, *J* = 21.4 Hz).

¹⁹F NMR (565 MHz, Chloroform-d) δ -213.4.

HRMS (ESI) (m/z): [M+H]⁺ Calcd for C₉H₁₁BrFOS⁺, 264.9693; found: 264.9684.

(3-bromo-4-methoxyphenyl)(2-methoxyethyl)sulfane (9)

Br MeC

General procedure A was followed to obtain **9** (24.0 mg, 87%, petroleum ether/ethyl acetate = 15:1) as a colorless oil.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.63 (d, *J* = 2.2 Hz, 1H), 7.35 (dd, *J* = 8.5, 2.1 Hz, 1H), 6.83 (d, *J* = 8.5 Hz, 1H), 3.88 (s, 3H), 3.52 (t, *J* = 6.7 Hz, 2H), 3.35 (s, 3H), 3.01 (t, *J* = 6.7 Hz, 2H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 155.3, 136.3, 132.1, 127.6, 112.2, 111.9, 71.0, 58.7, 56.3, 35.1. HRMS (ESI) (m/z): [M+H]⁺ Calcd for C₁₀H₁₄BrO₂S⁺, 276.9892; found: 276.9890.

(3-bromo-4-methoxyphenyl)(but-3-yn-1-yl)sulfane (10)

Br

General procedure A was followed to obtain **10** (21.1 mg, 78%, petroleum ether/ethyl acetate = 15:1) as a colorless oil.

¹H NMR (600 MHz, Chloroform-*d*) δ 7.64 (d, J = 2.2 Hz, 1H), 7.36 (dd, J = 8.5, 2.2 Hz, 1H), 6.83 (d, J = 8.5 Hz, 1H), 3.88 (s, 3H), 2.96 (t, J = 7.4 Hz, 2H), 2.46 - 2.40 (m, 2H), 2.03 (t, J = 2.6 Hz, 1H).
¹³C NMR (151 MHz, Chloroform-*d*) δ 155.6, 136.9, 132.8, 126.8, 112.2, 112.0, 82.1, 69.7, 56.3, 34.7, 19.4.

HRMS (ESI) (m/z): [M+H]⁺ Calcd for C₁₁H₁₂BrOS⁺, 270.9787; found: 270.9779.

(3-bromo-4-methoxyphenyl)(hex-5-en-1-yl)sulfane (11)

Br

General procedure A was followed to obtain **11** (17.1 mg, 57%, petroleum ether/ethyl acetate = 15:1) as a colorless oil.

¹H NMR (600 MHz, Chloroform-*d*) δ 7.58 (d, J = 2.3 Hz, 1H), 7.29 (dd, J = 8.5, 2.2 Hz, 1H), 6.82 (d, J = 8.5 Hz, 1H), 5.82 – 5.73 (m, 1H), 5.03 – 4.91 (m, 2H), 3.88 (s, 3H), 2.83 (t, J = 7.3 Hz, 2H), 2.05 (q, J = 7.1 Hz, 2H), 1.63 – 1.53 (m, 2H), 1.53 – 1.46 (m, 2H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 154.9, 138.4, 135.7, 131.5, 128.6, 114.8, 112.2, 111.9, 56.3, 35.4, 33.2, 28.6, 27.8.

HRMS (ESI) (m/z): [M+H]⁺ Calcd for C₁₃H₁₈BrOS⁺, 301.0256; found: 301.0258.

2-(3-((3-bromo-4-methoxyphenyl)thio)propyl)isoindoline-1,3-dione (12)

General procedure A was followed to obtain **12** (23.9 mg, 59%, petroleum ether/ethyl acetate = 10:1) as a colorless oil.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.83 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.71 (dd, *J* = 5.5, 3.0 Hz, 2H), 7.60 (d, *J* = 2.2 Hz, 1H), 7.34 (dd, *J* = 8.5, 2.2 Hz, 1H), 6.81 (d, *J* = 8.5 Hz, 1H), 3.87 (s, 3H), 3.80 (t, *J* = 7.0 Hz, 2H), 2.84 (t, *J* = 7.2 Hz, 2H), 1.93 (p, *J* = 7.1 Hz, 2H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 168.3, 155.4, 136.7, 134.0, 132.6, 132.0, 127.4, 123.3, 112.2, 111.9, 56.3, 36.8, 33.4, 28.1.

HRMS (ESI) (m/z): [M+H]⁺ Calcd for C₁₈H₁₇BrNO₃S⁺, 406.0107; found: 406.0109.

tert-butyl (2-((3-bromo-4-methoxyphenyl)thio)ethyl)carbamate (13)

General procedure A was followed to obtain **13** (24.9 mg, 69%, petroleum ether/ethyl acetate = 3:1) as a colorless oil.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.61 (d, *J* = 1.8 Hz, 1H), 7.34 (dd, *J* = 8.5, 1.9 Hz, 1H), 6.82 (d, *J* = 8.5 Hz, 1H), 4.89 (s, 1H), 3.87 (s, 3H), 3.29 – 3.25 (m, 2H), 2.93 (t, *J* = 6.5 Hz, 2H), 1.42 (s, 9H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 155.7, 155.4, 136.6, 132.4, 126.8, 112.3, 112.0, 79.5, 56.3, 39.5, 36.0, 28.4.

HRMS (ESI) (m/z): [M+H]⁺ Calcd for C₁₄H₂₁BrNO₃S⁺, 362.0420; found: 362.0423.

2-(2-((3-bromo-4-methoxyphenyl)thio)ethyl)thiophene (14)

General procedure A was followed to obtain 14 (27.9 mg, 85%, petroleum ether/ethyl acetate = 15:1) as a colorless oil.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.63 (d, *J* = 2.3 Hz, 1H), 7.35 (dd, *J* = 8.5, 2.2 Hz, 1H), 7.15 (d, *J* = 5.1 Hz, 1H), 6.93 (dd, *J* = 5.2, 3.5 Hz, 1H), 6.84 (d, *J* = 8.4 Hz, 1H), 6.82 (d, *J* = 3.8 Hz, 1H), 3.89 (s, 3H), 3.14 – 3.05 (m, 4H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 155.3, 142.5, 136.4, 132.2, 127.6, 126.8, 125.0, 123.7, 112.3, 112.0, 56.4, 37.3, 29.9.

HRMS (ESI) (m/z): $[M+H]^+$ Calcd for $C_{13}H_{14}BrOS_2^+$, 328.9664; found: 328.9668.

(3-bromo-4-methoxyphenyl)(naphthalen-2-ylmethyl)sulfane (15)

General procedure A was followed to obtain **15** (26.1 mg, 73%, petroleum ether/ethyl acetate = 20:1) as a colorless oil.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.83 – 7.80 (m, 1H), 7.79 (d, *J* = 8.4 Hz, 1H), 7.75 – 7.71 (m, 1H), 7.57 (d, *J* = 2.1 Hz, 1H), 7.55 (s, 1H), 7.47 – 7.44 (m, 2H), 7.41 (d, *J* = 8.5 Hz, 1H), 7.16 (dd, *J* = 8.5, 2.1 Hz, 1H), 6.71 (d, *J* = 8.5 Hz, 1H), 4.15 (s, 2H), 3.84 (s, 3H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 155.5, 137.0, 135.0, 133.2, 132.8, 132.6, 128.3, 127.7, 127.7, 127.6, 127.5, 127.0, 126.2, 125.9, 112.0, 111.8, 56.3, 41.3.

HRMS (ESI) (m/z): [M+H]⁺ Calcd for C₁₈H₁₆BrOS⁺, 359.0100; found: 359.0105.

2-(((3-bromo-4-methoxyphenyl)thio)methyl)furan (16)

General procedure A was followed to obtain **16** (26.2 mg, 88%, petroleum ether/ethyl acetate = 15:1) as a colorless oil.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.54 (d, *J* = 1.9 Hz, 1H), 7.35 (s, 1H), 7.24 (dd, *J* = 10.5, 2.0 Hz, 1H), 6.79 (d, *J* = 8.6 Hz, 1H), 6.26 (s, 1H), 6.01 (s, 1H), 3.98 (s, 2H), 3.87 (s, 3H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 155.7, 150.8, 142.2, 137.6, 133.4, 126.9, 111.9, 111.6, 110.4, 108.1, 56.3, 33.4.

HRMS (ESI) (m/z): [M+H]⁺ Calcd for C₁₂H₁₂BrO₂S⁺, 298.9736; found: 298.9737.

4-(((3-bromo-4-methoxyphenyl)thio)methyl)pyridine (17)

General procedure A was followed to obtain **17** (22.6 mg, 73%, petroleum ether/ethyl acetate = 2:1) as a colorless oil.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 8.49 (d, *J* = 6.1 Hz, 2H), 7.52 (d, *J* = 2.3 Hz, 1H), 7.14 (dd, *J* = 8.5, 2.3 Hz, 1H), 7.08 (d, *J* = 6.1 Hz, 2H), 6.74 (d, *J* = 8.5 Hz, 1H), 3.91 (s, 2H), 3.86 (s, 3H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 155.9, 149.7, 147.1, 137.5, 133.4, 126.1, 123.9, 112.1, 111.9, 56.3, 40.0.

HRMS (ESI) (m/z): [M+H]⁺ Calcd for C₁₃H₁₃BrNOS⁺, 309.9896; found: 309.9896.

(3-bromo-4-methoxyphenyl)(cinnamyl)sulfane (18)

General procedure A was followed to obtain **18** (21.1 mg, 63%, petroleum ether/ethyl acetate = 15:1) as a colorless oil.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.64 (d, *J* = 2.0 Hz, 1H), 7.32 (dd, *J* = 8.6, 2.1 Hz, 1H), 7.31 – 7.27 (m, 4H), 7.24 – 7.20 (m, 1H), 6.79 (d, *J* = 8.6 Hz, 1H), 6.31 (d, *J* = 15.8 Hz, 1H), 6.24 – 6.16 (m, 1H), 3.86 (s, 3H), 3.60 (d, *J* = 7.3 Hz, 2H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 155.4, 137.1, 136.7, 133.0, 132.9, 128.5, 127.6, 127.4, 126.3, 125.0, 112.0, 111.7, 56.3, 39.0.

HRMS (ESI) (m/z): [M+H]⁺ Calcd for C₁₆H₁₆BrOS⁺, 335.0100; found: 335.0103.

(3-bromo-4-methoxyphenyl)(3-methylbut-2-en-1-yl)sulfane (19)

General procedure A was followed to obtain **19** (23.2 mg, 81%, petroleum ether/ethyl acetate = 15:1) as a colorless oil.

¹H NMR (600 MHz, Chloroform-*d*) δ 7.58 (d, J = 2.2 Hz, 1H), 7.30 (dd, J = 8.5, 2.3 Hz, 1H), 6.80 (d, J = 8.5 Hz, 1H), 5.28 – 5.22 (m, 1H), 3.88 (s, 3H), 3.43 (d, J = 7.8 Hz, 2H), 1.70 (s, 3H), 1.47 (s, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 155.2, 136.8, 136.5, 132.5, 128.3, 119.4, 112.0, 111.6, 56.3, 34.1, 25.7, 17.6.

HRMS (ESI) (m/z): [M+H]⁺ Calcd for C₁₂H₁₆BrOS⁺, 287.0100; found: 287.0098.

(R)-4-(((3-bromo-4-methoxyphenyl)thio)methyl)-2,2-dimethyl-1,3-dioxolane (20)

General procedure A was followed to obtain **20** (27.9 mg, 84%, petroleum ether/ethyl acetate = 7:1) as a colorless oil.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.63 (d, *J* = 2.2 Hz, 1H), 7.34 (dd, *J* = 8.5, 2.1 Hz, 1H), 6.82 (d, *J* = 8.5 Hz, 1H), 4.21 – 4.14 (m, 1H), 4.09 – 4.04 (m, 1H), 3.87 (s, 3H), 3.73 – 3.68 (m, 1H), 3.12 – 3.06 (m, 1H), 2.93 – 2.83 (m, 1H), 1.41 (s, 3H), 1.32 (s, 3H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 155.4, 136.3, 132.1, 127.2, 112.3, 109.6, 74.7, 68.7, 56.3, 39.0, 26.9, 25.5.

HRMS (ESI) (m/z): [M+H]⁺ Calcd for C₁₃H₁₈BrO₃S⁺, 333.0155; found: 333.0158.

(3-bromo-4-methoxyphenyl)(oct-1-yn-3-yl)sulfane (21)

General procedure A was followed to obtain **21** (25.1 mg, 77%, petroleum ether/ethyl acetate = 15:1) as a colorless oil.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.76 (d, J = 2.2 Hz, 1H), 7.48 (dd, J = 8.5, 2.3 Hz, 1H), 6.85 (d, J = 8.6 Hz, 1H), 3.90 (s, 3H), 3.66 – 3.60 (m, 1H), 2.35 (d, J = 2.4 Hz, 1H), 1.74 – 1.67 (m, 2H), 1.57 – 1.45 (m, 2H), 1.35 – 1.24 (m, 4H), 0.89 (t, J = 7.0 Hz, 3H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 156.3, 139.2, 135.2, 125.3, 111.9, 111.6, 83.6, 72.6, 56.3, 39.7, 34.8, 31.2, 26.8, 22.5, 14.0.

HRMS (ESI) (m/z): [M+H]⁺ Calcd for C₁₅H₂₀BrOS⁺, 327.0413; found: 327.0414.

2-((3-bromo-4-methoxyphenyl)thio)tetrahydro-2H-pyran (22)

General procedure A was followed to obtain **22** (22.4 mg, 74%, petroleum ether/ethyl acetate = 10:1) as a colorless oil.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.70 (d, *J* = 2.2 Hz, 1H), 7.41 (dd, *J* = 8.5, 2.2 Hz, 1H), 6.82 (d, *J* = 8.5 Hz, 1H), 5.07 – 5.02 (m, 1H), 4.19 – 4.12 (m, 1H), 3.87 (s, 3H), 3.59 – 3.52 (m, 1H), 2.02 – 1.95 (m, 1H), 1.88 – 1.73 (m, 2H), 1.67 – 1.55 (m, 3H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 155.6, 137.2, 133.1, 126.9, 112.1, 111.7, 86.2, 64.6, 56.3, 31.4, 25.5, 21.6.

HRMS (ESI) (m/z): $[M+H]^+$ Calcd for $C_{12}H_{16}BrO_2S^+$, 303.0049; found: 303.0052.

3-((3-bromo-4-methoxyphenyl)thio)butan-2-one (23)

General procedure A was followed to obtain **23** (16.1 mg, 56%, petroleum ether/ethyl acetate = 8:1) as a colorless oil.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.60 (d, *J* = 2.2 Hz, 1H), 7.30 (dd, *J* = 8.5, 2.2 Hz, 1H), 6.82 (d, *J* = 8.5 Hz, 1H), 3.88 (s, 3H), 3.63 (q, *J* = 7.0 Hz, 1H), 2.29 (s, 3H), 1.35 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 205.0, 156.6, 139.1, 135.0, 123.8, 112.1, 111.9, 56.3, 52.7, 26.7, 15.8.

HRMS (ESI) (m/z): [M+Na]⁺ Calcd for C₁₁H₁₃BrNaO₂S⁺, 310.9712; found: 310.9716.

ethyl 2-((3-bromo-4-methoxyphenyl)thio)propanoate (24)

General procedure A was followed to obtain **24** (28.0 mg, 88%, petroleum ether/ethyl acetate = 10:1) as a colorless oil.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.68 (d, J = 2.2 Hz, 1H), 7.40 (dd, J = 8.5, 2.2 Hz, 1H), 6.83 (d, J = 8.5 Hz, 1H), 4.17 – 4.06 (m, 2H), 3.88 (s, 3H), 3.63 (q, J = 7.1 Hz, 1H), 1.42 (d, J = 7.1 Hz, 3H), 1.20 (t, J = 7.1 Hz, 3H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 172.5, 156.4, 139.3, 135.3, 124.6, 111.9, 111.6, 61.2, 56.3, 46.0, 17.1, 14.1.

HRMS (ESI) (m/z): [M+Na]⁺ Calcd for C₁₂H₁₅BrNaO₃S⁺, 340.9817; found: 340.9820.

2-((3-bromo-4-methoxyphenyl)thio)ethyl dimethylcarbamate (25)

General procedure A was followed to obtain **25** (23.6 mg, 71%, petroleum ether/ethyl acetate = 3:1) as a colorless oil.

¹H NMR (600 MHz, Chloroform-*d*) δ 7.63 (d, J = 2.3 Hz, 1H), 7.36 (dd, J = 8.5, 2.2 Hz, 1H), 6.82 (d, J = 8.5 Hz, 1H), 4.19 (t, J = 6.7 Hz, 2H), 3.87 (s, 3H), 3.05 (t, J = 6.7 Hz, 2H), 2.88 (s, 3H), 2.83 (s, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 156.2, 155.3, 136.3, 132.2, 127.3, 112.2, 111.9, 63.8, 56.3, 36.4, 35.8, 34.6.

HRMS (ESI) (m/z): [M+H]⁺ Calcd for C₁₂H₁₇BrNO₃S⁺, 334.0107; found: 334.0111.

4-((3-bromo-4-methoxyphenyl)thio)butan-2-yl dimethylcarbamate (26)

General procedure A was followed to obtain **26** (23.1 mg, 64%, petroleum ether/ethyl acetate = 3:1) as a colorless oil.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.57 (d, *J* = 2.1 Hz, 1H), 7.30 (dd, *J* = 8.5, 2.1 Hz, 1H), 6.81 (d, *J* = 8.5 Hz, 1H), 4.91 – 4.84 (m, 1H), 3.87 (s, 3H), 2.91 – 2.77 (m, 8H), 1.90 – 1.81 (m, 1H), 1.80 – 1.72 (m, 1H), 1.21 (d, *J* = 6.3 Hz, 3H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 156.2, 155.1, 135.8, 131.7, 128.2, 112.3, 112.0, 70.5, 56.4, 36.4, 36.1, 35.8, 31.6, 20.5.

HRMS (ESI) (m/z): [M+H]⁺ Calcd for C₁₄H₂₁BrNO₃S⁺, 362.0420; found: 362.0419.

4-((3-bromo-4-methoxyphenyl)thio)-2-methylbutan-2-yl dimethylcarbamate (27)

General procedure A was followed to obtain **27** (25.5 mg, 68%, petroleum ether/ethyl acetate = 3:1) as a colorless oil.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.57 (d, *J* = 1.8 Hz, 1H), 7.29 (dd, *J* = 8.5, 1.9 Hz, 1H), 6.82 (d, *J* = 8.5 Hz, 1H), 3.87 (s, 3H), 2.89 – 2.84 (m, 2H), 2.84 (s, 6H), 2.03 – 1.97 (m, 2H), 1.44 (s, 6H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 155.5, 155.0, 135.4, 131.4, 128.3, 112.2, 112.0, 80.4, 56.3, 56.3, 41.5, 36.2, 36.0, 30.2, 26.2.

HRMS (ESI) (m/z): [M+H]⁺ Calcd for C₁₅H₂₃BrNO₃S⁺, 376.0577; found: 376.0577.

(4-bromophenyl)(2-methylphenethyl)sulfane (28)

General procedure A was followed to obtain **28** (23.3 mg, 76%, petroleum ether/ethyl acetate = 20:1) as a colorless oil.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.44 – 7.39 (m, 2H), 7.24 – 7.20 (m, 2H), 7.16 – 7.12 (m, 4H), 3.13 – 3.07 (m, 2H), 2.94 – 2.89 (m, 2H), 2.28 (s, 3H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 138.1, 135.9, 135.7, 132.0, 130.8, 130.4, 129.1, 126.7, 126.2, 119.8, 34.0, 33.0, 19.3.

HRMS (ESI) (m/z): [M+H]⁺ Calcd for C₁₅H₁₆BrS⁺, 307.0151; found: 307.0153.

(3-fluoro-4-methoxyphenyl)(2-methylphenethyl)sulfane (29)

General procedure A was followed to obtain **29** (25.1 mg, 91%, petroleum ether/ethyl acetate = 15:1) as a colorless oil.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.21 – 7.09 (m, 6H), 6.91 (t, *J* = 8.4 Hz, 1H), 3.89 (s, 3H), 3.09 – 3.00 (m, 2H), 2.96 – 2.82 (m, 2H), 2.26 (s, 3H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 152.2 (d, *J* = 248.5 Hz), 146.8 (d, *J* = 10.5 Hz), 138.3, 135.9, 130.4, 129.1, 127.5 (d, *J* = 6.4 Hz), 127.3 (d, *J* = 3.5 Hz), 126.6, 126.1, 118.9 (d, *J* = 18.8 Hz), 113.7 (d, *J* = 2.3 Hz), 56.3, 35.5, 33.3, 19.2.

¹⁹F NMR (565 MHz, Chloroform-*d*) δ -104.5 (t, *J* = 5.6 Hz).

HRMS (ESI) (m/z): [M+H]⁺ Calcd for C₁₆H₁₈FOS⁺, 277.1057; found: 277.1049.

(3-chloro-4-methoxyphenyl)(2-methylphenethyl)sulfane (30)

General procedure A was followed to obtain **30** (20.4 mg, 70%, petroleum ether/ethyl acetate = 15:1) as a colorless oil.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.45 (d, *J* = 1.7 Hz, 1H), 7.30 (dd, *J* = 8.6, 2.2 Hz, 1H), 7.22 – 7.09 (m, 4H), 6.87 (d, *J* = 8.5 Hz, 1H), 3.90 (s, 3H), 3.30 – 2.95 (m, 2H), 2.89 – 2.82 (m, 2H), 2.25 (s, 3H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 154.2, 138.2, 135.9, 132.9, 131.0, 130.4, 129.1, 127.7, 126.6, 126.1, 122.8, 112.4, 56.3, 35.7, 33.3, 19.2.

HRMS (ESI) (m/z): [M+H]⁺ Calcd for C₁₆H₁₈ClOS⁺, 293.0761; found: 293.0764.

(3-bromo-4-methoxyphenyl)(2-methylphenethyl)sulfane (31)

General procedure A was followed to obtain **31** (18.4 mg, 78%, petroleum ether/ethyl acetate = 15:1) as a colorless oil.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.62 (d, *J* = 2.2 Hz, 1H), 7.34 (dd, *J* = 8.5, 2.3 Hz, 1H), 7.18 – 7.07 (m, 4H), 6.84 (d, *J* = 8.5 Hz, 1H), 3.90 (s, 3H), 3.25 – 2.98 (m, 2H), 2.98 – 2.77 (m, 2H), 2.25 (s, 3H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 155.1, 138.2, 135.9, 135.9, 131.7, 130.4, 129.1, 128.2, 126.6, 126.1, 112.2, 111.9, 56.4, 35.7, 33.3, 19.2.

HRMS (ESI) (m/z): [M+H]⁺ Calcd for C₁₆H₁₈BrOS⁺, 337.0256; found: 337.0259.

(3-iodo-4-methoxyphenyl)(2-methylphenethyl)sulfane (32)

General procedure A was followed to obtain **32** (23.8 mg, 62%, petroleum ether/ethyl acetate = 15:1) as a colorless oil.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.85 (d, *J* = 2.2 Hz, 1H), 7.38 (dd, *J* = 8.5, 2.2 Hz, 1H), 7.18 – 7.09 (m, 4H), 6.76 (d, *J* = 8.5 Hz, 1H), 3.88 (s, 3H), 3.04 – 2.99 (m, 2H), 2.90 – 2.84 (m, 2H), 2.25 (s, 3H).

¹³C NMR (151 MHz, Chloroform-d) δ 157.4, 142.0, 138.3, 135.9, 132.9, 130.4, 129.1, 128.7, 126.6, 126.1, 111.1, 86.3, 56.5, 35.8, 33.4, 19.2.

HRMS (ESI) (m/z): $[M+H]^+$ Calcd for $C_{16}H_{18}IOS^+$, 385.0118; found: 385.0122.

4-(4-((2-methylphenethyl)thio)phenoxy)benzonitrile (33)

General procedure A was followed to obtain **33** (25.9 mg, 75%, petroleum ether/ethyl acetate = 15:1) as a colorless oil.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.75 – 7.59 (m, 2H), 7.42 (dd, *J* = 8.6, 1.4 Hz, 2H), 7.15 (d, *J* = 1.3 Hz, 4H), 7.01 (d, *J* = 9.0 Hz, 4H), 3.18 – 3.06 (m, 2H), 3.03 – 2.84 (m, 2H), 2.28 (s, 3H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 161.4, 153.4, 138.2, 135.9, 134.2, 132.8, 131.8, 130.4, 129.0, 126.7, 126.2, 121.0, 118.8, 117.9, 106.0, 34.7, 33.2, 19.3.

HRMS (ESI) (m/z): [M+H]⁺ Calcd for C₂₂H₂₀NOS⁺, 346.1260; found: 346.1258.

[1,1'-biphenyl]-4-yl(2-methylphenethyl)sulfane (34)

General procedure A was followed to obtain **34** (25.5 mg, 84%, petroleum ether/ethyl acetate = 20:1) as a colorless oil.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.61 (d, *J* = 7.4 Hz, 2H), 7.56 (d, *J* = 8.5 Hz, 2H), 7.49 – 7.43 (m, 5H), 7.40 – 7.34 (m, 1H), 7.21 – 7.16 (m, 3H), 3.23 – 3.14 (m, 2H), 3.06 – 2.94 (m, 2H), 2.32 (s, 3H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 140.4, 139.0, 138.4, 136.0, 135.5, 130.4, 129.5, 129.1, 128.9, 127.6, 127.4, 126.9, 126.7, 126.2, 33.9, 33.2, 19.3.

HRMS (ESI) (m/z): [M+H]⁺ Calcd for C₂₁H₂₁S⁺, 305.1358; found: 305.1359.

5-((2-methylphenethyl)thio)benzo[d][1,3]dioxole (35)

General procedure A was followed to obtain **35** (22.0 mg, 81%, petroleum ether/ethyl acetate = 15:1) as a colorless oil.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.18 – 7.10 (m, 4H), 6.96 (d, *J* = 8.7 Hz, 2H), 6.78 (d, *J* = 7.8 Hz, 1H), 5.98 (s, 2H), 3.05 – 2.99 (m, 2H), 2.91 – 2.85 (m, 2H), 2.26 (s, 3H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 148.0, 147.1, 138.4, 135.9, 130.3, 129.0, 128.0, 126.6, 126.1, 125.4, 112.0, 108.7, 101.3, 36.0, 33.4, 19.2.

HRMS (ESI) (m/z): $[M+H]^+$ Calcd for $C_{16}H_{17}O_2S^+$, 273.0944; found: 273.0932.

6-((2-methylphenethyl)thio)chroman-4-one (36)

General procedure A was followed to obtain **36** (13.7 mg, 46%, petroleum ether/ethyl acetate = 10:1) as a colorless oil.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.93 (d, *J* = 2.4 Hz, 1H), 7.61 – 7.42 (m, 1H), 7.12 (s, 4H), 6.93 (d, *J* = 8.6 Hz, 1H), 4.54 (t, *J* = 6.5 Hz, 2H), 3.09 – 3.04 (m, 2H), 2.91 – 2.85 (m, 2H), 2.81 (t, *J* = 6.4 Hz, 2H), 2.26 (s, 3H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 191.2, 160.7, 138.4, 138.2, 135.9, 130.4, 129.1, 128.7, 128.5, 126.6, 126.1, 121.6, 118.8, 67.1, 37.6, 35.0, 33.2, 19.2.

HRMS (ESI) (m/z): [M+Na]⁺ Calcd for C₁₈H₁₈NaO₂S⁺, 321.0920; found: 321.0921.

2-(4-((2-methylphenethyl)thio)phenyl)isoindoline-1,3-dione (37)

General procedure A was followed to obtain **37** (23.5 mg, 63%, petroleum ether/ethyl acetate = 5:1) as a colorless oil.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.96 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.80 (dd, *J* = 5.5, 3.0 Hz, 2H), 7.47 (d, *J* = 8.6 Hz, 2H), 7.39 (d, *J* = 8.6 Hz, 2H), 7.19 – 7.11 (m, 4H), 3.22 – 3.09 (m, 2H), 3.02 – 2.90 (m, 2H), 2.31 (s, 3H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 167.2, 138.2, 137.0, 136.0, 134.5, 131.7, 130.4, 129.4, 129.1, 129.1, 126.9, 126.7, 126.2, 123.8, 33.7, 33.0, 19.3.

HRMS (ESI) (m/z): [M+H]⁺ Calcd for C₂₃H₂₀NO₂S⁺, 374.1209; found: 374.1195.

methyl 2-(1,3-dioxoisoindolin-2-yl)-3-(4-((2-methylphenethyl)thio)phenyl)propanoate (38)

General procedure A was followed to obtain **38** (28.9 mg, 63%, petroleum ether/ethyl acetate = 3:1) as a colorless oil.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.80 – 7.73 (m, 2H), 7.71 – 7.64 (m, 2H), 7.21 – 7.15 (m, 2H), 7.12 – 7.07 (m, 5H), 7.07 – 7.03 (m, 1H), 5.19 – 5.12 (m, 1H), 3.78 (s, 3H), 3.64 – 3.49 (m, 2H), 3.03 – 2.97 (m, 2H), 2.84 – 2.74 (m, 2H), 2.19 (s, 3H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 169.3, 167.4, 138.4, 135.9, 134.7, 134.7, 134.2, 131.6, 130.3, 129.7, 129.5, 129.0, 126.6, 126.1, 123.5, 53.1, 52.9, 34.2, 33.9, 33.1, 19.2.

HRMS (ESI) (m/z): [M+H]⁺ Calcd for C₂₇H₂₆NO₄S⁺, 460.1577; found: 460.1585.

methyl 4-((2-methylphenethyl)thio)benzoate (39)

A mixture of corresponding arylthianthene salt (0.15 mmol, 1.5 equiv.), 1,1,3,3-tetramethylthiourea **2a** (0.3 mmol, 3.0 equiv.) and Cs_2CO_3 (0.2 mmol, 2.0 equiv) were added in 10 mL Schlenk tube equipped with a stirring bar. The tube was evacuated and filled with argon (repeated for three times). To this solid, 2-(*o*-tolyl)ethan-1-ol (0.1 mmol, 1.0 equiv.) and anhydrous CH₃CN (0.5 mL) were added using a gastight syringe under argon atmosphere. The reaction mixture was stirred under LEDs (420 nm, 40 W)

irradiation, maintained at approximately room temperature in the air-conditioned room of 25 °C. After 20 h, the mixture was diluted with EtOAc (approximately 4 mL), washed with brine (approximately 3 mL), and dried over Na₂SO₄. Upon filtration, the organic layers were combined and concentrated on rotary evaporator. The residue was purified by silica gel column chromatography to give the product **39** (20.3 mg, 71%, petroleum ether/ethyl acetate = 15:1) as a colorless oil.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.94 (d, *J* = 8.5 Hz, 2H), 7.33 (d, *J* = 8.5 Hz, 2H), 7.16 (s, 4H), 3.91 (s, 3H), 3.22 – 3.16 (m, 2H), 3.00 – 2.94 (m, 2H), 2.32 (s, 3H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 166.8, 143.8, 138.0, 136.0, 130.5, 130.0, 129.1, 126.9, 126.8, 126.7, 126.2, 52.1, 32.7, 32.5, 19.3.

HRMS (ESI) (m/z): [M+Na]⁺ Calcd for C₁₇H₁₈NaO₂S⁺, 309.0920; found: 309.0929.

methyl 2-methoxy-5-((2-methylphenethyl)thio)benzoate (40)

General procedure A was followed to obtain **40** (25.9 mg, 82%, petroleum ether/ethyl acetate = 10:1) as a colorless oil.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.87 (d, *J* = 2.5 Hz, 1H), 7.53 (dd, *J* = 8.7, 2.5 Hz, 1H), 7.15 – 7.08 (m, 4H), 6.94 (d, *J* = 8.7 Hz, 1H), 3.91 (s, 3H), 3.89 (s, 3H), 3.09 – 3.00 (m, 2H), 2.93 – 2.83 (m, 2H), 2.24 (s, 3H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 166.0, 158.3, 138.3, 136.7, 135.9, 134.6, 130.4, 129.1, 126.6, 126.5, 126.1, 120.6, 112.8, 56.2, 52.2, 35.6, 33.4, 19.2.

HRMS (ESI) (m/z): $[M+H]^+$ Calcd for $C_{18}H_{21}O_3S^+$, 317.1206; found: 317.1212.

3-methoxy-4-((2-methylphenethyl)thio)quinoline (41)

General procedure A was followed to obtain **41** (24.7 mg, 80%, petroleum ether/ethyl acetate = 7:1) as a colorless oil.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 8.91 (d, *J* = 8.7 Hz, 1H), 8.80 (d, *J* = 4.1 Hz, 1H), 8.15 (d, *J* = 9.3 Hz, 1H), 7.53 (d, *J* = 9.3 Hz, 1H), 7.42 (dd, *J* = 8.6, 4.1 Hz, 1H), 7.09 – 6.99 (m, 4H), 4.06 (s, 3H), 3.07 – 3.02 (m, 2H), 2.78 – 2.71 (m, 2H), 2.08 (s, 3H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 155.0, 135.8, 131.7, 128.3, 112.2, 111.9, 56.3, 29.6, 14.5. HRMS (ESI) (m/z): [M+H]⁺ Calcd for C₁₉H₂₀NOS⁺, 310.1260; found: 310.1259.

(R)-4-(4-((2-methylphenethyl)thio)benzyl)-3-propionyloxazolidin-2-one (42)

General procedure A was followed to obtain **42** (20.3 mg, 53%, petroleum ether/ethyl acetate = 3:1) as a colorless oil.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.32 (d, *J* = 8.0 Hz, 2H), 7.16 – 7.12 (m, 6H), 4.69 – 4.61 (m, 1H), 4.21 (t, *J* = 8.4 Hz, 1H), 4.15 (dd, *J* = 9.1, 2.7 Hz, 1H), 3.26 (dd, *J* = 13.5, 3.3 Hz, 1H), 3.15 – 3.07 (m, 2H), 2.98 – 2.88 (m, 4H), 2.78 – 2.72 (m, 1H), 2.27 (s, 3H), 1.20 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 174.1, 153.4, 138.3, 135.9, 135.7, 133.1, 130.4, 130.0, 129.7, 129.1, 126.7, 126.2, 66.2, 55.1, 37.5, 33.9, 33.1, 29.2, 19.3, 8.3.

HRMS (ESI) (m/z): [M+Na]⁺ Calcd for C₂₂H₂₅NNaO₃S⁺, 406.1447; found: 406.1449.

2-fluoro-6-((2-methylphenethyl)thio)-3-phenoxybenzonitrile (43)

General procedure A was followed to obtain **43** (25.8 mg, 71%, petroleum ether/ethyl acetate = 15:1) as a colorless oil.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.56 – 7.36 (m, 3H), 7.15 (s, 4H), 7.05 (d, *J* = 8.7 Hz, 2H), 6.89 (t, *J* = 8.4 Hz, 1H), 6.61 (d, *J* = 8.6 Hz, 1H), 3.18 – 3.04 (m, 2H), 2.98 – 2.88 (m, 2H), 2.28 (s, 3H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 164.9, 163.2, 160.9 (d, *J* = 4.0 Hz), 152.9, 138.1, 135.9, 134.9 (d, *J* = 10.4 Hz), 133.6, 131.6, 130.4, 129.1, 126.7, 126.2, 121.0, 111.7, 111.1, 109.8 (d, *J* = 19.6 Hz), 34.6, 33.1, 19.3.

¹⁹F NMR (565 MHz, Chloroform-d) δ -104.5 (t, J = 5.6 Hz).

HRMS (ESI) (m/z): [M+H]⁺ Calcd for C₂₂H₁₉FNOS⁺, 364.1166; found: 364.1163.

(E)-(3-bromo-4-methoxyphenyl)(3,7-dimethylocta-2,6-dien-1-yl)sulfane (44)

General procedure A was followed to obtain 44 (26.9 mg, 76%, petroleum ether/ethyl acetate = 20:1) as a colorless oil.

¹H NMR (600 MHz, Chloroform-*d*) δ 7.59 (d, J = 2.1 Hz, 1H), 7.31 (dd, J = 8.4, 2.1 Hz, 1H), 6.80 (d, J = 8.5 Hz, 1H), 5.26 (t, J = 7.8 Hz, 1H), 5.08 – 5.03 (m, 1H), 3.87 (s, 3H), 3.44 (d, J = 7.8 Hz, 2H), 2.04 (q, J = 7.7 Hz, 2H), 2.01 – 1.96 (m, 2H), 1.67 (s, 3H), 1.59 (s, 3H), 1.47 (s, 3H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 155.2, 140.0, 136.9, 132.7, 131.7, 128.3, 124.0, 119.3, 112.0, 111.6, 56.3, 39.6, 34.0, 26.6, 25.7, 17.7, 16.0.

HRMS (ESI) (m/z): [M+H]⁺ Calcd for C₁₇H₂₄BrOS⁺, 355.0726; found: 355.0732.

(S)-(3-bromo-4-methoxyphenyl)((4-(prop-1-en-2-yl)cyclohex-1-en-1-yl)methyl)sulfane (45)

General procedure A was followed to obtain **45** (22.5 mg, 64%, petroleum ether/ethyl acetate = 20:1) as a colorless oil.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.55 (d, J = 2.3 Hz, 1H), 7.29 (dd, J = 8.5, 2.2 Hz, 1H), 6.81 (d, J = 8.5 Hz, 1H), 5.35 (s, 1H), 4.70 (d, J = 16.6 Hz, 2H), 3.88 (s, 3H), 3.39 – 3.30 (m, 2H), 2.21 (d, J = 18.8 Hz, 2H), 2.10 – 2.02 (m, 2H), 1.91 – 1.81 (m, 2H), 1.72 (s, 3H), 1.52 – 1.42 (m, 1H).

¹³C NMR (151 MHz, Chloroform-d) δ 155.3, 149.7, 137.4, 133.0, 132.7, 128.2, 125.6, 111.9, 111.4,

108.7, 56.3, 43.9, 40.8, 30.7, 27.6, 27.4, 20.8. **HRMS** (ESI) (m/z): [M+H]⁺ Calcd for C₁₇H₂₂BrOS⁺, 353.0569; found: 353.0566.

(8*S*,9*S*,10*R*,13*S*,14*S*,17*R*)-17-(2-((3-bromo-4-methoxyphenyl)thio)acetyl)-17-hydroxy-10,13dimethyl-7,8,9,10,12,13,14,15,16,17-decahydro-3*H*-cyclopenta[*a*]phenanthrene-3,11(6*H*)-dione (46)

General procedure A was followed to obtain **46** (40.2 mg, 72%, CH_2Cl_2 /methanol = 20:1) as a colorless oil.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.65 (d, *J* = 10.3 Hz, 1H), 7.61 (d, *J* = 2.2 Hz, 1H), 7.34 (dd, *J* = 8.6, 2.1 Hz, 1H), 6.82 (d, *J* = 8.5 Hz, 1H), 6.18 (dd, *J* = 10.3, 1.8 Hz, 1H), 6.06 (s, 1H), 3.95 (d, *J* = 15.0 Hz, 1H), 3.87 (s, 3H), 3.62 (d, *J* = 15.0 Hz, 1H), 2.84 (d, *J* = 12.2 Hz, 1H), 2.78 (s, 4H), 2.77 – 2.72 (m, 1H), 2.53 – 2.45 (m, 1H), 2.40 – 2.32 (m, 2H), 2.06 (d, *J* = 12.2 Hz, 2H), 1.96 (s, 1H), 1.78 – 1.70 (m, 1H), 1.50 – 1.42 (m, 1H), 1.41 (s, 3H), 0.63 (s, 3H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 209.1, 205.6, 186.4, 166.6, 156.0, 155.3, 137.4, 133.3, 127.6, 126.0, 124.6, 112.2, 112.0, 88.8, 60.1, 51.7, 49.9, 49.5, 43.4, 42.3, 38.6, 36.1, 35.2, 33.6, 32.2, 23.5, 18.8, 16.0.

HRMS (ESI) (m/z): [M+H]⁺ Calcd for C₂₈H₃₂BrO₅S⁺, 559.1148; found: 559.1149.

(3*R*,4*S*)-3-((*R*)-3-((3-bromo-4-methoxyphenyl)thio)-3-(4-fluorophenyl)propyl)-1-(4-fluorophenyl)-4-(4-methoxyphenyl)azetidin-2-one (47)

General procedure A was followed to obtain 47 (50.5 mg, 81%, $CH_2Cl_2/methanol = 30:1$) as a colorless oil.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.38 (s, 1H), 7.24 – 7.18 (m, 4H), 7.11 – 7.02 (m, 3H), 6.97 – 6.86 (m, 6H), 6.69 (d, *J* = 8.6 Hz, 1H), 4.50 (s, 1H), 3.94 (t, *J* = 7.1 Hz, 1H), 3.84 (s, 3H), 3.81 (s, 3H), 3.06 – 3.02 (m, 1H), 2.18 – 2.11 (m, 1H), 2.05 – 1.94 (m, 2H), 1.79 (q, *J* = 9.0 Hz, 1H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 167.0, 161.9 (d, *J* = 246.1 Hz), 159.9, 159.0 (d, *J* = 243.2 Hz), 156.0, 139.0, 136.9 (d, *J* = 3.1 Hz), 134.9, 133.9 (d, *J* = 2.6 Hz), 129.3 (d, *J* = 7.8 Hz), 129.3, 127.2, 125.6, 118.4 (d, *J* = 7.7 Hz), 115.8 (d, *J* = 22.6 Hz), 115.4 (d, *J* = 21.5 Hz), 114.7, 111.8, 111.5, 60.9, 60.2, 56.3, 55.4, 53.6, 33.1, 26.7.

¹⁹F NMR (565 MHz, Chloroform-*d*) δ -114.8, -118.1.

HRMS (ESI) (m/z): [M+H]⁺ Calcd for C₃₂H₂₉BrF₂NO₃S⁺, 624.1014; found: 624.1016.

(3a*S*,4*S*,6*R*,6a*R*)-4-(((3-bromo-4-methoxyphenyl)thio)methyl)-6-methoxy-2,2dimethyltetrahydrofuro[3,4-*d*][1,3]dioxole (48)

General procedure A was followed to obtain **48** (32.3 mg, 80%, petroleum ether/ethyl acetate = 3:1) as a colorless oil.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.65 (d, *J* = 2.4 Hz, 1H), 7.37 (dd, *J* = 8.5, 2.2 Hz, 1H), 6.82 (d, *J* = 8.6 Hz, 1H), 4.95 (s, 1H), 4.70 (d, *J* = 5.9 Hz, 1H), 4.59 (d, *J* = 5.9 Hz, 1H), 4.16 (dd, *J* = 9.4, 6.1 Hz, 1H), 3.87 (s, 3H), 3.34 (s, 3H), 3.05 (dd, *J* = 13.5, 6.3 Hz, 1H), 2.84 (dd, *J* = 13.6, 9.4 Hz, 1H), 1.45 (s, 3H), 1.30 (s, 3H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 155.6, 136.9, 132.7, 126.6, 112.5, 112.3, 112.1, 109.6, 85.3, 85.1, 83.2, 56.4, 55.0, 39.4, 26.4, 24.9.

HRMS (ESI) (m/z): [M+Na]⁺ Calcd for C₁₆H₂₁BrNaO₅S⁺, 427.0185; found: 427.0180.

(3aR,5S,5aR,8aS,8bR)-5-(((3-bromo-4-methoxyphenyl)thio)methyl)-2,2,7,7-tetramethyltetrahydro-5*H*-bis([1,3]dioxolo)[4,5-*b*:4',5'-*d*]pyran (49)

General procedure A was followed to obtain **49** (25.8 mg, 56%, petroleum ether/ethyl acetate = 3:1) as a colorless oil.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.64 (d, J = 2.2 Hz, 1H), 7.36 (dd, J = 8.6, 2.2 Hz, 1H), 6.81 (d, J = 8.4 Hz, 1H), 5.52 (d, J = 5.0 Hz, 1H), 4.59 (dd, J = 7.9, 2.4 Hz, 1H), 4.33 (d, J = 8.0 Hz, 1H), 4.28 (dd, J = 5.0, 2.4 Hz, 1H), 3.86 (s, 3H), 3.78 (t, J = 7.0 Hz, 1H), 3.06 (dd, J = 7.0, 2.7 Hz, 2H), 1.44 (s, 3H), 1.33 (s, 3H), 1.29 (d, J = 5.6 Hz, 6H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 155.3, 136.1, 132.0, 127.7, 112.3, 112.0, 109.3, 108.6, 96.7, 71.3, 70.9, 70.5, 66.3, 56.4, 35.2, 26.0, 25.7, 24.9, 24.4.

HRMS (ESI) (m/z): [M+Na]⁺ Calcd for C₁₉H₂₅BrNaO₆S⁺, 483.0447; found: 483.0442.

methyl 2-(4-chloro-2-((ferrocenylmethyl)thio)phenoxy)-2-methylpropanoate (50)

General procedure C was followed to obtain **50** (30.2 mg, 66%, petroleum ether/ethyl acetate = 10:1) as a yellow oil.

¹H NMR (600 MHz, Chloroform-d) δ 7.19 (d, J = 2.6 Hz, 1H), 7.00 (dd, J = 8.8, 2.5 Hz, 1H), 6.70 (d,

J = 8.7 Hz, 1H), 4.29 – 4.12 (m, 9H), 3.84 (s, 2H), 1.61 (s, 6H), 1.27 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 174.1, 151.6, 132.2, 127.9, 127.6, 125.6, 118.6, 80.7, 69.2, 68.3, 61.6, 32.3, 25.1, 14.1. HRMS (ESI) (m/z): [M+H]⁺ Calcd for C₂₂H₂₄ClFeO₃S⁺, 459.0479; found: 459.0475.

methyl 2-(4-chloro-2-((ferrocenylmethyl)thio)phenoxy)acetate (51)

General procedure C was followed to obtain **51** (30.5 mg, 71%, petroleum ether/ethyl acetate = 15:1) as a yellow oil.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.25 (d, *J* = 2.5 Hz, 1H), 7.09 (dd, *J* = 8.7, 2.4 Hz, 1H), 6.66 (d, *J* = 8.7 Hz, 1H), 4.67 (s, 2H), 4.20 – 4.15 (m, 7H), 4.10 (s, 2H), 3.93 (s, 2H), 3.80 (s, 3H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 168.8, 154.3, 129.8, 128.4, 127.1, 126.7, 113.1, 68.9, 68.9, 68.1, 66.1, 52.3, 33.0.

HRMS (ESI) (m/z): $[M+H]^+$ Calcd for $C_{20}H_{20}CIFeO_3S^+$, 431.0166; found: 431.0164.

2-((1-(4-((ferrocenylmethyl)thio)phenoxy)phenoxy)propan-2-yl)oxy)pyridine (52)

A mixture of arylthianthene salt (0.15 mmol, 1.5 equiv.), 1,1,3,3-tetramethylthiourea (0.3 mmol, 3.0 equiv.), ferrocenemethanol (0.1 mmol, 1.0 equiv.) and Cs_2CO_3 (0.2 mmol, 2.0 equiv.) were added in 10 mL Schlenk tube equipped with a stirring bar. The tube was evacuated and filled with argon (repeated for three times). To this solid, anhydrous CH₃CN (0.5 mL) were added using a gastight syringe under argon atmosphere. The reaction mixture was stirred under LEDs (420 nm, 40 W) irradiation, maintained at approximately room temperature in the air-conditioned room of 25 °C. After 20 h, the mixture was diluted with EtOAc (approximately 4 mL), washed with brine (approximately 3 mL), and dried over Na₂SO₄. Upon filtration, the organic layers were combined and concentrated on rotary evaporator. The residue was purified by silica gel column chromatography to give the product **52** (38.0 mg, 69%, petroleum ether/ethyl acetate = 10:1) as a yellow oil.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 8.15 (dd, *J* = 5.4, 1.9 Hz, 1H), 7.60 – 7.54 (m, 1H), 7.28 (d, *J* = 8.7 Hz, 2H), 6.96 – 6.90 (m, 4H), 6.86 (d, *J* = 7.0 Hz, 1H), 6.84 (d, *J* = 8.7 Hz, 2H), 6.74 (d, *J* = 8.3 Hz, 1H), 5.62 – 5.55 (m, 1H), 4.19 (dd, *J* = 9.9, 5.3 Hz, 1H), 4.13 (s, 5H), 4.10 – 4.02 (m, 5H), 3.82 (s, 2H), 1.48 (d, *J* = 6.4 Hz, 3H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 163.2, 157.8, 155.4, 150.0, 146.8, 138.7, 133.4, 129.3, 120.8, 118.0, 116.8, 115.9, 111.7, 71.1, 69.3, 68.8, 68.8, 68.1, 36.6, 17.0.

HRMS (ESI) (m/z): [M+H]⁺ Calcd for C₃₁H₃₀FeNO₃S⁺, 552.1290; found: 552.1286.

(3-chloro-6-methoxy-2,4-dimethylphenyl)(ferrocenylmethyl)sulfane (53)

General procedure C was followed to obtain **53** (24.0 mg, 60%, petroleum ether/ethyl acetate = 10:1) as a yellow oil.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 6.65 (s, 1H), 4.12 (s, 5H), 4.05 (s, 2H), 3.99 (s, 2H), 3.86 (s, 3H), 3.66 (s, 2H), 2.44 (s, 3H), 2.38 (s, 3H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 158.4, 141.7, 137.4, 126.9, 121.3, 110.9, 68.9, 68.8, 68.1, 56.2, 35.3, 21.6, 19.7.

HRMS (ESI) (m/z): [M+H]⁺ Calcd for C₂₀H₂₂ClFeOS⁺, 401.0424; found: 401.0420.

3-chloro-9-((ferrocenylmethyl)thio)-6-methyldibenzo[*c*,*f*][1,2]thiazepin-11(6*H*)-one 5,5-dioxide (54)

General procedure C was followed to obtain **54** (39.7 mg, 74%, petroleum ether/ethyl acetate = 2:1) as a yellow oil.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 8.24 (s, 1H), 7.94 (d, *J* = 1.9 Hz, 1H), 7.92 (d, *J* = 8.2 Hz, 1H), 7.68 (dd, *J* = 8.2, 2.1 Hz, 1H), 7.52 (d, *J* = 8.3 Hz, 1H), 7.23 (d, *J* = 7.9 Hz, 1H), 4.28 – 4.15 (m, 9H), 3.95 (s, 2H), 3.32 (s, 3H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 189.1, 139.2, 138.8, 138.3, 135.9, 135.7, 134.2, 133.4, 133.3, 132.0, 131.0, 125.5, 125.0, 69.4, 69.2, 68.6, 39.1, 34.8.

HRMS (ESI) (m/z): [M+H]⁺ Calcd for C₂₅H₂₁ClFeNO₃S₂⁺, 537.9995; found: 537.9991.

methyl 2-(2-fluoro-4'-((methyl-d₃)thio)-[1,1'-biphenyl]-4-yl)propanoate (55)

General procedure B was followed to obtain **55** (29.5 mg, 96%, petroleum ether/ethyl acetate = 15:1) as a colorless oil.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.46 (d, J = 6.7 Hz, 2H), 7.37 (t, J = 8.0 Hz, 1H), 7.31 (d, J = 8.4 Hz, 2H), 7.12 (dd, J = 13.5, 9.7 Hz, 2H), 3.76 (q, J = 7.2 Hz, 1H), 3.70 (s, 3H), 1.53 (d, J = 7.2 Hz, 3H). ¹³**C NMR (151 MHz, Chloroform-***d***)** δ 174.4, 159.7 (d, J = 248.4 Hz), 141.8 (d, J = 7.6 Hz), 138.2, 132.1, 130.5 (d, J = 4.0 Hz), 129.3 (d, J = 3.1 Hz), 127.2 (d, J = 13.3 Hz), 126.4, 123.6 (d, J = 3.2 Hz), 115.3 (d, J = 23.6 Hz), 52.2, 44.9, 18.4. ¹⁹F NMR (565 MHz, Chloroform-*d*) δ -117.4.
 HRMS (ESI) (m/z): [M+H]⁺ Calcd for C₁₇H₁₅D₃FO₂S⁺, 308.1194; found: 308.1196.

N-benzyl-*N*-(2-(4-((methyl-d₃)thio)phenoxy)-4-nitrophenyl)methanesulfonamide (56)

General procedure B was followed to obtain **56** (38.0 mg, 85%, petroleum ether/ethyl acetate = 5:1) as a colorless oil.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.77 (dd, *J* = 8.7, 2.5 Hz, 1H), 7.56 (d, *J* = 2.5 Hz, 1H), 7.36 – 7.31 (m, 3H), 7.28 (s, 5H), 7.00 (d, *J* = 8.8 Hz, 2H), 4.91 (s, 2H), 3.09 (s, 3H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 155.5, 151.7, 148.0, 136.2, 135.3, 134.3, 134.1, 129.0, 128.8, 128.7, 128.3, 120.6, 117.7, 111.9, 54.0, 40.5.

HRMS (ESI) (m/z): $[M+H]^+$ Calcd for $C_{21}H_{18}D_3N_2O_5S_2^+$, 448.1075; found: 448.1072.

(2*R*,3*R*,4*S*,5*R*,6*S*)-2-(acetoxymethyl)-6-(2-(acetoxymethyl)-4-((methyl*d*₃)thio)phenoxy)tetrahydro-2*H*-pyran-3,4,5-triyl triacetate (57)

General procedure B was followed to obtain **57** (30.0 mg, 55%, CH₂Cl₂/methanol = 30:1) as a colorless oil.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.26 (s, 1H), 7.18 (dd, *J* = 8.6, 2.4 Hz, 1H), 7.02 (d, *J* = 8.6 Hz, 1H), 5.29 – 5.26 (m, 2H), 5.20 – 5.13 (m, 1H), 5.08 (d, *J* = 13.0 Hz, 1H), 5.02 – 4.98 (m, 2H), 4.26 (dd, *J* = 12.3, 5.3 Hz, 1H), 4.17 (dd, *J* = 12.3, 2.5 Hz, 1H), 3.86 – 3.79 (m, 1H), 2.09 (s, 3H), 2.09 (s, 3H), 2.07 (s, 3H), 2.03 (s, 3H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 170.6, 170.5, 170.2, 169.4, 169.3, 152.6, 133.0, 128.7, 128.5, 127.2, 117.0, 99.7, 72.6, 72.1, 71.0, 68.3, 61.9, 60.8, 20.9, 20.7, 20.6.

HRMS (ESI) (m/z): $[M+H]^+$ Calcd for $C_{24}H_{28}D_3O_{12}S^+$, 546.1719; found: 546.1721.

 $[\pmb{\alpha}]_{D}{}^{15} = -21.6 \ (c = 0.31, \, CH_2Cl_2).$

3-chloro-6-methyl-9-((methyl-d₃)thio)dibenzo[c,f][1,2]thiazepin-11(6H)-one 5,5-dioxide (58)

General procedure B was followed to obtain **58** (34.9 mg, 98%, petroleum ether/ethyl acetate = 2:1) as a yellow oil.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 8.11 (s, 1H), 7.96 – 7.88 (m, 2H), 7.67 (d, *J* = 8.5 Hz, 1H), 7.50 (d, *J* = 8.0 Hz, 1H), 7.28 – 7.24 (m, 1H), 3.31 (s, 3H).

¹³C NMR (151 MHz, Chloroform-d) δ 189.1, 138.8, 138.3, 138.3, 137.5, 134.1, 133.3, 133.3, 133.0, 131.2, 128.7, 125.6, 125.3, 39.1.
HDMS (ESD) (-(-)) DA(HI) + O = 1.15...O. H. D. ODIO S + 257.0208...O. = 1.257.0206.

HRMS (ESI) (m/z): $[M+H]^+$ Calcd for $C_{15}H_{10}D_3CINO_3S_2^+$, 357.0208; found: 357.0206.

ethyl 2-(4-chloro-2-((methyl-d₃)thio)phenoxy)-2-methylpropanoate (59)

General procedure B was followed to obtain **59** (18.3 mg, 63%, petroleum ether/ethyl acetate = 15:1) as a colorless oil.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.02 (d, *J* = 2.5 Hz, 1H), 6.95 (dd, *J* = 8.6, 2.5 Hz, 1H), 6.68 (d, *J* = 8.6 Hz, 1H), 4.24 (q, *J* = 7.1 Hz, 2H), 1.60 (s, 6H), 1.26 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 174.1, 150.7, 133.7, 128.1, 124.7, 124.4, 118.2, 80.7, 61.6, 25.0, 14.1.

HRMS (ESI) (m/z): $[M+H]^+$ Calcd for $C_{13}H_{15}D_3ClO_3S^+$, 292.0848; found: 292.0850.

methyl 2,5-dichloro-6-methoxy-3-((methyl-d₃)thio)benzoate (60)

General procedure B was followed to obtain **60** (20.1 mg, 71%, petroleum ether/ethyl acetate = 15:1) as a colorless oil.

¹H NMR (600 MHz, Chloroform-d) δ 7.18 (s, 1H), 3.96 (s, 3H), 3.87 (s, 3H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 164.9, 150.6, 135.5, 130.9, 127.5, 127.2, 127.0, 62.4, 53.0. HRMS (ESI) (m/z): [M+H]⁺ Calcd for C₁₀H₈D₃Cl₂O₃S⁺, 283.9989; found: 283.9990.

(3-chloro-6-methoxy-2,4-dimethylphenyl)(methyl-d₃)sulfane (61)

CD₃

General procedure B was followed to obtain **61** (18.0 mg, 82%, petroleum ether/ethyl acetate = 15:1) as a colorless oil.

¹H NMR (600 MHz, Chloroform-d) δ 6.66 (s, 1H), 3.88 (s, 3H), 2.63 (s, 3H), 2.38 (s, 3H).
¹³C NMR (151 MHz, Chloroform-d) δ 158.3, 140.7, 137.1, 127.0, 122.7, 111.0, 56.1, 21.5, 19.4.
HRMS (ESI) (m/z): [M+H]⁺ Calcd for C₁₀H₁₁D₃ClOS⁺, 220.0637; found: 220.0640.

2-((1-(4-((methyl-d₃)thio)phenoxy)phenoxy)propan-2-yl)oxy)pyridine (62)

A mixture of arylthianthene salt (0.15 mmol, 1.5 equiv.), 1,1,3,3-tetramethylthiourea (0.3 mmol, 3.0 equiv.) and Cs_2CO_3 (0.2 mmol, 2.0 equiv.) were added in 10 mL Schlenk tube equipped with a stirring bar. The tube was evacuated and filled with argon (repeated for three times). To this solid, anhydrous CH₃CN (0.5 mL) and CD₃OD (0.1 mmol, 1.0 equiv., 99.8 atom%D) were added using a gastight syringe under argon atmosphere. The reaction mixture was stirred under LEDs (420 nm, 40 W) irradiation, maintained at approximately room temperature in the air-conditioned room of 25 °C. After 20 h, the mixture was diluted with EtOAc (approximately 4 mL), washed with brine (approximately 3 mL), and dried over Na₂SO₄. Upon filtration, the organic layers were combined and concentrated on rotary evaporator. The residue was purified by silica gel column chromatography to give the product **67** (22.6 mg, 61%, petroleum ether/ethyl acetate = 10:1) as a colorless oil.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 8.17 – 8.13 (m, 1H), 7.60 – 7.54 (m, 1H), 7.23 (d, *J* = 8.7 Hz, 2H), 6.97 – 6.90 (m, 4H), 6.89 – 6.82 (m, 3H), 6.74 (d, *J* = 8.4 Hz, 1H), 5.62 – 5.55 (m, 1H), 4.18 (dd, *J* = 9.9, 5.3 Hz, 1H), 4.07 (dd, *J* = 9.9, 4.8 Hz, 1H), 1.48 (d, *J* = 6.4 Hz, 3H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 163.1, 156.7, 155.3, 150.3, 146.7, 138.8, 131.2, 129.5, 120.6, 118.4, 116.8, 115.8, 111.7, 71.1, 69.3, 17.0.

HRMS (ESI) (m/z): $[M+H]^+$ Calcd for $C_{21}H_{19}D_3NO_3S^+$, 371.1503; found: 371.1501.

methyl 5-(2,5-dimethyl-4-((methyl-d₃)thio)phenoxy)-2,2-dimethylpentanoate (63)

A mixture of aryldibenzothiophenium salt (0.2 mmol, 2.0 equiv.), 1,1,3,3-tetramethylthiourea (0.3 mmol, 3.0 equiv.) and Cs_2CO_3 (0.2 mmol, 2.0 equiv.) were added in 10 mL Schlenk tube equipped with a stirring bar. The tube was evacuated and filled with argon (repeated for three times). To this solid, anhydrous CH_3CN (0.5 mL) and CD_3OD (0.1 mmol, 1.0 equiv., 99.8 atom%D) were added using a gastight syringe under argon atmosphere. The reaction mixture was stirred under LEDs (420 nm, 40 W) irradiation, maintained at approximately room temperature in the air-conditioned room of 25 °C. After 20 h, the mixture was diluted with EtOAc (approximately 4 mL), washed with brine (approximately 3 mL), and dried over Na_2SO_4 . Upon filtration, the organic layers were combined and concentrated on rotary evaporator. The residue was purified by silica gel column chromatography to give the product **68** (18.2 mg, 58%, petroleum ether/ethyl acetate = 15:1) as a colorless oil.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.06 (s, 1H), 6.63 (s, 1H), 3.90 (t, *J* = 5.6 Hz, 2H), 3.66 (s, 3H), 2.35 (s, 3H), 2.18 (s, 3H), 1.76 – 1.67 (m, 4H), 1.22 (s, 6H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 178.3, 155.6, 136.2, 131.0, 126.8, 125.0, 113.2, 68.2, 51.7, 42.1, 37.1, 25.2, 25.2, 20.3, 15.7.

HRMS (ESI) (m/z): [M+H]⁺ Calcd for C₁₇H₂₄D₃O₃S⁺, 314.1864; found: 314.1867.

methyl 2',4'-difluoro-4-methoxy-5-((methyl-d₃)thio)-[1,1'-biphenyl]-3-carboxylate (64)

General procedure B was followed to obtain 64 (29.8 mg, 91%, petroleum ether/ethyl acetate = 15:1)

as a colorless oil.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.68 (d, *J* = 1.1 Hz, 1H), 7.39 (d, *J* = 6.6 Hz, 2H), 6.93 (d, *J* = 26.3 Hz, 2H), 3.95 (s, 3H), 3.93 (s, 3H).

¹³**C NMR (151 MHz, Chloroform-***d***)** δ 166.0, 162.5 (dd, *J* = 249.6, 12.1 Hz), 159.6 (dd, *J* = 250.5, 11.9 Hz), 156.1, 135.3, 131.3 (dd, *J* = 9.4, 4.6 Hz), 131.2, 129.6, 127.9, 124.6, 123.9 (dd, *J* = 13.7, 3.9 Hz), 111.7 (dd, *J* = 21.1, 3.8 Hz), 104.5 (t, *J* = 25.9 Hz), 61.6, 52.4.

¹⁹**F NMR (565 MHz, Chloroform-***d*) δ -110.5 (d, *J* = 7.9 Hz), -113.2 (d, *J* = 7.8 Hz).

HRMS (ESI) (m/z): [M+H]⁺ Calcd for C₁₆H₁₂D₃F₂O₃S⁺, 328.0893; found: 328.0895.

Unsuccessful Substrates

5. Synthetic Applications

5.1 Two-step one-pot for arene C-H thioetherification⁴

Scheme S2. Two-step one-pot for arene C-H thioetherificatio. ^aarylthianthene salt as substrate.

Tf₂O (0.15 mmol, 1.5 equiv) was slowly added to a stirred solution of the arene (0.15 mmol, 1.5 equiv.) and dibenzothiophene *S*-oxide (0.15 mmol, 1.5 equiv.) in CH₂Cl₂ (0.1 M) at -78 °C under argon atmosphere. The resulting solution was stirred at -78 °C for 15 minutes before warming to room temperature. After stirring for 1-3 hours and confirming that the reaction is complete through TLC monitoring, add Cs₂CO₃ (0.15 mmol, 1.5 equiv.) to neutralize the acid produced during the reaction. Subsequently, remove the solvent under vacuum. Then, to these mixtures, add 1,1,3,3-tetramethylthiourea 2a (0.3 mmol, 3.0 equiv.) and Cs₂CO₃ (0.2 mmol, 2.0 equiv.). The tube was evacuated and filled with argon (repeated for three times). To this solid, anhydrous CH₃CN (0.5 mL) and corresponding alcohol (0.1 mmol, 1.0 equiv.) were added using a gastight syringe under argon atmosphere. The reaction mixture was stirred under LEDs (420 nm, 40 W) irradiation, maintained at approximately room temperature in the air-conditioned room of 25 °C. After 20 h, the mixture was diluted with EtOAc (approximately 4 mL), washed with brine (approximately 3 mL), and dried over Na₂SO₄. Upon filtration, the organic layers were combined and concentrated on rotary evaporator. The residue was purified by silica gel column chromatography to give the product.

5.2 Gram-scale methylthiolation of Flurbiprofen and its subsequent derivatization

A. Synthesis of methyl 2-(2-fluoro-4'-(methylthio)-[1,1'-biphenyl]-4-yl)propanoate

A mixture of aryldibenzothiophenium salt **65** (6.0 mmol, 1.5 equiv.), 1,1,3,3-tetramethylthiourea **2a** (12.0 mmol, 3.0 equiv.) and Cs_2CO_3 (8 mmol, 2.0 equiv.) were added in 100 mL Schlenk tube equipped with a stirring bar. The tube was evacuated and filled with argon (repeated for three times). To this solid, anhydrous CH₃CN (20 mL) and methanol (4 mmol, 1.0 equiv.) were added using a gastight syringe under argon atmosphere. The reaction mixture was stirred under LEDs (420 nm, 40 W) irradiation, maintained at approximately room temperature in the air-conditioned room of 25 °C. After 20 h, the mixture was diluted with EtOAc (approximately 50 mL), washed with brine (approximately 50 mL), and dried over Na₂SO₄. Upon filtration, the organic layers were combined and concentrated on rotary evaporator. The residue was purified by silica gel column chromatography to give the product **66** (colorless oil, 1.1 g, 91%, petroleum ether/ethyl acetate = 15:1).

methyl 2-(2-fluoro-4'-(methylthio)-[1,1'-biphenyl]-4-yl)propanoate (66)

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.46 (d, *J* = 6.7 Hz, 2H), 7.37 (t, *J* = 8.0 Hz, 1H), 7.32 (d, *J* = 8.5 Hz, 2H), 7.16 – 7.09 (m, 2H), 3.76 (q, *J* = 7.2 Hz, 1H), 3.70 (s, 3H), 2.52 (s, 3H), 1.53 (d, *J* = 7.2 Hz, 3H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 174.4, 159.7 (d, *J* = 248.5 Hz), 141.8 (d, *J* = 7.6 Hz), 138.2, 132.2, 130.5 (d, *J* = 3.9 Hz), 129.3 (d, *J* = 3.0 Hz), 127.2 (d, *J* = 13.4 Hz), 126.4, 123.6 (d, *J* = 3.2 Hz), 115.3 (d, *J* = 23.5 Hz), 52.2, 44.9, 18.4, 15.7.

¹⁹F NMR (565 MHz, Chloroform-d) δ -117.4.

HRMS (ESI) (m/z): [M+H]⁺ Calcd for C₁₇H₁₈FO₂S⁺, 305.1006; found: 305.1010.

B. Synthesis of methyl 2-(2-fluoro-4'-(methylsulfinyl)-[1,1'-biphenyl]-4-yl)propanoate

A mixture of methyl 2-(2-fluoro-4'-(methylthio)-[1,1'-biphenyl]-4-yl)propanoate **66** (0.2 mmol, 1.0 equiv.), *m*-CPBA (0.2 mmol, 1.0 equiv.) and DCM (2 mL, 0.1 M) were added in 10 mL Schlenk tube equipped with a stirring bar. The resulting solution was stirred at 0 °C. After 1 h, the mixture was diluted with EtOAc (approximately 4 mL), washed with brine (approximately 3 mL), and dried over Na₂SO₄. Upon filtration, the organic layers were combined and concentrated on rotary evaporator. The residue was purified by silica gel column chromatography to give the product **67** (colorless oil, 55.7 mg, 87%, petroleum ether/ethyl acetate = 10:1).

methyl 2-(2-fluoro-4'-(methylsulfinyl)-[1,1'-biphenyl]-4-yl)propanoate (67)

¹**H NMR (600 MHz, Chloroform-***d***)** δ 8.12 (d, J = 7.9 Hz, 1H), 7.77 – 7.62 (t, J = 6.8 Hz, 1H), 7.55 (t, J = 6.8 Hz, 1H), 7.29 (d, J = 7.5 Hz, 1H), 7.24 (t, J = 7.7 Hz, 1H), 7.16 (d, J = 11.5 Hz, 1H), 7.13 (d, J = 10.5 Hz, 1H), 3.78 (q, J = 7.2 Hz, 1H), 3.72 (s, 3H), 2.51 (s, 3H), 1.55 (d, J = 7.2 Hz, 3H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 174.2, 159.2 (d, *J* = 246.8 Hz), 145.0, 143.6 (d, *J* = 5.5 Hz), 132.8, 131.6 (d, *J* = 3.2 Hz), 130.9 (d, *J* = 24.7 Hz), 129.7, 124.1 (d, *J* = 16.3 Hz), 123.6, 115.1 (d, *J* = 23.1 Hz), 52.3, 45.0, 42.5, 18.4.

¹⁹F NMR (565 MHz, Chloroform-d) δ -113.7.

HRMS (ESI) (m/z): [M+H]⁺ Calcd for C₁₇H₁₈FO₃S⁺, 321.0955; found: 321.0957.

C. Synthesis of methyl 2-(2-fluoro-4'-(methylsulfonyl)-[1,1'-biphenyl]-4-yl)propanoate

A mixture of methyl 2-(2-fluoro-4'-(methylthio)-[1,1'-biphenyl]-4-yl)propanoate **66** (0.2 mmol, 1.0 equiv.), *m*-CPBA (0.6 mmol, 3.0 equiv.) and DCM (2 mL, 0.1 M) were added in 10 mL Schlenk tube equipped with a stirring bar. The resulting solution was stirred at 0 °C. After 1 h, the mixture was diluted with EtOAc (approximately 4 mL), washed with brine (approximately 3 mL), and dried over Na₂SO₄. Upon filtration, the organic layers were combined and concentrated on rotary evaporator. The residue was purified by silica gel column chromatography to give the product **68** (colorless oil, 60.5 mg, 90%, petroleum ether/ethyl acetate = 10:1).

methyl 2-(2-fluoro-4'-(methylsulfonyl)-[1,1'-biphenyl]-4-yl)propanoate (68)

¹**H NMR (600 MHz, Chloroform-***d***)** δ 8.00 (d, *J* = 8.3 Hz, 2H), 7.73 (d, *J* = 6.9 Hz, 2H), 7.40 (t, *J* = 8.0 Hz, 1H), 7.20 (d, *J* = 9.6 Hz, 1H), 7.16 (d, *J* = 11.6 Hz, 1H), 3.78 (q, *J* = 7.2 Hz, 1H), 3.70 (s, 3H), 3.10 (s, 3H), 1.54 (d, *J* = 7.2 Hz, 3H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 174.2, 159.7 (d, *J* = 249.9 Hz), 143.5 (d, *J* = 7.7 Hz), 141.1, 139.5, 130.7 (d, *J* = 3.3 Hz), 129.8 (d, *J* = 3.1 Hz), 127.6, 125.9 (d, *J* = 12.9 Hz), 124.0 (d, *J* = 3.2 Hz), 115.6 (d, *J* = 23.4 Hz), 52.3, 45.0, 44.6, 18.4.

¹⁹F NMR (565 MHz, Chloroform-*d*) δ -117.1.

HRMS (ESI) (m/z): [M+H]⁺ Calcd for C₁₇H₁₈FO₄S⁺, 337.0904; found: 337.0907.

5.3 Synthesis of thioethers using a continuous-flow process

A 25 mL round bottom flask equipped with a magnetic stir bar was charged with aryldibenzothiophenium salt **1a** (1.5 mmol, 1.5 equiv.), 1,1,3,3-tetramethylthiourea **2a** (3.0 mmol, 3.0 equiv.), Cs_2CO_3 (2.0 mmol, 2.0 equiv.) and 2-(*o*-tolyl)ethan-1-ol **3** (1.0 mmol, 1.0 equiv.). The reagents were dissolved in anhydrous CH₃CN and the total volume of the solution was adjusted to 5 mL. The resulting mixture bubbled with an argon balloon for 20 min. After that, the reaction solution was introduced to the flow apparatus (Supplementary Figure S2). The flow apparatus was purged with degassed argon to remove the air first. The syringe pump was then connected to the reaction mixture and the 3.6 mL PFA microreactor coil (internal diameter of 1.0 mm) with a 5 psi back-pressure regulator (BPR). The reaction was placed under LEDs (420 nm, 40 W). When the syringe was fully empty, a crude sample (1 mL) was taken from the collected solution and analyzed by determined through GC analysis.

Figure S2. Flow set-up with light irradiation

6. Preliminary Mechanistic Studies

6.1 Aryl radical trapping experiment

A mixture of aryldibenzothiophenium salt **69** (0.15 mmol, 1.0 equiv.) and 1,1,3,3-tetramethylthiourea **2a** (0.3 mmol, 2.0 equiv.) were added in 10 mL Schlenk tube equipped with a stirring bar. The tube was evacuated and filled with argon (repeated for three times). To this solid, anhydrous CH₃CN (0.5 mL) and ethene-1,1-diyldibenzene (0.2 mmol) were added using a gastight syringe under argon atmosphere. The reaction mixture was stirred under LEDs (420 nm, 40 W) irradiation, maintained at approximately room temperature in the air-conditioned room of 25 °C. After 20 h, the mixture was diluted with EtOAc (approximately 4 mL), washed with brine (approximately 3 mL), and dried over Na₂SO₄. Upon filtration, the organic layers were combined and concentrated on rotary evaporator. The residue was purified by silica gel column chromatography to give the product **70** (white solid, 21.7 mg, 63%, petroleum ether/ethyl acetate = 10:1).

methyl 5-(2,2-diphenylvinyl)-2-methoxybenzoate⁵ (70)

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.55 (d, *J* = 2.4 Hz, 1H), 7.39 – 7.26 (m, 8H), 7.21 (dd, *J* = 7.8, 1.8 Hz, 2H), 7.04 (dd, *J* = 8.7, 2.4 Hz, 1H), 6.93 (s, 1H), 6.71 (d, *J* = 8.8 Hz, 1H), 3.84 (s, 3H), 3.81 (s, 3H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 166.39, 157.84, 143.11, 141.90, 140.25, 134.16, 133.29, 130.31, 129.64, 128.86, 128.26, 127.50, 127.45, 127.42, 126.47, 119.45, 111.58, 56.00, 51.89.

6.2 TEMPO experiment

A mixture of aryldibenzothiophenium salt **69** (0.15 mmol, 1.0 equiv.), 1,1,3,3-tetramethylthiourea **2a** (0.3 mmol, 2.0 equiv.), Cs_2CO_3 (0.2 mmol) and TEMPO (0.3 mmol, 2.0 equiv) were added in 10 mL Schlenk tube equipped with a stirring bar. The tube was evacuated and filled with argon (repeated for
three times). To this solid, anhydrous CH_3CN (0.5 mL) were added using a gastight syringe under argon atmosphere. The reaction mixture was stirred under LEDs (420 nm, 40 W) irradiation, maintained at approximately room temperature in the air-conditioned room of 25 °C. After 20 h, the reaction mixture was sent for HRMS analysis, the compounds **71** and **72** were detected by HRMS.

HRMS (ESI) (m/z): [71+H]⁺ Calcd for C₁₈H₂₈NO₄⁺, 322.2013; found: 322.2012.

Figure S3. Compounds 71 were detected by HRMS

HRMS (ESI) (m/z): [72-CF₃O₃S]⁺ Calcd for C₁₄H₃₀N₃OS⁺, 288.2014; found: 288.2015.

Figure S4. Compounds 72 were detected by HRMS

6.3 Control experiments

A mixture of aryldibenzothiophenium salt **1a** (0.15 mmol, 1.5 equiv.), 1,1,3,3-tetramethylthiourea **2a** (0.3 mmol, 3.0 equiv.) and Cs_2CO_3 (0.2 mmol, 2.0 equiv.) were added in 10 mL Schlenk tube equipped with a stirring bar. The tube was evacuated and filled with argon (repeated for three times). To this solid, anhydrous CH₃CN (0.5 mL) were added using a gastight syringe under argon atmosphere. The reaction mixture was stirred under LEDs (420 nm, 40 W) irradiation, maintained at approximately room temperature in the air-conditioned room of 25 °C. After 20 h, a small amount of the reaction solution was taken out for HRMS analysis, and compound **73** was detected. Then, 2-(*o*-tolyl)ethan-1-ol **3** (0.1 mmol, 1.0 equiv.) was added to the reaction mixture and heated to 60°C with stirring in the dark. After 10 h, the mixture was diluted with EtOAc (approximately 4 mL), washed with brine (approximately 3 mL), and dried over Na₂SO₄. Upon filtration, the organic layers were combined and concentrated on rotary evaporator. The residue was purified by silica gel column chromatography to give the product **4** (colorless oil, 20.7 mg, 73%, petroleum ether/ethyl acetate = 20:1).

HRMS (ESI) (m/z): $[73-X]^+$ Calcd for $C_{15}H_{25}N_2S^+$, 265.1733; found: 265.1726.

Figure S5. Compounds 73 were detected by HRMS

Figure S6. ¹H NMR spectrometry of titration experiments. The compound is dissolved in acetonitrile solution. [74] = 0.3 M, [2a] = 0.6 M, $[Cs_2CO_3] = 0.4$ M. After 10 minutes, the solvent was removed in vacuo. The solid residue was dissolved in chloroform-*d* for testing.

6.5 UV-vis absorption spectra

Figure S7. The absorption spectra in solution were recorded on a UNIC 4802 UV/VIS double beam spectrophotometer in a 1.0 cm length quartz cell. All compounds were dissolved in CH₃CN and measured at 25 °C. $[74] = 0.3 \text{ M}, [2a] = 0.6 \text{ M}, [Cs_2CO_3] = 0.4 \text{ M}.$

6.6 Job's plot

The absorbance values at 420 nm were monitored and plotted as a function of molar fraction of 74 and 2a in CH₃CN. A parabolic curve with a maximum absorbance value at 50% mol fraction was obtained, indicating a 1:1 EDA complex between 74 and 2a.

Figure S8. Job's plot.

7. References

[1] A. Dewanji, L. van Dalsen, J. Rossi-Ashton, E. Gasson, G. Crisenza, D. J. Procter, *Nat. Chem.* 2023, 15, 43–52;

[2] M. Zhang, B. Wang, Y. Cao, Y. Liu, Z. Wang, Q. Wang, Org. Lett. 2022, 24, 8895–8900.

[3] B. Li, K. Wang, H. Yue, A. Drichel, J. Lin, Z. Su, M. Rueping, Org. Lett. 2022, 24, 7434–7439.

[4] T. Michiyuki, S. L. Homölle, N. K. Pandit, L. Ackermann, Angew. Chem. Int. Ed. 2024, 63, e202401198.

[5] Y. Wang, L. Zhao, X. Hao, K. Jin, R. Zhang, C. Duan, Y. Li, Org. Biomol. Chem. 2024, 22, 2451-2455.

8. NMR Spectra

¹³C NMR (151 MHz, Chloroform-*d*) spectrum of compound 4

¹³C NMR (151 MHz, Chloroform-d) spectrum of compound 5

¹³C NMR (151 MHz, Chloroform-d) spectrum of compound 6

¹³C NMR (151 MHz, Chloroform-d) spectrum of compound 7

¹³C NMR (151 MHz, Chloroform-d) spectrum of compound 8

¹H NMR (600 MHz, Chloroform-*d*) spectrum of compound 13

¹³C NMR (151 MHz, Chloroform-d) spectrum of compound 13

¹H NMR (600 MHz, Chloroform-*d*) spectrum of compound 14

¹H NMR (600 MHz, Chloroform-*d*) spectrum of compound 15

¹H NMR (600 MHz, Chloroform-*d*) spectrum of compound 16

¹H NMR (600 MHz, Chloroform-*d*) spectrum of compound 17

¹³C NMR (151 MHz, Chloroform-d) spectrum of compound 17

¹H NMR (600 MHz, Chloroform-*d*) spectrum of compound 18

¹H NMR (600 MHz, Chloroform-*d*) spectrum of compound 19

¹H NMR (600 MHz, Chloroform-*d*) spectrum of compound 20

¹H NMR (600 MHz, Chloroform-*d*) spectrum of compound 21

¹³C NMR (151 MHz, Chloroform-d) spectrum of compound 21

¹H NMR (600 MHz, Chloroform-*d*) spectrum of compound 22

¹H NMR (600 MHz, Chloroform-*d*) spectrum of compound 23

¹H NMR (600 MHz, Chloroform-*d*) spectrum of compound 24

¹H NMR (600 MHz, Chloroform-*d*) spectrum of compound 25

¹H NMR (600 MHz, Chloroform-*d*) spectrum of compound 26

¹H NMR (600 MHz, Chloroform-d) spectrum of compound 27

¹H NMR (600 MHz, Chloroform-*d*) spectrum of compound 28

¹H NMR (600 MHz, Chloroform-*d*) spectrum of compound 29

¹⁹F NMR (565 MHz, Chloroform-d) spectrum of compound 29

fl (ppm)

¹³C NMR (151 MHz, Chloroform-*d*) spectrum of compound 30

¹³C NMR (151 MHz, Chloroform-*d*) spectrum of compound 31

¹³C NMR (151 MHz, Chloroform-*d*) spectrum of compound 32

¹³C NMR (151 MHz, Chloroform-*d*) spectrum of compound 33

¹³C NMR (151 MHz, Chloroform-*d*) spectrum of compound 34

¹³C NMR (151 MHz, Chloroform-*d*) spectrum of compound 35

¹³C NMR (151 MHz, Chloroform-*d*) spectrum of compound 36

¹³C NMR (151 MHz, Chloroform-*d*) spectrum of compound 37

¹³C NMR (151 MHz, Chloroform-*d*) spectrum of compound 38

¹³C NMR (151 MHz, Chloroform-*d*) spectrum of compound 39

¹³C NMR (151 MHz, Chloroform-*d*) spectrum of compound 40

¹³C NMR (151 MHz, Chloroform-*d*) spectrum of compound 41

¹³C NMR (151 MHz, Chloroform-d) spectrum of compound 42

¹³C NMR (151 MHz, Chloroform-*d*) spectrum of compound 43

¹H NMR (600 MHz, Chloroform-*d*) spectrum of compound 45

¹H NMR (600 MHz, Chloroform-*d*) spectrum of compound 46

¹H NMR (600 MHz, Chloroform-d) spectrum of compound 47

ri (ppin

¹³C NMR (151 MHz, Chloroform-*d*) spectrum of compound 48

¹³C NMR (151 MHz, Chloroform-*d*) spectrum of compound 49

¹³C NMR (151 MHz, Chloroform-*d*) spectrum of compound 50

¹H NMR (600 MHz, Chloroform-d) spectrum of compound 51

¹³C NMR (151 MHz, Chloroform-*d*) spectrum of compound 51

¹³C NMR (151 MHz, Chloroform-d) spectrum of compound 52

¹³C NMR (151 MHz, Chloroform-*d*) spectrum of compound 53

¹³C NMR (151 MHz, Chloroform-*d*) spectrum of compound 54

¹H NMR (600 MHz, Chloroform-d) spectrum of compound 57

¹H NMR (600 MHz, Chloroform-*d*) spectrum of compound 60

¹H NMR (600 MHz, Chloroform-*d*) spectrum of compound 61

¹H NMR (600 MHz, Chloroform-*d*) spectrum of compound 62

¹H NMR (600 MHz, Chloroform-*d*) spectrum of compound 63

¹H NMR (600 MHz, Chloroform-*d*) spectrum of compound 64

¹⁹F NMR (565 MHz, Chloroform-d) spectrum of compound 64

fl (ppm)

¹⁹F NMR (565 MHz, Chloroform-d) spectrum of compound 67

fl (ppm)

¹⁹F NMR (565 MHz, Chloroform-*d*) spectrum of compound 68

¹H NMR (600 MHz, Chloroform-*d*) spectrum of compound 70

¹³C NMR (151 MHz, Chloroform-d) spectrum of compound 70

¹H NMR (600 MHz, Chloroform-*d*) spectrum of compound 5-(4-(methoxycarbonyl)phenyl)-5*H*-thianthren-5-ium trifluoromethanesulfonate

¹³C NMR (151 MHz, Chloroform-*d*) spectrum of compound 5-(4-(methoxycarbonyl)phenyl)-5*H*-thianthren-5-ium trifluoromethanesulfonate

