Supporting Information

Visible-light-induced 1,3-difunctionalization of allylboronic esters enabled by 1,2boron shift

Panjie Xiang,^a Kai Sun,^{*a} Anzai Shi,^{a,b} Jiangzhen An,^a Xiaolan Chen,^a Lingbo Qu ^{a,c} and Bing Yu^{*a}

^a College of Chemistry, Zhengzhou University, Zhengzhou 450001, China. E-mail: sunkaichem@zzu.edu.cn; bingyu@zzu.edu.cn

^b National Engineering Research Center of Low Carbon Processing and Utilization of Forest Biomass, Nanjing Forestry University, Nanjing 210037, China.

^c Institute of Chemistry Henan Academy of Sciences, Zhengzhou 450002.

Table of Contents

1.	General Information	2
2.	Experimental Procedures	2
	2.1 Emission spectrum of photoreactor lamp	2
	2.2 General experimental procedures for the desired product	3
	2.3 Scale-up synthesis	3
	2.4 Procedure for emission quenching experiments	1
	2.5 Cyclic voltammetry experiment	1
	2.6 Light on-off experiment	5
	2.7 Measurement of quantum yield	5
	2.8 Control experiments	7
	2.9 Synthetic transformation of compound 9	l
	2.10 One-pot synthesis	l
	2.11 The fate of 2a	3
	2.12 The explanation for the necessity of gem-dialkyl group	3
3.	Characterization Data for Products14	1
4.	NMR Spectra	2
5.	References	7

1. General Information

All chemical reagents were obtained commercially and used without further purification. The progress of reactions was monitored using Thin Layer Chromatography (TLC) under UV light at wavelengths of 254 nm and 365 nm. Products were purified via column chromatography on silica gel with a mesh size of 200-300. All ¹H, ¹³C, ¹⁹F and ¹¹B NMR spectra were recorded on a Bruker Avance spectrometer operating at either 600 MHz or 400 MHz. Proton chemical shifts (δ) are reported in parts per million (ppm), referencing tetramethylsilane as an internal standard. NMR spectra were recorded in CDCl₃ at room temperature (20 ± 3 °C). High-resolution mass spectrometer with electrospray ionization (ESI). Allylboronic esters and enol triflates were prepared according to the reported literatures.¹

2. Experimental Procedures

2.1 Emission spectrum of photoreactor lamp

The photochemical reaction was carried out under visible light irradiation by a blue LED at room temperature. RLH-18 8-position Photo Reaction System manufactured by Beijing Roger Tech Ltd. was used in this system. Eight 10 W blue LEDs were equipped in this Photo reactor. The blue LED's energy peak wavelength is 430 nm, peak width at half-height is 18.4 nm, lirradiance@10 W is 237.57 mW/cm². The reaction vessel is a borosilicate glass tube with 1.5 cm from the lamp, and no filter is applied.

Figure S2. A: Schlenk tube; B: Total reaction system; C: Cooling water circuit; D: Photoreactor

2.2 General experimental procedures for the desired product

A mixture of allylboronic ester 1 (0.2 mmol), vinyl triflate 2 (0.4 mmol, 2.0 equiv.), $[Ir(dF(CF_3)ppy)_2(dtbbpy)][PF_6]$ (0.002 mmol, 1 mol%), K₃PO₄ (0.5 mmol, 2.5 equiv.), and DCE (1.0 mL) was sequentially added to a 25 mL Schlenk tube. The reaction mixtures were degassed with N₂ and then irradiated with a 10 W blue LED (430 nm) at room temperature under N₂ atmosphere for 24 hours. After this period, the reaction was quenched with H₂O, and the mixture was extracted with CH₂Cl₂. The combined organic extracts were dried over Na₂SO₄ and concentrated under reduced pressure. The crude products were purified by silica gel chromatography, using petroleum ether/ethyl acetate (200:1) as the eluting solvent, to yield the desired products **3**.

2.3 Scale-up synthesis

A mixture of allylboronic ester **1a** (1 mmol), 1-phenyl vinyl trifluoromethanesulfonate **2a** (2 mmol, 2.0 equiv.), [Ir(dF(CF₃)ppy)₂(dtbbpy)][PF₆] (0.01 mmol, 1 mol%), K₃PO₄ (2.5 mmol, 2.5 equiv.), and DCE (5.0 mL) was sequentially added to a 25 mL Schlenk

tube. The reaction vessel was then irradiated with 10 W blue LED (430 nm) at room temperature under N_2 atmosphere for 24 hours. Afterward, the reaction was quenched with H_2O , and the mixture was extracted with CH_2Cl_2 . The combined organic extracts were dried over Na_2SO_4 and concentrated under reduced pressure. The crude product were purified by silica gel chromatography using petroleum ether/ethyl acetate as the eluting solvent, yielding the desired product **3a** (269 mg, 70%).

2.4 Procedure for emission quenching experiments

Emission intensities were recorded using an F-4600 FL Spectrophotometer. The solutions were irradiated at 392 nm (Maximum absorption wavelength of [Ir(dF(CF₃) ppy)₂(dtbbpy)][PF₆] and fluorescence was measured from 350 nm to 750 nm. In a typical experiment, the emission spectrum of a 5×10^{-5} M solution of [Ir(dF(CF₃)ppy)₂(dtbbpy)][PF₆] with different concentrations of **2a** in degassed anhydrous solvent in 10 mm path length quartz cuvette was collected.

Figure S3. Luminescence quenching experiments

2.5 Cyclic voltammetry experiment

Cyclic voltammetry was performed on the CHI-660E electrochemical workstation (Shanghai Chenhua Instrument Co., Ltd., China). Cyclic voltammograms of 0.1 M tetrabutylammonium hexafluorophosphate (TBAH) and 1-phenyl vinyl trifluoromethanesulfonate (**2a**) in CH₃CN using glassy carbon disk electrode as working electrode, Pt wire as the counter electrode, and silver chloride electrode (Ag/AgCl) as reference electrode at 100 mV/s scan rate.

Figure S4. Cyclic voltammetry experiment of 2a

2.6 Light on-off experiment

Reaction mixtures in a 25 mL reaction vessel were charged with allylboronic esters (1a) (0.2 mmol), 1-phenyl vinyl trifluoromethanesulfonate (2a) (0.4 mmol, 2.0 equiv.), $[Ir(dF(CF_3)ppy)_2(dtbbpy)][PF_6]$ (0.002 mmol, 1 mol%), K₃PO₄ (0.5 mmol, 2.5 equiv.) and DCE (1.0 mL). The reaction mixtures were degassed by N₂, and then irradiated with 10 W blue LED. After 2 h, the lamps were turned off, and one vial was removed from the irradiation setup. The reaction mixture was quenched with H₂O and extracted with CH₂Cl₂. The organic extracts were combined, dried over Na₂SO₄, and concentrated under reduced pressure. The yield of the product was determined by ¹H NMR using 1,3,5-trimethoxybenzene as the internal standard. The remaining mixture was stirred in the absence of light for an additional 2 h. Then remove one of the tubes. The reaction mixture was quenched with H₂O and extracted with CH₂Cl₂. ¹H NMR analysis was performed every 2 h until the reaction time reached 12 h.

Figure S5 Light on-off experiments

2.7 Measurement of quantum yield

(a) Determination of the light intensity at 436 nm:

The photon flux of the spectrophotometer was determined by standard ferrioxalate actinometry². A 0.15 M solution of ferrioxalate was prepared by dissolving 2.21 g of potassium ferrioxalate hydrate in 30.0 mL of 0.05 M H₂SO₄. A buffered solution of phenanthroline was prepared by dissolving 50.0 mg of phenanthroline and 11.25 g of sodium acetate in 50.0 mL of 0.5 M H₂SO₄. Both solutions were stored in the dark. To determine the photon flux of the spectrophotometer, 2.0 mL of the ferrioxalate solution was placed in a cuvette and irradiated for 90.0 seconds at $\lambda = 436$ nm with an emission slit width at 10.0 nm. After irradiation, 0.35 mL of the phenanthroline solution was added to the cuvette. The solution was then allowed to rest for 1 h to allow the ferrous ions to completely coordinate with the phenanthroline. The absorbance of the solution was measured at 510 nm. A non-irradiated sample was also prepared and the absorbance at 510 nm measured. Conversion was calculated using eq 1:

$$mol \, Fe^{2\,+} = \frac{V * \Delta A}{L * \varepsilon} \tag{1}$$

Where V is the total volume (0.00235 L) of the solution after the addition of phenanthroline, ΔA is the difference in absorbance at 510 nm between the irradiated and non-irradiated solutions, L is the path length (1.000 cm), and ε is the molar absorptivity at 510 nm (11100 L mol⁻¹ cm⁻¹). The photon flux can be calculated using eq 2.

$$photon flux = \frac{mol Fe^{2+}}{\varphi * t * f}$$

Where Φ is the quantum yield for the ferrioxalate actinometer (1.01 for 0.15 M solution at $\lambda = 436$ nm), t is the time (90.0 s), and f is the fraction of light absorbed at $\lambda = 436$ nm (0.998, vide infra). The photon flux was calculated to be 3.22 x 10⁻⁹ einstein s⁻¹. Sample calculation:

$$mol \ Fe^{2+} = \frac{0.00235 \ L \ * \ (2.7653 - 1.3853)}{1.0000 \ cm \ * \ 11100 \ L \ mol^{-1} cm^{-1}} = 2.92 \ * \ 10^{-7} \ mol$$

$$photon \ flux = \frac{2.92 \ * \ 10^{-7} \ mol}{1.01 \ * \ 90 \ * \ 0.998} = 3.22 \ * \ 10^{-9}$$

(b) Determination of the quantum yield

A cuvette was pumped into the glovebox. A mixture of **1a** (0.2 mmol), **2a** (0.4 mmol, 2.0 equiv.), $[Ir(dF(CF_3)ppy)_2(dtbbpy)][PF_6]$ (0.002 mmol, 1 mol%) and K₃PO₄ (0.5 mmol, 2.5 equiv.) were dissolved in DCE (1.0 mL) under N₂ atmosphere. The sample was stirred and irradiated ($\lambda = 436$ nm) at room temperature for 1 h. After irradiation, the yield of product formed was determined by ¹H NMR. The quantum yield was determined using eq 3

$$\varphi = \frac{mol \ product}{flux * t * f} \quad (3)$$

$$f = 1 - 10^{-A} (4)$$

Sample calculation:

 $\varphi = \frac{1 * 10^{-5} mol}{3.22 * 10^{-9} einstein s^{-1} * 3600 s * 0.999} = 0.86$

Thus, 0.86 equivalent of product was formed for every photon absorbed by the photocatalyst, ruling out the possibility of chain propagation process.

2.8 Control experiments

The treatment of model reaction with 3.0 equivalent of radical scavengers such as 2,2,6,6-tetramethylpiperidinyl-1-oxide (TEMPO) or 1,1-Diphenylethylene failed to access the desired product efficiently, indicating the possible involvement of radical pathway in this transformation. Furthermore, compounds **10** - **13** were successfully detected by high-resolution mass spectrometry (HRMS), implying the existence of CF₃ radical and α -carbonyl radical (Figure S6 - 9).

Scheme S1 The trapping experiment of TEMPO

Figure S6. The HRMS analysis of compound 10

Scheme S2 The trapping experiment of 1,1-diphenylethylene

Figure S8. The HRMS analysis of compound 12

Figure S9. The HRMS analysis of compound 13

2.9 Synthetic transformation of compound 9

To a 25 mL round-bottomed flask equipped with a magnetic stir bar, compound **9** (0.2 mmol, 1.0 equiv.), sodium perborate tetrahydrate (1.0 mmol, 5.0 equiv.), and a 1:1 (v/v) mixture of THF and H₂O (4 mL) were added. The reaction mixture was stirred for 5 hours at room temperature. The reaction was then quenched with a saturated solution of sodium bicarbonate and extracted with ethyl acetate. The organic extracts were combined, dried over Na₂SO₄, and concentrated under reduced pressure. The crude product was purified by silica gel chromatography (PE:EA = 5:1), yielding product **9a** in 82% yield.

To a 25 mL round-bottomed flask equipped with a magnetic stir bar, compound **9** (0.2 mmol, 1.0 equiv.), a 7:1 (v/v) mixture of EtOH and DMSO (1.6 mL), and a hydrogen peroxide solution (30% in H₂O, 204.0 μ L, 10.0 equiv.) were added. The mixture was cooled to 0 °C, and then 1.0 M NaOH solution was added gradually while stirring at room temperature for 20 hours. Once the reaction was completed, 0.4 mL of a saturated Na₂S₂O₃ solution was added, and the mixture was stirred for 1 hour. The solution was then extracted with ethyl acetate, and the organic extracts were combined, dried over Na₂SO₄, and concentrated under reduced pressure. The crude product was purified by silica gel chromatography (DCM:MeOH = 20:1), yielding product **9b** in 85% yield.

2.10 One-pot synthesis

(a): To a 25 mL round-bottomed flask equipped with a magnetic stir bar, phenylacetylene (0.4 mmol, 1.0 equiv.) and DCM (2.0 mL, 0.2 M) were added.

Trifluoromethanesulfonic acid (0.8 mmol, 2.0 equiv.) and TMSN_3 (0.8 mmol, 2.0 equiv.) were slowly added. The reaction mixture was stirred for 5 minutes at room temperature. The reaction was then quenched with petroleum ether and filtered through silica gel to remove insoluble substances. The filtrate was concentrated by rotary evaporation and used directly for the next step.

А mixture of allylboronic ester **1**a (0.2)mmol). 1-phenyl vinyl trifluoromethanesulfonate **2a**, $[Ir(dF(CF_3)ppy)_2(dtbbpy)][PF_6]$ (0.002 mmol, 1 mol%), K₃PO₄ (0.5 mmol, 2.5 equiv.), and DCE (1.0 mL) was added sequentially to a 25 mL Schlenk tube. The reaction mixture was then irradiated with a 10 W blue LED (430 nm) at room temperature under a nitrogen atmosphere for 24 hours. After completion, the reaction was quenched with water, and the mixture was extracted with CH₂Cl₂. The combined organic extracts were dried over Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by silica gel chromatography to yield product **3a** in 72% yield.

(b): To a 25 mL round-bottomed flask equipped with a magnetic stir bar, acetophenone (0.4 mmol, 1.0 equiv.), dibutylmethylpyridine (DTBMP, 1.1 equiv.), and DCM (0.6 mL, 0.6 M) were added. The reaction solution was cooled to 0 °C, and Trifluoromethanesulfonic anhydride was added slowly. The reaction mixture was then stirred at room temperature for 12 hours. After completion, the reaction was quenched with petroleum ether and filtered to remove insoluble substances. The filtrate was concentrated by rotary evaporation and used directly for the next step.

mixture of allylboronic А ester **1**a (0.2)mmol), 1-phenyl vinyl trifluoromethanesulfonate **2a**, [Ir(dF(CF₃)ppy)₂(dtbbpy)][PF₆] (0.002 mmol, 1 mol%), K₃PO₄ (0.5 mmol, 2.5 equiv.), and DCE (1.0 mL) was added sequentially to a 25 mL Schlenk tube. The reaction mixture was then irradiated with a 10 W blue LED (430 nm) at room temperature under a nitrogen atmosphere for 24 hours. Afterward, the reaction was quenched with water, and the mixture was extracted with CH₂Cl₂. The combined organic extracts were dried over Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by silica gel chromatography to yielding product **3a** in 56% yield.

2.11 The fate of 2a

The use of 2 equiv. of **2a** ensured a high yield, as vinyl triflates are unstable and can lead to the formation of the byproduct β -CF₃ ketone (which can be detected by TLC).

2.12 The explanation for the necessity of gem-dialkyl group

The migration step is driven by the formation of a more stable tertiary carbon-centered radical from a secondary carbon-centered radical. The gem-dialkyl substitution plays a vital role in stabilizing the radical intermediate, which is key to promoting the reaction. Without these alkyl groups, the 1,2-boron migration would lead to the formation of a primary radical, which is significantly less stable and would hinder the reaction.

3. Characterization Data for Products

6,6,6-trifluoro-3,3-dimethyl-1-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)hexan-1-one (3a)

Colorless liquid (52.7 mg, 69%); ¹H NMR (600 MHz, Chloroform-*d*) δ 7.94 (d, *J* = 7.5 Hz, 2H), 7.54 (t, *J* = 7.4 Hz, 1H), 7.45 (t, *J* = 7.7 Hz, 2H), 3.13 (d, *J* = 14.9 Hz, 1H), 2.79 (d, *J* = 14.9 Hz, 1H), 2.40 – 2.30 (m, 1H), 2.26 – 2.18 (m, 1H), 1.46 (d, *J* = 11.9 Hz, 1H), 1.26 (s, 6H), 1.23 (s, 6H), 1.11 (s, 6H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 199.6, 138.5, 132.8, 128.5, 128.1, 127.8 (q, *J* = 276.54 Hz), 83.7, 47.1, 35.1, 31.5 (q, *J* = 27.77 Hz), 26.9, 26.6, 24.9, 24.8; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -65.04; ¹¹B NMR (193 MHz, Chloroform-*d*) δ 33.57; HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₀H₂₉BF₃O₃⁺ 385.2156; found, 385.2164.

6,6,6-trifluoro-3,3-dimethyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-(ptolyl)hexan-1-one (3b)

Colorless liquid (53.7 mg, 67%); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.84 (d, J = 8.23 Hz, 2H), 7.24 (d, J = 8.03 Hz, 2H), 2.93 (dd, J = 142.60, 14.70 Hz, 2H), 2.40 (s, 3H), 2.37 – 2.19 (m, 2H), 1.46 – 1.43 (m, 1H), 1.26 (s, 6H), 1.24 (s, 6H), 1.10 (s, 3H), 1.09 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 199.4, 143.5, 136.1, 127.8 (q, J = 277.75 Hz), 129.2, 128.3, 83.7, 46.9, 35.1, 31.6 (q, J = 27.97 Hz), 26.9, 26.7, 24.94, 24.92, 21.6; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -65.02; ¹¹B NMR (128 MHz, Chloroform-*d*) δ 32.01; HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₁H₃₁BF₃O₃⁺ 399.2313; found, 399.2322.

6,6,6-trifluoro-3,3-dimethyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-(mtolyl)hexan-1-one (3c)

Colorless liquid (54.7 mg, 69%); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.74 – 7.72 (m, 2H), 7.37 – 7.31 (m, 2H), 3.11 (d, *J* = 14.87 Hz, 1H), 2.78 (d, *J* = 14.87 Hz, 1H), 2.41 (s, 3H), 2.37 – 2.16 (m, 2H), 1.46 (dd, *J* = 12.11, 1.60 Hz, 1H), 1.26 (s, 6H), 1.24 (s, 6H), 1.10 (s, 6H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 200.0, 138.6, 138.3, 133.5, 128.6, 128.3, 127.8 (q, *J* = 276.54 Hz), 125.4, 83.7, 47.2, 31.6 (q, *J* = 27.82 Hz), 26.8, 26.7, 25.0, 24.9, 21.4; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -65.03; ¹¹B NMR (128 MHz, Chloroform-*d*) δ 32.29; HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₁H₃₁BF₃O₃⁺ 399.2313; found, 399.2327.

6,6,6-trifluoro-1-(3-methoxyphenyl)-3,3-dimethyl-4-(4,4,5,5-tetramethyl-1,3,2dioxaborolan-2-yl)hexan-1-one (3d)

Colorless liquid (43.1 mg, 52%); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.52 – 7.47 (m, 2H), 7.35 (t, *J* = 7.92 Hz, 1H), 7.09 (dd, *J* = 8.18, 2.40 Hz, 1H), 3.85 (s, 3H), 3.11 (d, *J* 15

= 14.97 Hz, 1H), 2.78 (d, J = 14.99 Hz, 1H), 2.42 – 2.15 (m, 2H), 1.47 (d, J = 11.61 Hz, 1H), 1.26 (s, 6H), 1.23 (s, 6H), 1.11 (s, 6H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 199.5, 159.8, 139.9, 129.4, 127.8 (q, J = 276.49 Hz), 120.8, 119.2, 112.4, 83.7, 55.4, 47.3, 35.1, 31.6 (q, J = 27.95 Hz), 26.9, 26.6, 24.93, 24.88. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -65.03; ¹¹B NMR (128 MHz, Chloroform-*d*) δ 31.89; HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₁H₃₁BF₃O₄⁺ 415.2262; found, 415.2274;

6,6,6-trifluoro-1-(4-fluorophenyl)-3,3-dimethyl-4-(4,4,5,5-tetramethyl-1,3,2dioxaborolan-2-yl)hexan-1-one (3e)

Colorless liquid (60.2 mg, 75%); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.05 – 7.91 (m, 2H), 7.16 – 7.07 (m, 2H), 3.11 (d, *J* = 15.01 Hz, 1H), 2.76 (d, *J* = 15.01 Hz, 1H), 2.42 – 2.14 (m, 2H), 1.49 – 1.46 (m, 1H), 1.26 (s, 6H), 1.23 (s, 6H), 1.11 (s, 6H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 198.0, 165.6 (d, *J* = 254.40 Hz), 134.9 (d, *J* = 3.0 Hz), 130.7 (d, *J* = 9.22 Hz), 127.7 (q, *J* = 276.44 Hz), 115.5 (d, *J* = 21.82 Hz), 83.7, 47.1, 35.1, 31.5 (q, *J* = 27.88 Hz), 26.9, 26.6, 24.91, 24.88; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ 31.66; HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₀H₂₈BF₄O₃⁺ 403.2062; found, 403.2065.

6,6,6-trifluoro-1-(3-fluorophenyl)-3,3-dimethyl-4-(4,4,5,5-tetramethyl-1,3,2dioxaborolan-2-yl)hexan-1-one (3f)

Colorless liquid (62.3 mg, 77%); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.74 – 7.71 (m, 1H), 7.65 – 7.61 (m, 1H), 7.46 - 7.40 (m, 1H), 7.30 – 7.22 (m, 1H), 3.13 (d, *J* = 15.14 Hz, 1H), 2.76 (d, *J* = 15.14 Hz, 1H), 2.42 – 2.14 (m, 2H), 1.49 – 1.46 (m, 1H), 1.26 (s, 6H), 1.23 (s, 6H), 1.11 (s, 6H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 198.4 (d, *J* = 1.9 Hz), 162.8 (d, *J* = 247.66 Hz), 140.6 (d, *J* = 5.93 Hz), 130.1 (d, *J* = 7.63 Hz), 127.7 (q, *J* = 276.50 Hz), 123.8 (d, *J* = 3.0 Hz), 119.8 (d, *J* = 21.50 Hz), 114.9 (d, *J* = 22.31 Hz), 83.8, 47.3, 35.1, 31.5 (q, *J* = 27.95 Hz), 26.8, 26.7, 24.90, 24.87; ¹⁹F NMR (376 MHz, 16)

Chloroform-*d*) δ -65.07 (s, 3F), -112.03 (s, 1F); ¹¹B NMR (128 MHz, Chloroform-*d*) δ 31.89; HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₀H₂₈BF₄O₃⁺ 403.2062; found, 403.2073.

6,6,6-trifluoro-1-(2-fluorophenyl)-3,3-dimethyl-4-(4,4,5,5-tetramethyl-1,3,2dioxaborolan-2-yl)hexan-1-one (3g)

Colorless liquid (64.8 mg, 81%); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.76 (td, J = 7.64, 1.82 Hz, 1H), 7.51 – 7.45 (m, 1H), 7.21 (td, J = 7.77, 0.98 Hz, 1H), 7.13 – 7.08 (m, 1H), 3.08 (dd, J = 16.06, 1.98 Hz, 1H), 2.90 (dd, J = 16.06, 2.11 Hz, 1H), 2.41 – 2.12 (m, 2H), 1.52 – 1.49 (m, 1H), 1.22 (s, 6H), 1.20 (s, 6H), 1.14 (s, 3H), 1.09 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 198.2 (d, J = 4.06 Hz), 161.2 (d, J = 252.93 Hz), 134.0 (d, J = 8.96 Hz), 130.5 (d, J = 2.70 Hz), 127.8 (q, J = 276.47 Hz), 127.7 (d, J = 13.29 Hz), 124.4 (d, J = 3.36 Hz), 116.5 (d, J = 24.04 Hz), 83.6, 52.8 (d, J = 6.58 Hz), 35.2, 31.5 (q, J = 27.74 Hz), 26.7, 26.5, 24.9, 24.7; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -65.13 (s, 3F), -109.62 (s, 1F); ¹¹B NMR (128 MHz, Chloroform-*d*) δ 31.83; HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₀H₂₈BF₄O₃⁺ 403.2062; found, 403.2070.

1-(4-chlorophenyl)-6,6,6-trifluoro-3,3-dimethyl-4-(4,4,5,5-tetramethyl-1,3,2dioxaborolan-2-yl)hexan-1-one (3h)

Colorless liquid (67.5 mg, 81%); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.90 – 7.87 (m, 2H), 7.43 – 7.40 (m, 2H), 3.11 (d, *J* = 15.06 Hz, 1H), 2.75 (d, *J* = 15.06 Hz, 1H), 2.42 – 2.14 (m, 2H), 1.49 – 1.45 (m, 1H), 1.26 (s, 6H), 1.23 (s, 6H), 1.102 (s, 3H), 1.098 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 198.4, 139.2, 136.8, 129.5, 128.8, 127.8 (q, *J* = 276.50 Hz), 83.7, 47.1, 35.1, 31.5 (q, *J* = 27.89 Hz), 26.8, 26.6, 24.92, 24.89; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -65.05; ¹¹B NMR (128 MHz, Chloroform-*d*) δ 31.89; HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₀H₂₈BClF₃O₃⁺ 419.1767; found, 419.1782.

1-(3-chlorophenyl)-6,6,6-trifluoro-3,3-dimethyl-4-(4,4,5,5-tetramethyl-1,3,2dioxaborolan-2-yl)hexan-1-one (3i)

Colorless liquid (67.8 mg, 81%); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.91 (t, *J* = 1.73 Hz, 1H), 7.81 (d, *J* = 7.80 Hz, 1H), 7.53 – 7.51 (m, 1H), 7.39 (t, *J* = 7.87 Hz, 1H), 3.12 (d, *J* = 15.16 Hz, 1H), 2.76 (d, *J* = 15.16 Hz, 1H), 2.54 – 2.00 (m, 2H), 1.47 (d, *J* = 10.80 Hz, 1H), 1.26 (s, 6H), 1.24 (s, 6H), 1.109 (s, 3H), 1.101 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 198.4, 140.1, 134.8, 132.7, 129.8, 128.2, 127.7 (q, *J* = 276.33 Hz), 126.2, 83.8, 47.3, 35.1, 31.5 (q, *J* = 27.97 Hz), 26.8, 26.7, 24.93, 24.87; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -65.06; ¹¹B NMR (128 MHz, Chloroform-*d*) δ 31.90; HRMS (ESI) m/z: [M + Na]⁺ calcd for C₂₀H₂₇BClF₃NaO₃⁺ 441.1586; found, 441.1595.

1-(2-chlorophenyl)-6,6,6-trifluoro-3,3-dimethyl-4-(4,4,5,5-tetramethyl-1,3,2dioxaborolan-2-yl)hexan-1-one (3j)

Colorless liquid (53.7 mg, 64%); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.42 – 7.28 (m, 4H), 3.05 (d, *J* = 15.81 Hz, 1H), 2.88 (d, *J* = 15.81 Hz, 1H), 2.39 – 2.10 (m, 2H), 1.42 (d, *J* = 10.75 Hz, 1H), 1.23 (s, 6H), 1.22 (s, 6H), 1.14 (s, 3H), 1.11 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 202.8, 141.1, 131.3, 130.40, 130.35, 128.6, 127.7 (q, *J* = 276.43 Hz), 126.9, 83.7, 52.3, 35.4, 31.5 (q, *J* = 27.93 Hz), 26.7, 26.5, 24.9, 24.8; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -65.07; ¹¹B NMR (128 MHz, Chloroform-*d*) δ 31.88; HRMS (ESI) m/z: [M + Na]⁺ calcd for C₂₀H₂₇BClF₃NaO₃⁺ 441.1586; found, 441.1594.

1-(4-bromophenyl)-6,6,6-trifluoro-3,3-dimethyl-4-(4,4,5,5-tetramethyl-1,3,2dioxaborolan-2-yl)hexan-1-one (3k)

Colorless liquid (75.8 mg, 82%); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.82 – 7.79 (m, 2H), 7.60 – 7.57 (m, 2H), 3.10 (d, *J* = 15.06 Hz, 1H), 2.74 (d, *J* = 15.06 Hz, 1H), 2.39 – 2.14 (m, 2H), 1.48 – 1.45 (m, 1H), 1.26 (s, 6H), 1.23 (s, 6H), 1.099 (s, 3H) , 1.095 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 198.6, 137.2, 131.8, 129.7, 128.0, 127.7 (q, *J* = 276.74 Hz), 83.7, 47.1, 35.1, 31.5 (q, *J* = 28.00 Hz), 26.8, 26.7, 24.93, 24.90; ⁹F NMR (376 MHz, Chloroform-*d*) δ -65.04; ¹¹B NMR (128 MHz, Chloroform-*d*) δ 31.86; HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₀H₂₈B⁷⁹BrF₃O₃⁺ 463.1261; found, 463.1273; [M + H]⁺ calcd for C₂₀H₂₈B⁸¹BrF₃O₃⁺ 465.1241; found, 465.1179.

1-(3-bromophenyl)-6,6,6-trifluoro-3,3-dimethyl-4-(4,4,5,5-tetramethyl-1,3,2dioxaborolan-2-yl)hexan-1-one (3l)

Colorless liquid (71.2 mg, 77%); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.06 (t, *J* = 1.62 Hz, 1H), 7.86 (d, *J* = 7.83 Hz, 1H), 7.68 – 7.66 (m, 1H), 7.33 (t, *J* = 7.87 Hz, 1H), 3.11 (d, *J* = 15.19 Hz, 1H), 2.75 (d, *J* = 15.19 Hz, 1H), 2.42 – 2.14 (m, 2H), 1.47 (d, *J* = 10.92 Hz, 1H), 1.26 (s, 6H), 1.24 (s, 6H), 1.11 (s, 3H), 1.10 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 198.2, 140.3, 135.6, 131.2, 130.1, 127.7 (q, *J* = 276.39 Hz), 126.6, 122.9, 83.8, 47.3, 35.1, 31.5 (q, *J* = 27.91 Hz), 26.8, 26.7, 25.0, 24.9; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -65.05; ¹¹B NMR (128 MHz, Chloroform-*d*) δ 31.77; HRMS (ESI) m/z: [M + Na]⁺ calcd for C₂₀H₂₇B⁸BrF₃NaO₃⁺ 487.1060; found, 487.1074.

1-(2-bromophenyl)-6,6,6-trifluoro-3,3-dimethyl-4-(4,4,5,5-tetramethyl-1,3,2dioxaborolan-2-yl)hexan-1-one (3m)

Colorless liquid (49.9 mg, 54%); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.58 (d, *J* = 7.75 Hz, 1H), 7.37 – 7.33 (m, 1H), 7.29 – 7.24 (m, 1H), 3.04 (d, *J* = 15.98 Hz, 1H), 2.86 (d, *J* = 15.99 Hz, 1H), 2.39 – 2.11 (m, 2H), 1.44 – 1.41 (m, 1H), 1.234 (s, 6H), 1.229 (s, 6H), 1.15 (s, 3H), 1.12 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 203.4, 19

143.1, 133.6, 131.2, 128.3, 127.7 (q, J = 276.70 Hz), 127.3, 118.4, 83.7, 52.1, 35.4, 31.5 (q, J = 27.81 Hz), 26.6, 26.4, 24.9, 24.8; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -65.05; ¹¹B NMR (128 MHz, Chloroform-*d*) δ 31.95; HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₀H₂₈B⁷⁹BrF₃O₃⁺ 463.1261; found, 463.1274; [M + H]⁺ calcd for C₂₀H₂₈B⁸¹BrF₃O₃⁺ 465.1241; found, 465.1167.

6,6,6-trifluoro-1-(4-iodophenyl)-3,3-dimethyl-4-(4,4,5,5-tetramethyl-1,3,2dioxaborolan-2-yl)hexan-1-one (3n)

Colorless liquid (75.3 mg, 74%); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.81 (d, *J* = 8.47 Hz, 2H), 7.65 (d, *J* = 8.47 Hz, 2H), 2.91 (dd, *J* = 142.40, 15.05 Hz, 2H), 2.42 – 2.19 (m, 2H), 1.46 (d, *J* = 11.71 Hz, 1H), 1.25 (s, 6H), 1.23 (s, 6H), 1.09 (s, 6H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 198.9, 137.78, 137.75, 129.6, 127.7 (q, *J* = 276.74 Hz), 100.7, 83.7, 47.0, 35.1, 31.5 (q, *J* = 27.88 Hz), 26.8, 26.7, 24.94, 24.91, ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -65.02; ¹¹B NMR (193 MHz, Chloroform-*d*) δ 33.03; HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₀H₂₈BF₃IO₃⁺ 511.1123; found, 511.1127.

4-(6,6,6-trifluoro-3,3-dimethyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)hexanoyl)benzonitrile (30)

Colorless liquid (56.9 mg, 70%); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.03 (d, J = 8.17 Hz, 2H), 7.77 (d, J = 8.11 Hz, 2H), 3.15 (d, J = 15.55 Hz, 1H), 2.82 (d, J = 15.55 Hz, 1H), 2.43 – 2.13 (m, 2H), 1.51 (d, J = 11.71 Hz, 1H), 1.25 (s, 6H), 1.21 (s, 6H), 1.12 (s, 3H), 1.10 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 198.2, 141.4, 132.4, 128.4, 127.7 (q, J = 276.53 Hz), 118.0, 116.1, 83.8, 47.7, 35.1, 31.5 (q, J = 28.31 Hz), 26.9, 26.6, 24.91, 24.85. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -65.09; ¹¹B NMR (128 MHz, Chloroform-*d*) δ 31.95; HRMS (ESI) m/z: [M + Na]⁺ calcd for C₂₁H₂₇BF₃NNaO₃⁺ 432.1928; found, 432.1945.

methyl 4-(6,6,6-trifluoro-3,3-dimethyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)hexanoyl)benzoate (3p)

Colorless liquid (72.5 mg, 82%); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.05 (dd, J = 50.66, 8.30 Hz, 4H), 3.95 (s, 3H), 2.99 (dd, J = 143.64, 15.24 Hz, 2H), 2.43 – 2.15 (m, 2H), 1.49 (d, J = 11.46 Hz, 1H), 1.25 (s, 6H), 1.22 (s, 6H), 1.12 (s, 3H), 1.10 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 199.2, 166.2, 141.8, 133.6, 129.7, 128.0, 127.7 (q, J = 277.75 Hz), 83.7, 52.4, 47.6, 35.1, 31.5 (q, J = 27.77 Hz), 26.8, 26.7, 24.93, 24.87; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -65.08; ¹¹B NMR (193 MHz, Chloroform-*d*) δ 32.42; HRMS (ESI) m/z: [M + Na]⁺ calcd for C₂₂H₃₀BF₃NaO₅⁺ 465.2031; found, 465.2033.

6,6,6-trifluoro-3,3-dimethyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-(4-(trifluoromethyl)phenyl)hexan-1-one (3q)

Colorless liquid (57.3 mg, 63%); ¹H NMR (600 MHz, Chloroform-*d*) δ 8.04 (d, *J* = 8.1 Hz, 2H), 7.72 (d, *J* = 8.1 Hz, 2H), 3.16 (d, *J* = 15.3 Hz, 1H), 2.82 (d, *J* = 15.3 Hz, 1H), 2.411 – 2.31 (m, 1H), 2.25 – 2.17 (M, 1H), 1.50 (d, *J* = 11.9 Hz, 1H), 1.25 (s, 6H), 1.23 (s, 6H), 1.12 (s, 3H), 1.11 (s, 3H).; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -63.11 (s, 3F), -65.11 (s, 3F); ¹¹B NMR (128 MHz, Chloroform-*d*) δ 32.24; HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₁H₂₈BF₆O₃⁺ 453.2030; found, 453.2029.

6,6,6-trifluoro-3,3-dimethyl-1-(4-(methylsulfonyl)phenyl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexan-1-one (3r)

Colorless liquid (41.6 mg, 45%); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.28 – 7.96 (m, 4H), 3.08 (s, 3H), 3.00 (dd, *J* = 136.72, 15.44 Hz, 2H), 2.42 – 2.13 (m, 2H), 1.51 – 1.48

(m, 1H), 1.25 (s, 6H), 1.22 (s, 6H), 1.12 (s, 3H), 1.10 (s, 3H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 198.4, 143.9, 142.5, 128.9, 127.70, 127.66 (q, *J* = 276.7 Hz), 83.8, 47.9, 44.3, 35.2, 31.5 (q, *J* = 27.9 Hz), 26.9, 26.7, 24.94, 24.87; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -65.10; ¹¹B NMR (193 MHz, Chloroform-*d*) δ 33.47; HRMS (ESI) m/z: [M + Na]⁺ calcd for C₂₁H₃₀BF₃NaO₅S⁺ 485.1751; found, 485.1758.

6,6,6-trifluoro-3,3-dimethyl-1-(pyridin-2-yl)-4-(4,4,5,5-tetramethyl-1,3,2dioxaborolan-2-yl)hexan-1-one (3s)

Colorless liquid (73.1 mg, 95%); ¹H NMR (600 MHz, Chloroform-*d*) δ 8.64 (d, *J* = 4.5 Hz, 1H), 8.03 (d, *J* = 7.8 Hz, 1H), 7.81 (t, *J* = 7.7 Hz, 1H), 7.45 – 7.43 (m, 1H), 3.30 – 3.21 (m, 2H), 2.41 – 2.27 (m, 2H), 1.49 (d, *J* = 11.7 Hz, 1H), 1.24 (s, 6H), 1.21 (s, 6H), 1.12 (s, 3H), 1.09 (s, 3H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 201.3, 154.4, 148.6, 136.8, 127.9 (q, *J* = 277.84 Hz), 126.8, 121.7, 83.6, 45.8, 35.3, 31.6 (q, *J* = 27.8 Hz), 27.2, 26.6, 25.0, 24.8; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -65.04; ¹¹B NMR (193 MHz, Chloroform-*d*) δ 33.54; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₉H₂₈BF₃NO₃⁺ 386.2109; found, 386.2117.

3,3-diethyl-6,6,6-trifluoro-1-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)hexan-1-one (3t)

Colorless liquid (38.0 mg, 46%); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.98 – 7.95 (m, 2H), 7.56 – 7.52 (m, 1H), 7.45 (t, *J* = 7.6 Hz, 2H), 3.06 (d, *J* = 16.3 Hz, 1H), 2.93 (d, *J* = 16.3 Hz, 1H), 2.40 – 2.14 (m, 1H), 1.71 – 1.56 (m, 5H), 1.25 (s, 6H), 1.23 (s, 6H), 0.82 (q, *J* = 7.4 Hz, 6H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 200.0, 138.7, 132.6, 128.4, 128.0, 127.9 (q, *J* = 277.1 Hz), 83.6, 42.9, 41.4, 31.2 (q, *J* = 27.4 Hz), 29.5, 28.3, 25.1, 24.8, 8.5; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -65.08; ¹¹B NMR (193 MHz, Chloroform-*d*) δ 33.78; HRMS (ESI) m/z: [M + Na]⁺ calcd for C₂₂H₃₂BF₃O₃Na⁺ 435.2289; found, 435.2297.

6,6,6-trifluoro-1-phenyl-3,3-dipropyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)hexan-1-one (3u)

Colorless liquid (26.7 mg, 30%); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.96 (d, J = 7.5 Hz, 2H), 7.54 (t, J = 7.3 Hz, 1H), 7.44 (t, J = 7.5 Hz, 2H), 3.10 – 2.92 (m, 2H), 2.39 – 2.19 (m, 2H), 1.63 – 1.39 (m, 5H), 1.26 (s, 10H), 1.24 (s, 6H), 0.87 – 0.78 (m, 6H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 200.1, 138.7, 132.6, 128.4, 128.0, 127.9 (q, J = 277.8 Hz), 83.6, 43.8, 41.2, 40.3, 39.1, 31.3 (q, J = 27.5 Hz), 25.1, 24.8, 17.23, 17.18, 14.8, 14.7; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -65.09; ¹¹B NMR (193 MHz, Chloroform-*d*) δ 33.71; HRMS (ESI) m/z: [M + Na]⁺ calcd for C₂₄H₃₆BF₃O₃Na⁺ 463.2602; found, 463.2603.

3-methyl-1-phenyl-3-(3,3,3-trifluoro-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)propyl)nonan-1-one (3v)

Colorless liquid (20 mg, 22%, dr = 1:1); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.95 – 7.92 (m, 2H), 7.54 (t, *J* = 7.1 Hz, 1H), 7.44 (t, *J* = 7.7 Hz, 2H), 3.18 (d, *J* = 15.2 Hz, 1H), 2.78 (dd, *J* = 15.4, 3.4 Hz, 1H), 2.41 – 2.25 (m, 1H), 2.22 – 2.10 (m, 1H), 1.62 – 1.52 (m, 2H), 1.51 – 1.41 (m, 2H), 1.28 – 1.23 (m, 18H), 1.08 (d, *J* = 4.7 Hz, 3H), 0.88 – 0.82 (m, 4H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 200.2, 199.9, 147.1, 138.8, 138.7, 132.7, 128.4, 128.03, 128.00, 127.9 (q, *J* = 277.8 Hz), 124.5, 124.0, 83.66, 83.65, 45.2, 44.8, 38.8, 38.4, 37.92, 37.89, 34.9, 34.5, 31.8, 31.7, 31.4, 31.2 (q, *J* = 27.3 Hz), 30.2, 29.9, 29.8, 29.7, 24.97, 24.94, 24.89, 24.6, 24.1, 23.6, 23.5, 22.6, 14.04, 14.03; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -64.98; -64.90; ¹¹B NMR (193 MHz, Chloroform-*d*) δ 33.55; HRMS (ESI) m/z: [M + Na]⁺ calcd for C₁₉H₂₅BF₃O₃Na⁺ 392.1741; found, 392.1752.

1-phenyl-2-(1-(3,3,3-trifluoro-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)propyl)cyclopentyl)ethan-1-one(3w)

Colorless liquid (44.2 mg, 54%); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.97 – 7.95 (m, 2H), 7.55 (t, *J* = 7.4 Hz, 1H), 7.45 (t, *J* = 7.6 Hz, 2H), 3.07 (dd, *J* = 136.6, 15.5 Hz, 2H), 2.45 – 2.13 (m, 3H), 1.83 – 1.80 (m, 1H), 1.69 – 1.58 (m, 8H), 1.26 (s, 6H), 1.24 (s, 6H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 200.3, 138.5, 132.8, 128.5, 128.1, 127.7 (q, *J* = 276.1 Hz), 83.6, 46.3, 44.4, 37.4, 36.3, 32.8 (q, *J* = 27.5 Hz), 25.2, 25.0, 24.8, 24.6; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -65.20; ¹¹B NMR (193 MHz, Chloroform-*d*) δ 33.39; HRMS (ESI) m/z: [M + Na]⁺ calcd for C₂₂H₃₀BF₃O₃Na⁺ 433.2132; found, 433.2136.

1-phenyl-2-(1-(3,3,3-trifluoro-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)propyl)cyclohexyl)ethan-1-one (3x)

Colorless liquid (48.4 mg, 57%); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.00 – 7.98 (m, 2H), 7.57 – 7.53 (m, 1H), 7.44 (t, *J* = 7.6 Hz, 2H), 3.32 (d, *J* = 14.5 Hz, 1H), 2.69 (d, *J* = 14.5 Hz, 1H), 2.36 – 2.12 (m, 2H), 1.93 (d, *J* = 11.2 Hz, 1H), 1.77 – 1.70 (m, 1H), 1.65 – 1.38 (m, 9H), 1.29 (s, 6H), 1.24 (s, 6H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 200.6, 138.9, 132.8, 128.4, 128.3, 127.9 (q, *J* = 277.8 Hz), 83.6, 43.2, 38.6, 35.9, 32.9, 31.1 (q, *J* = 27.9 Hz), 25.6, 25.1, 24.8, 21.42, 21.38; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -64.97; ¹¹B NMR (193 MHz, Chloroform-*d*) δ 35.23; HRMS (ESI) m/z: [M + Na]⁺ calcd for C₂₃H₃₂BF₃O₃Na⁺ 447.2289; found, 447.2296.

4-(6,6,6-trifluoro-3,3-dimethyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)hexanoyl)phenyl 2-(4-(2,2-dichlorocyclopropyl)phenoxy)-2-methylpropanoate (3y)

Colorless liquid (84.6 mg, 63%); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.95 (d, *J* = 8.39 Hz, 2H), 7.17 (d, *J* = 8.26 Hz, 2H), 7.05 (d, *J* = 8.37 Hz, 2H), 6.93 (d, *J* = 8.32 Hz, 2H), 3.10 (d, *J* = 15.10 Hz, 1H), 2.89 – 2.84 (m, 1H), 2.76 (d, *J* = 15.10 Hz, 1H), 2.42 – 2.15 (m, 2H), 1.96 (dd, *J* = 10.55, 7.55 Hz, 1H), 1.81 (d, *J* = 8.06 Hz, 1H), 1.77 (s, 6H), 1.46 (d, *J* = 11.84 Hz, 1H), 1.25 (s, 6H), 1.23 (s, 6H), 1.10 (s, 6H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 198.3, 172.4, 154.9, 154.0, 136.4, 129.9, 129.8, 128.7, 127.7 (q, *J* = 277.75 Hz) 121.4, 118.6, 83.7, 79.3, 60.8, 47.2, 35.1, 34.8, 31.5 (q, *J* = 28.15 Hz), 26.8, 26.7, 25.8, 25.5, 25.4, 25.0, 24.9; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -65.00; ¹¹B NMR (193 MHz, Chloroform-*d*) δ 32.29; HRMS (ESI) m/z: [M + Na]⁺ calcd for C₃₃H₄₀BCl₂F₃O₆Na⁺ 693.2139; found, 693.2153.

4-(6,6,6-trifluoro-3,3-dimethyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)hexanoyl)phenyl 2-(4-chlorophenoxy)-2-methylpropanoate (3z)

Colorless liquid (72.5 mg, 61%); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.98 (d, J = 8.72 Hz, 2H), 7.25 (d, J = 8.95 Hz, 2H), 7.10 (d, J = 8.71 Hz, 2H), 6.90 (d, J = 8.94 Hz, 2H), 2.94 (dd, J = 141.06, 15.12 Hz, 2H), 2.42 – 2.15 (m, 2H), 1.74 (s, 6H), 1.48 – 1.46 (m, 1H), 1.25 (s, 6H), 1.23 (s, 6H), 1.11 (s, 3H), 1.10 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 198.2, 172.2, 153.9, 136.4, 129.8, 129.3, 127.75 (q, J = 277.75 Hz), 127.72, 121.3, 120.6, 83.7, 79.6, 47.1, 35.1, 31.5 (q, J = 27.8 Hz), 26.8, 26.7, 25.3, 24.94, 24.90; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -65.01; ¹¹B NMR (193 MHz, Chloroform-*d*) δ 33.19; HRMS (ESI) m/z: [M + Na]⁺ calcd for C₃₀H₃₇BClF₃O₆Na⁺ 619.2216; found, 619.2231.

4-(6,6,6-trifluoro-3,3-dimethyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)hexanoyl)phenyl 2-(2-fluoro-[1,1'-biphenyl]-4-yl)propanoate (3aa)

Colorless liquid (84.8 mg, 68%); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.97 – 7.94 (m, 2H), 7.57 – 7.55 (m, 2H), 7.48 – 7.43 (m, 3H), 7.40 – 7.35 (m, 1H), 7.26 – 7.20 (m, 2H), 7.16 – 7.12 (m, 2H), 4.01 (q, *J* = 7.12 Hz, 1H), 2.93 (dd, *J* = 142.69, 15.04 Hz, 2H), 2.39 – 2.14 (m, 2H), 1.67 (d, *J* = 7.16 Hz, 3H), 1.47 – 1.43 (m, 1H), 1.25 (s, 6H), 1.22 (s, 6H), 1.09 (s, 6H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 198.4, 172.0, 159.8 (d, *J* = 248.75 Hz), 154.2, 140.9 (d, *J* = 7.60 Hz), 136.2, 135.30, 135.29, 131.1 (d, *J* = 3.97 Hz), 129.0, 128.9, 128.5, 128.3 (d, *J* = 13.48 Hz), 127.8, 127.7 (q, *J* = 277.75), 121.44, 115.3 (d, *J* = 23.77 Hz), 83.7, 47.1, 45.2, 35.1, 31.5 (q, *J* = 28.28 Hz), 26.8, 26.7, 25.0, 24.9, 18.4; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -65.02 (s, 3F), -117.07 (s, 1F); ¹¹B NMR (193 MHz, Chloroform-*d*) δ 32.28; HRMS (ESI) m/z: [M + Na]⁺ calcd for C₃₅H₃₉BF₄O₅Na⁺ 649.2719; found, 649.2731.

(1S,2R,4S)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl 4-((R)-6,6,6-trifluoro-3,3dimethyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexanoyl)benzoate (3ab)

Colorless liquid (102.4 mg, 91%); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.12 (d, J = 8.25 Hz, 2H), 8.00 (d, J = 8.37 Hz, 2H), 5.15 – 5.13 (m, 1H), 3.00 (dd, J = 137.64, 15.16 Hz, 2H), 2.52 – 2.46 (m, 1H), 2.40 – 2.32 (m, 1H), 2.24 – 2.18 (m, 1H), 2.16 – 2.09 (m, 1H), 1.86 -1.78 (m, 1H), 1.77 – 1.75 (m, 1H), 1.49 (d, J = 12.14 Hz, 2H), 1.42 (d, J = 2.78 Hz, 2H), 1.29 (d, J = 2.94 Hz, 1H), 1.26 (s, 6H), 1.23 (s, 5H), 1.16 – 1.14 (m, 1H), 1.12 (s, 3H), 1.11 (s, 3H), 0.98 (s, 3H), 0.93 (s, 5H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 199.2, 166.0, 141.6, 134.4, 129.7, 128.0, 127.7 (q, J = 277.75 Hz), 83.8, 81.2, 49.1, 47.9, 47.6, 45.0, 36.9, 35.2, 31.5 (q, J = 28.01 Hz), 28.1, 27.4, 26.8, 26.7, 24.93, 24.89, 19.7, 18.9, 13.6; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -65.05; ¹¹B

NMR (193 MHz, Chloroform-*d*) δ 33.59; HRMS (ESI) m/z: [M + Na]⁺ calcd for C₃₁H₄₄BF₃O₅Na⁺ 587.3126; found, 587.3135.

Methyl (4-(6,6,6-trifluoro-3,3-dimethyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)hexanoyl)phenyl) terephthalate (3ac)

Colorless liquid (74.6 mg, 66%); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.27 (d, J = 8.44 Hz, 2H), 8.14 (d, J = 8.72 Hz, 2H), 8.06 (d, J = 8.46 Hz, 2H), 7.33 (d, J = 8.72 Hz, 2H), 3.93 (s, 3H), 3.03 (dd, J = 139.17, 15.35 Hz, 2H), 2.45 – 2.16 (m, 2H), 1.52 (d, J = 10.85 Hz, 1H), 1.26 (s, 6H), 1.23 (s, 6H), 1.14 (s, 3H), 1.12 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 199.0, 166.2, 163.8, 154.3, 142.4, 132.5, 131.3, 130.4, 128.2, 128.0. 127.7 (q, J = 276.48 Hz), 121.6, 83.8, 52.2, 47.8, 35.2, 31.5 (q, J = 27.99 Hz), 26.8, 26.7, 24.93, 24.88; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -65.05; ¹¹B NMR (193 MHz, Chloroform-*d*) δ 33.53; HRMS (ESI) m/z: [M + Na]⁺ calcd for C₂₉H₃₄BF₃O₇Na⁺ 585.2242; found, 585.2245.

3,7-dimethyloctyl 4-(6,6,6-trifluoro-3,3-dimethyl-4-(4,4,5,5-tetramethyl-1,3,2dioxaborolan-2-yl)hexanoyl)benzoatev (3ad)

Colorless liquid (82.8 mg, 73%); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.05 (dd, J = 49.3, 8.4 Hz, 4H), 4.44 – 4.34 (m, 2H), 2.99 (dd, J = 142.5, 15.2 Hz, 1H), 2.43 – 2.15 (m, 2H), 1.86 – 1.79 (m, 1H), 1.68 – 1.42 (m, 5H), 1.42 (s, 1H), 1.29 (s, 1H), 1.25 (s, 6H), 1.22 (s, 6H), 1.18 – 1.15 (m, 3H), 1.12 (s, 3H), 1.10 (s, 3H), 0.97 (d, J = 6.4 Hz, 3H), 0.88 (s, 3H), 0.86 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 199.2, 165.8, 141.7, 134.0, 129.7, 128.0, 127.7 (q, J = 276.35 Hz), 83.7, 64.1, 47.6, 39.2, 37.1, 35.5, 35.1, 31.5 (q, J = 27.95 Hz), 30.0, 27.9, 26.8, 26.7, 24.93, 24.88, 24.6, 22.7, 22.6, 19.6; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -65.07; ¹¹B NMR (193 MHz, Chloroform-*d*) δ

33.24; HRMS (ESI) m/z: $[M + Na]^+$ calcd for $C_{31}H_{48}BF_3O_5Na^+$ 591.3439; found, 591.3444.

4-(6,6,6-trifluoro-3,3-dimethyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)hexanoyl)phenyl 5-(2,5-dimethylphenoxy)-2,2-dimethylpentanoate (3ae)

Colorless liquid (54.0 mg, 43%); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.96 (d, J = 8.74 Hz, 2H), 7.11 (d, J = 8.73 Hz, 2H), 7.00 (d, J = 7.48 Hz, 1H), 6.67 (d, J = 7.49 Hz, 1H), 6.62 (s, 1H), 3.99 (t, J = 5.30 Hz, 2H), 2.94 (dd, J = 144.18, 15.01 Hz, 2H), 2.39 – 2.17 (m, 8H), 1.91 – 1.87 (m, 4H), 1.48 – 1.44 (m, 1H), 1.38 (s, 6H), 1.26 (s, 6H), 1.23 (s, 6H), 1.10 (s, 6H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 198.4, 175.8, 156.8, 154.6, 136.5, 135.9, 130.4, 129.7, 127.8 (q, J = 277.75 Hz) 123.6, 121.6, 120.8, 111.9, 83.7, 67.7, 47.1, 42.6, 37.1, 35.1, 31.6 (q, J = 27.94 Hz), 26.8, 26.7, 25.3, 25.1, 25.0, 24.9, 21.4, 15.8; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -65.03; ¹¹B NMR (193 MHz, Chloroform-*d*) δ 33.75; HRMS (ESI) m/z: [M + Na]⁺ calcd for C₃₅H₄₈BF₃O₆Na⁺ 655.3388; found, 655.3400.

4-(6,6,6-trifluoro-3,3-dimethyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)hexanoyl)phenyl benzo[d][1,3]dioxole-5-carboxylate (3af)

Colorless liquid (30 mg, 27%); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.04 – 8.01 (m, 2H), 7.82 (dd, *J* = 8.21, 1.71 Hz, 1H), 7.60 (d, *J* = 1.65 Hz, 1H), 7.31 – 7.28 (m, 2H), 6.91 (d, *J* = 8.21 Hz, 1H), 6.09 (s, 2H), 2.97 (dd, *J* = 146.28, 15.03 Hz, 2H), 2.43 – 2.16 (m, 2H), 1.49 – 1.46 (m, 1H), 1.26 (s, 6H), 1.24 (s, 6H), 1.12 (s, 6H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 198.4, 163.9, 154.5, 152.5, 148.0, 136.0, 129.8, 127.8 (q, *J* = 277.75 Hz), 126.4, 122.9, 121.8, 109.9, 108.2, 102.1, 83.7, 47.1, 35.1, 31.6 (q, *J* = 27.97 Hz), 26.8, 26.7, 25.0, 24.9; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -65.02; HRMS (ESI) m/z: [M + Na]⁺ calcd for C₂₈H₃₂BF₃O₇Na⁺ 571.2085; found, 571.2095.

Colorless liquid (52.1 mg, 46%); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.11 (d, J = 8.23 Hz, 2H), 7.98 (d, J = 8.28 Hz, 2H), 4.96 (td, J = 10.85, 4.32 Hz, 1H), 2.99 (dd, J = 140.99, 15.12 Hz, 2H), 2.43 – 2.12 (m, 3H), 1.98 – 1.91 (m, 1H), 1.74 (d, J = 11.92 Hz, 3H), 1.61 – 1.55 (m, 2H), 1.48 (d, J = 11.77 Hz, 1H), 1.26 (s, 6H), 1.23 (s, 6H), 1.16 (d, J = 4.09 Hz, 1H), 1.14 (s, 1H), 1.11 (d, J = 3.89 Hz, 6H), 0.97 – 0.89 (m, 6H), 0.80 (d, J = 6.92 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 199.2, 165.3, 141.6, 134.3, 129.7, 128.0, 127.7 (q, J = 277.75 Hz), 83.7, 75.5, 47.68, 47.66, 47.2, 40.9, 35.2, 34.3, 31.52 (q, J = 27.70 Hz), 31.45, 26.83, 26.80, 26.7, 26.6, 24.93, 24.88, 23.7, 22.0, 20.7, 16.5; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -65.06; ¹¹B NMR (193 MHz, Chloroform-*d*) δ 33.33; HRMS (ESI) m/z: [M + Na]⁺ calcd for C₃₁H₄₆BF₃O₅Na⁺ 589.3283; found, 589.3295.

4-((R)-6,6,6-trifluoro-3,3-dimethyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)hexanoyl)phenyl 2-(4-isobutylphenyl)propanoate (3ah)

Colorless liquid (50.2 mg, 43%); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.91 – 7.96 (m, 2H), 7.29 (d, *J* = 8.1 Hz, 2H), 7.15 (d, *J* = 8.1 Hz, 2H), 7.11 – 7.07 (m, 2H), 3.95 (q, *J* = 7.1 Hz, 1H), 2.92 (dd, *J* = 142.2, 15.0 Hz, 2H), 2.47 (d, *J* = 7.2 Hz, 2H), 2.38 – 2.13 (m, 2H), 1.92 – 1.82 (m, 1H), 1.61 (d, *J* = 7.2 Hz, 3H), 1.45 (dd, *J* = 12.0, 1.6 Hz, 1H), 1.24 (s, 6H), 1.22 (s, 6H), 1.09 (s, 6H), 0.92 (s, 3H), 0.90 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 198.4, 172.7, 154.4, 141.0, 136.9, 136.0, 129.7, 129.6, 127.8 (q, *J* = 277.75 Hz), 127.2, 121.5, 83.7, 47.1, 45.3, 45.1, 35.1, 31.5 (q, *J* = 28.1, 27.0 Hz), 30.2, 26.8, 26.7, 24.94, 24.91, 22.4, 18.5; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -65.03; ¹¹B

NMR (193 MHz, Chloroform-*d*) δ 32.25; HRMS (ESI) m/z: [M + Na]⁺ calcd for C₃₃H₄₄BF₃O₅Na⁺ 611.3126; found, 611.3131.

1-(3-bromophenyl)-7,7,8,8,9,9,10,10,10-nonafluoro-3,3-dimethyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)decan-1-one (5)

Yellow liquid (115 mg, 92%); ¹H NMR (600 MHz, Chloroform-*d*) δ 8.06 (s, 1H), 7.86 (d, *J* = 7.8 Hz, 1H), 7.67 (d, *J* = 7.9 Hz, 1H), 7.33 (t, *J* = 7.9 Hz, 1H), 2.94 (dd, *J* = 208.0, 15.2 Hz, 2H), 2.44 – 2.10 (m, 2H), 1.57 (d, *J* = 11.4 Hz, 1H), 1.26 (s, 6H), 1.23 (s, 6H), 1.12 (s, 3H), 1.11 (s, 3H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 198.2, 140.3, 135.6, 131.2, 130.1, 126.6, 122.9, 120.5 – 108.7 (m, CF₂CF₂CF₂CF₃), 83.8, 47.4, 35.2, 28.3 (t, *J* = 21.6 Hz), 26.70, 26.67, 24.87, 24.84; ¹⁹F NMR (565 MHz, Chloroform-*d*) δ -81.06 (t, *J* = 9.5 Hz, 3F), -111.86 – -114.30 (m, 2F), -124.51– -124.50 (m, 2F), -125.90 – -125.94 (m, 2F); ¹¹B NMR (193 MHz, Chloroform-*d*) δ 32.95; HRMS (ESI) m/z: [M + Na]⁺ calcd for C₂₃H₂₇B⁷⁹BrF₉O₃Na⁺ 635.0985; found, 635.1005.

3,3-dimethyl-1-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5tosylpentan-1-one (7)

Colorless liquid (41.4 mg, 44%); ¹H NMR (600 MHz, Chloroform-*d*) δ 7.84 (d, *J* = 7.6 Hz, 2H), 7.79 (d, *J* = 8.0 Hz, 2H), 7.53 (t, *J* = 7.4 Hz, 1H), 7.42 (t, *J* = 7.7 Hz, 2H), 7.33 (d, *J* = 7.9 Hz, 2H), 3.47 – 3.42 (m, 1H), 3.16 (d, *J* = 13.7 Hz, 1H), 2.99 (d, *J* = 15.3 Hz, 1H), 2.71 (d, *J* = 15.3 Hz, 1H), 2.44 (s, 3H), 1.53 (d, *J* = 11.7 Hz, 1H), 1.31 (s, 6H), 1.29 (s, 6H), 1.00 (s, 3H), 0.99 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 199.2, 144.4, 138.3, 136.2, 132.8, 129.8, 128.5, 128.3, 128.1, 84.0, 55.1, 47.8, 35.3, 26.7, 26.6, 25.2, 25.1, 21.7; ¹¹B NMR (193 MHz, Chloroform-*d*) δ 32.31; HRMS (ESI) m/z: [M + Na]⁺ calcd for C₂₆H₃₅BNO₅SNa⁺ 493.2190; found, 493.2202.

White solid (55.0 mg, 73%); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.80 (d, *J* = 8.3 Hz, 2H), 7.37 (d, *J* = 8.0 Hz, 2H), 3.58 – 3.51 (m, 1H), 3.27 (dd, *J* = 13.6, 1.8 Hz, 1H), 2.45 (s, 3H), 1.58 (dd, *J* = 12.3, 1.7 Hz, 1H), 1.36 (s, 3H), 1.33 (s, 12H), 1.31 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 144.9, 135.7, 130.0, 128.2, 123.9, 84.7, 55.8, 33.9, 27.1, 25.1, 25.0, 24.6, 21.7; ¹¹B NMR (128 MHz, Chloroform-*d*) δ 31.89; HRMS (ESI) m/z: [M + Na]⁺ calcd for C₁₉H₂₈BNO₅Na⁺ 400.1724; found, 400.1737.

3-hydroxy-2,2-dimethyl-4-tosylbutanenitrile (9a)

Colorless liquid (47.6 mg, 82%); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.82 (d, *J* = 8.2 Hz, 2H), 7.40 (d, *J* = 8.1 Hz, 2H), 4.05 (d, *J* = 9.9 Hz, 1H), 3.84 (s, 1H), 3.41 – 3.38 (m, 1H), 3.29 (dd, *J* = 14.0, 10.0 Hz, 1H), 2.47 (s, 3H), 1.36 (s, 3H), 1.33 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 145.5, 136.0, 130.2, 127.9, 122.4, 70.4, 58.9, 37.6, 23.3, 21.6; HRMS (ESI) m/z: [M + Na]⁺ calcd for C₁₃H₁₇NO₃SNa⁺ 290.0821; found, 290.0826.

3-hydroxy-2,2-dimethyl-4-tosylbutanamide (9b)

White solid (52.4 mg, 85%); ¹H NMR (600 MHz, DMSO-*d*₆) δ 7.77 (d, *J* = 8.0 Hz, 2H), 7.42 (d, *J* = 7.9 Hz, 2H), 7.06 (s, 1H), 6.91 (s, 1H), 5.20 (d, *J* = 6.2 Hz, 1H), 4.06 – 4.03 (m, 1H), 3.28 (dd, *J* = 14.6, 9.6 Hz, 1H), 3.18 (d, *J* = 14.6 Hz, 1H), 2.40 (s, 3H), 1.00 (s, 3H), 0.94 (s, 3H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 178.3, 144.3, 138.3, 130.0, 128.2, 70.9, 59.9, 46.8, 22.5, 21.5, 20.9; HRMS (ESI) m/z: [M + Na]⁺ calcd for C₁₃H₁₉NO₄SNa⁺ 308.0927; found, 308.0932.

4. NMR Spectra

7.94 7.93 7.56 7.54 7.53 7.45 7.45 7.45 7.26	6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	-0.00
		1

3a, ¹⁹F NMR, 376 MHz, CDCl₃

33

1.12 2.33 2.33 2.33 2.33 2.33 2.33 2.33 2.33 2.33 2.34 2.33 2.35 2.33 2.35 2.33 2.35 2.33 2.35 2.33 2.35 2.35 2.35 2.33 2.35 2.33 2.35 2.36 2.35 2.37 2.35 2.37 2.35 2.37 2.35 2.37 2.37 2.37 2.35 <t

3c, ¹H NMR, 400 MHz, CDCl₃

F₃C

 $\mathbf{3c},\,^{13}\mathrm{C}$ NMR, 101 MHz, CDCI_3

5 -5 -15 -25 -35 -45 -55 -65 -75 -85 -95 -105 -115 -125 -135 -145 (ppm)

-0.00 -0.00

C BPin F₃C

3h, ¹H NMR, 400 MHz, CDCl₃

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 (ppm)

CI F₃C

3h, ¹⁹F NMR, 376 MHz, CDCl₃

CI BPin F₃C

3j, ¹H NMR, 400 MHz, CDCl₃

BPin F₃C

3j, ¹⁹F NMR, 376 MHz, CDCl₃

3I, ¹H NMR, 400 MHz, CDCl₃

F₃C

3I, ¹³C NMR, 101 MHz, CDCI₃

F₃C

3n, ¹⁹F NMR, 376 MHz, CDCl₃

COOMe F₃C

 $\mathbf{3p}$, ¹⁹F NMR, 376 MHz, CDCl₃

SO₂Me BPin F₃C

3r, ¹H NMR, 400 MHz, CDCl₃

SO₂Me BPin F₃C Ŋ

3r, ¹³C NMR, 101 MHz, CDCl₃

SO₂Me F₃C 3r, ¹⁹F NMR, 376 MHz, CDCl₃ -75 (ppm) -5 -15 -25 -35 -85 -95 -105 -125 -135 -45 -55 -65 -115 -145 ---0.00 8.64 8.63 8.03 8.03 8.02 8.02 8.02 8.02 7.83 7.81 7.45 7.45 7.45 7.43 7.26 F₃C $\boldsymbol{\times}$ N **3s**, ¹H NMR, 600 MHz, CDCl₃ 0.93₌ 0.91[₹] 0.93[₹] 0.94 2.00f 2.05H 1.00 6.02 3.01 € 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 (ppm)

— -65.10

BPir F₃C ⊼_{Et} ∏ Eť

3t, ¹³C NMR, 101 Hz, CDCl₃

Et Et 🖔

 $\mathbf{3t}$, ¹⁹F NMR,376 Hz, CDCl₃

$\begin{array}{c} 7.35\\ 7.55\\ 7.75\\$

7.9 7

F₃

3w, ¹H NMR, 400 Hz, CDCl₃

BPin F_3

3x, ¹H NMR, 400 Hz, CDCl₃

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 (ppm)

F₃C

3x, ¹⁹C NMR, 376 Hz, CDCl₃

7.39 7.39 7.39 7.39 7.31 7.32 8.89 8.83 8.83 8.83 7.11 7.33 7.33 7.11

3z, ¹H NMR, 400 MHz, CDCl₃

3z, ¹³C NMR, 101 MHz, CDCl₃

 $\mathbf{3z},\,^{19}\mathsf{F}$ NMR, 376 MHz, CDCl_3

Saa, ¹H NMR, 400 MHz, CDCl₃

8833 88

CE BPin

 $\textbf{3ab},\ ^{1}\text{H}$ NMR, 400 MHz, CDCl_{3}

8.8.12 7.7.27 7.7.29 7.7.20 7.

BPin F₃C / Ŋ

3ad, ¹H NMR, 400 MHz, CDCl₃

F₃C Ĭ

3ad, ¹³C NMR, 101 MHz, CDCl₃

8 0.4 8

0 II CF₃ BPin

3af, ¹H NMR, 400 MHz, CDCl₃

BPin

3af, ¹⁹F NMR, 376 MHz, CDCl₃

7.3.95 7.3.94 7.3.94 7.3.94 7.3.95 <td

CF BPir

3ah, ¹H NMR, 400 Hz, CDCl₃

CF₃ BPin

3ah, ¹³C NMR, 101 Hz, CDCl₃

 $\boldsymbol{3ah},\,^{19}\mathsf{F}\;\mathsf{NMR},\,376\;\mathsf{Hz},\,\mathsf{CDCI}_3$

10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 (ppm)

C₄F₉ 5, ¹³C NMR, 151 Hz, CDCl₃

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 (ppm)

 C_4F_9 $\mathbf{5},\,^{19}\mathrm{F}\ \mathrm{NMR},\,565\ \mathrm{Hz},\,\mathrm{CDCl}_3$

7.85 7.785 7.53 7.53 7.53 7.52 7.34 7.32 7.32 7.32 7.32	3.47 3.47 3.17 3.17 2.77 2.29 3.17 2.17 2.17 2.17 2.17 2.17 2.17 2.17 2	-0.00
		1

То

7, ¹H NMR, 600 MHz, CDCl₃

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 (ppm)

10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 10.5 10.0 0.5 0.0 5.5 5.0 0.4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5

9, ¹³C NMR, 101 MHz, CDCl₃

CN CN

9a, ¹H NMR, 400 MHz, CDCl₃

$$\begin{array}{c} & \swarrow \\ & \swarrow \\ & \swarrow \\ & \land \\ & \land \\ & \land \\ & \land \\ & \circ \\ & \circ$$

9b, ¹H NMR, 600 MHz, DMSO-*d*₆

5. References

(a)M. J. Ardolino and J. P. Morken, J. Am. Chem. Soc., 2014, 136, 7092; (b)X. Su,
H. Huang, Y. Yuan and Y. Li, Angew. Chem. Int. Ed., 2017, 56, 1338.

2. M. A. Cismesia and T. P. Yoon, Chem. Sci., 2015, 6, 5426.