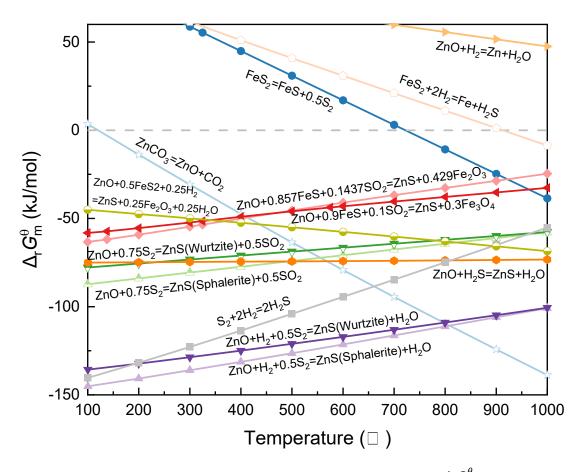
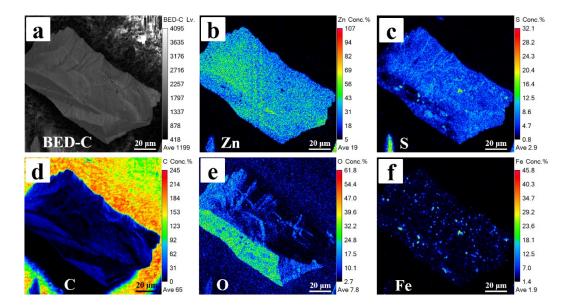
Supplementary Information for :

Efficient flotation of smithsonite using sulfidation reconstruction based on fluidization roasting

Yuangan Chen^{a,b}, Rui Han^{c,*}, Yongsheng Sun^{a,b,*}, Peng Gao^{a,b}, Yanjun Li^{a,b}


^a School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China

^b National-Local Joint Engineering Research Center of High-Efficient Exploitation Technology for Refractory Iron Ore Resources, Shenyang 110819, China


^c School of Civil and Environmental Engineering University of Technology Sydney Broadway, Ultimo, New South Wales, 2007, Australia

*Corresponding author: Rui Han; E-mail: rui.han@uts.edu.au; Yongsheng Sun; Email: yongshengsun@mail.neu.edu.cn

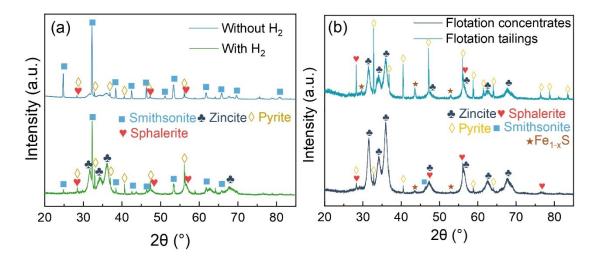

Supplementary Figures

Figure S-1. Reaction of smithsonite with pyrite at different temperatures for $\Delta_r G_m^{\theta}$.

Figure S-2. EPMA results for reconstructed smithsonite at a temperature of 750°C: BED-C image (a). Discrete elemental maps of (b) Zn, (c) S, (d) C, (e) O, and (f) Fe.

Figure S-3. XRD patterns of roasting products: (a) Mineral composition of the roasting products of smithsonite and pyrite with and without H_2 at a roasting temperature of 450°C. (b) Mineral composition of flotation concentrates and tailings of roasting products in the presence of H_2 at a roasting temperature of 450 °C.

Supplementary Table

Sample	Zn	S
Feedstock	38.40	11.92
Roasted product	47.81	14.23

 Table S-1. Chemical composition of feedstocks and roasted products (wt%).