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1. General Considerations

General. The CO, cycloaddition reactions and the tandem reactions were performed using point-tipped vials, 5 —
10 mL, Biotage®, 20mm flange top, cs/100, capped with a rubber septum. NMR spectra ("H, *C, '°F) were acquired
on a Bruker Avance 400 MHz spectrometer. Chemical shifts (8) are reported in ppm relative to residual solvent
signals (CDCls, 8y = 7.26 ppm, 8¢ = 77.16 ppm; or CD;0D, &y = 3.31 ppm, Sc = 49.00 ppm). *C NMR and "°F
spectra were acquired on a broad band decoupled mode. The following abbreviations are used to describe peak
patterns when appropriate: s (singlet), d (doublet), t (triplet), q (quartet), quint (quintet), m (multiplet), br (broad).
Reactions were monitored by 'H NMR, and/or TLC on silica gel plates (60 A porosity, 250 pum thickness).
Analytical thin layer chromatography (TLC) was performed using pre-coated aluminum-backed plates (Merck
Kieselgel 60 F2s4) and visualized using potassium permanganate stain, and/or UV light with wavelength of 254 nm.
Flash column chromatography was performed using silica gel Merck-60 from Aldrich. Elemental analysis was
performed by duplicate on a Carlo Erba Flash 1112 elemental analyzer and the metal content was determined by
inductively coupled plasma-optical emission spectrometry (ICP—OES) on a Varian Vista MPX ICP—OES at Medac
Ltd, Chobham, UK. High Resolution Mass Spectrometry (HRMS) analyses were conducted on Bruker MicrOTOF
using electrospray ionization (ESI). The utilized software calibrates the instruments and reports measurements by
use of neutral atomic masses. UV-Vis studies and fluorescence measurements were measured in a 1 cm plastic
cuvette using a Agilent Cary 5000 UV-Vis-NIR Spectrophotometer. SEM images were acquired using a JEOL-
7401F, JEOL-7000F and JEOL-IT800 field-emission scanning electron microscope at 0.5 kV, 5.0 kV, and 15 kV.
The samples were loaded on carbon ink or on a TEM grid by drop-casting using EtOH solvent prior to SEM
analysis. Thermalgravimetric analysis (TGA) was performed under a nitrogen flow with the temperature range
between 25 °C and 600 °C and heating rate of 4 °C.min"' using TA Instruments Discovery thermogravimetric
analyzer in an aluminum cup loaded with approx. 7 mg of samples. Nitrogen adsorption analysis data were obtained
at 77 K on a Micromeritics ASAP2020 analyzer with the pressure range p/p’ = 0.001-0.98. Carbon dioxide
adsorption analysis data were obtained at 273 K and 298 K on a Micromeritics ASAP2020 analyzer with the
absolute pressure range of 2 — 780 mmHg. The gas adsorption analysis samples were degassed at 150 °C for 10 h
under 10 pumHg vacuum prior to analysis. Attenuated Total Reflectance — Fourier Transform Infrared (ATR-FTIR)
measurements were performed in a Varian 610 IR FT-IR spectrometer equipped with a Specac Golden Gate single
reflaction attenuated total reflection (ATR). Powder X-ray Diffraction (PXRD) data of the MOF samples were
acquired using a Panalytical X'pert Pro diffractometer (Cu Koo, M = 1.5406 A, A, = 1.5444 A). Centrifugation
was performed in a Centurion Scientific K3 series centrifuge. Microwave reactions were performed in an Initiator

Classic microwave reactor from Biotage®.

Chemicals. Deuterated NMR solvents, all the reagents (diacetoxyiodo)benzene, TBAB, 5,10,15,20-(tetra-4-
carboxyphenyl)porphyrin, 2-fluorobenzoic acid, hafnocene dichloride, trifluoroacetic acid, manganese(Il) chloride
cobalt(Il) chloride, the corresponding alkenes, epoxides or aldehydes, and solvents (DMF, THF, EtOH and MeCN)
were purchased and used as received. Iodosobenzene (PhIO)!"), alkenes 1r,” 1aj,?! 1ak,[ 1al' and epoxide 21P!

were synthesized from the corresponding commercially available compounds, according to the literature.
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2. Synthesis of Hf-PCN-222 MOF series
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Scheme S1. Synthesis of Hf-PCN-222(H,) and Hf-PCN-222(M).

2.1. Synthesis of Hf-PCN-222(H>)

To a 20-mL Biotage® microwave reaction vial, HfCp,>Cl, (137 mg, 0.36 mmol), 2-fluorobenzoic acid (2FBA, 760
mg, 5.42 mmol) and DMF (5 mL) were added. The reagents were dissolved in an ultrasonic bath before irradiated
in a microwave oven at 140 °C for 5 min. After reaction, 12-connected Hfs-oxo clusters by 2FBA were formed and
used directly for the next step without isolation. To another flask, tetrakis(4-carboxyphenyl)porphyrin (H,TCPP,
56 mg, 0.07 mmol) had been pre-dissolved in hot DMF (5 mL) before the solution was transferred to the vial
containing Hfs-oxo clusters. The above-mentioned vial was further charged trifluoroacetic acid (280 uL) and sealed
before irradiated at 175 °C for 3 h (Scheme S1). After reaction, the purple crystals were harvested by centrifugation
(10000 rpm, 10 min) and washed with DMF (30 mL x 3 times) and EtOH (30 mL x 3 times). Afterwards, the solid
was transferred to a scintillation vial and dried at 100 °C overnight. One synthesis batch yields ca. 84 mg of the as-

synthesized Hf-PCN-222(H>) which corresponds to 81% reaction yield.

2.2. Activation of Hf-PCN-222(H>)

Hf-PCN-222(H,) activation optimization was done at 100 °C for 24 h with different HC1:DMF concentration. To
a 50-mL round-bottom flask was added 60 mg as-synthesized Hf-PCN-222(H;) and HCI:DMF solution (20 mL,
0.5 — 8.0 M). The solid quickly turned green due to the protonation of porphyrin linkers. The mixture was then
heated up at 100 °C for 24 h. Afterwards, the solid was collected by centrifugation and washed with DMF (30 mL
x 3 times), then EtOH (30 mL x 3 times), followed by drying at 100 °C overnight. The resulting solid has a bright

purple color.
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The crystallinity of the MOF treated with HCl:DMF solution up to 4 M was reserved. At 8.0 M HCl in DMF, the
original structure was destroyed (Figure S1A). Samples treated with HCI:DMF solutions showed an increase in

surface area (Figure S1B—C). The two characteristic pore sizes remain unchanged (Figure S1D).

PCN-222(H>) activation with HCI 2.0 M in DMF was selected for the next step (Scheme S1).
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Figure S1. Characterizations of PCN-222(H>) samples treated with HCI:DMF solution at different concentrations.
A) PXRD patterns. B) N, adsorption—desorption isotherms at 77 K. C) Plot of the linear region of the adsorption

N; isotherm used for the BET equation. D) Pore size distribution.

2.3. Synthesis of Hf-PCN-222(Mn) and Hf-PCN-222(Co)

Hf-PCN-222(Mn) was prepared by post-synthetic metalation of activated Hf-PCN-222(H,) (Scheme S1).
Anhydrous MnCl, (63 mg, 0.5 mmol) was dissolved in D.I. water (10 mL) in a 20-mL Pyrex™ pressure tube. Then
activated Hf-PCN-222(H») (73 mg, 0.05 mmol based on porphyrin linker) was added to the solution. The tube was
then sealed with an O-ring PTFE screw cap and the post-synthesis metalation was carried out at 100 °C for 24 h.
After reaction, the metalated MOF was collected by centrifugation and washed with H,O (30 mL x 3 times) then
EtOH (30 mL x 3 times) before being dried at 100 °C overnight. The resulting solid has a green color. Likewise,
Hf-PCN-222(Co) was prepared using anhydrous CoCl, (65 mg, 0.5 mmol) instead of MnCl, (Scheme S1). The
resulting solid has a brown color. Metalation efficiency was confirmed by FT-IR, UV-Vis, SEM-EDS, and ICP-
OES.
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2.4. Comparison of synthetic methods for the preparation of Hf-PCN-222(M) structures
Table S1. Comparison of non-green chemicals used for similar Hf/PCN-222 MOFs.

mmol of mmol of Total hazardous mL DMF Total non- Total )
Hf- Metal solvent used /mmol of Hf hazardous . Yield Reference
precursor  precursor solvent used acid used

J. Am. Chem. Soc.
1 0.3 0.056 523 mL of DMF* 1743 ml/mmol 315 mL® 2.7 g BA 49% 2015, 137,42,

13624-13631.1%)
103 mL of DMF
2 0.031 0.06 and unspecified

DMF amount for
the washing.®

. Chem. Sci., 2019
0, 2 )
3322 ml/mmol Unspecified 0.15 mL TFA 95% 10, 105771058517

769 mg 2FBA,
3 0.36 0.5 217 mL of DMF °© 602 mL/mmol 280 mL%¢ 0.3mL TFA 77% This study.

3 mL HC1

*¢ mL of DEF and 515 ml DMF. ®Acetone. “DMF. ‘EtOH. ‘Water. BA = Benzoic acid; TFA = trifluoroacetic acid. 2FBA: 2-Fluorobenzoic acid.

3. Characterization of Hf-PCN-222 MOF series
3.1. Thermogravimetric analysis

Thermalgravimetric analysis of Hf-PCN-222(H,), Hf-PCN-222(Co), and Hf-PCN-222(Mn) showed the thermal
stability of the MOFs up to 450 °C (Figure S2).
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Figure S2. Thermogravimetric analysis of Hf-PCN-222(H;), Hf-PCN-222(Mn) and Hf-PCN-222(Co).

3.2. Powder X-ray diffraction
PXRD patterns of Hf-PCN-222(H;), Hf-PCN-222(Mn) and Hf-PCN-222(Co) matches with the simulated patterns

confirming the success of the microwave-assisted Hf-PCN-222 synthesis and metalation of the linker doesn’t affect

the structure (Figure S3).
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Figure S3. PXRD patterns of Hf-PCN-222(H;), Hf-PCN-222(Mn) and Hf-PCN-222(Co).

3.3. Gas adsorption analysis and porosity analysis

Hf-PCN-222(H>), Hf-PCN-222(Mn) and Hf-PCN-222(Co) possesses type 1V isotherm. Surface area of Hf-PCN-
222(Mn) and Hf-PCN-222(Co) is slightly lower than surface area of Hf-PCN-222(H,) (Figure S4A-B). All three
samples have two characteristic pore sizes of 12 A and 28 A (Figure S4C-D).
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Figure S4. Porosity analysis of Hf-PCN-222(M), M = H,, Co, Mn. A) N, adsorption — desorption isotherms at 77
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K. B) Plot of the linear region of the adsorption N> isotherm used for the BET equation. C-D) DFT pore size

distribution.

Carbon dioxide adsorption analysis was carried out at 273 K and 298 K (Figure S5). The experimental CO,

adsorbed values are shown in Table S2.

Table S2. Pore volume and CO2 adsorbed value at 1 bar of HI-PCN-222(M), M = H,, Co, Mn.

Pore volume CO; adsorbed value at 1 bar (mmol.g™)
Sample 3 -l
(em’.g") 273 K 298 K
Hf-PCN-222(H>) 1.1750 2.9887 1.7594
Hf-PCN-222(Co) 1.0209 2.6965 1.6118
Hf-PCN-222(Mn) 1.0157 2.4719 1.6171
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Figure S5. Carbon dioxide adsorption analysis of Hf-PCN-222(H,), Hf-PCN-222(Mn) and Hf-PCN-222(Co) at
273 K and 298 K.
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3.4. Fourier-transform infrared spectroscopy
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Figure S6. Fourier-transform infrared spectroscopy. N-M vibration indicates the success of metalation.

3.5. Ultraviolet-visible spectroscopy

3.0

a) TCPP(H,) :
I =2
2.5 il S
N ©
—_ I 915
3 !
S g0
5
g i,
c
g 00
=
8 Concentration (mg/L)
Ko}
<
T =T T
500 550 600 650 700
Wavelength (nm)
1.4
c) — Hf-PCN-222(Mn)
1.2 1 — Hf-PCN-222(Co)
— Hf-PCN-222(Hy)
= 1.0+
3
&
8 08
c
©
£
o 06+
(7]
©
<
0.4 4
0.24 0 525 550 575 600 625 650 675 700
.
0.0 T T T T T T
350 400 450 500 550 600 650 700

Wavelength (nm)

b)

Absorbance (a.u.)

(=]
~

Adsorbance (a.u.)

3.0

2.5 1

2.0

1.5 1

0.8

TCPP(H,)*

)

Absorbance @ 446 nm (a.u.)

Absorbance @ 658 nm (a.u.

Concentration (mg/L)

N
T
450

560 séo
Wavelength (nm)

400

0.6

0.4+

0.2

0.0 4

——— Hf-PCN-222(Mn)
——— Hf-PCN-222(Co)
—— Hf-PCN-222(Hy)

500 525 550 575 600 625 650 675 700

35

T T T T
500 550 600 650

Wavelength (nm)

T T
0 400 450

Figure S7. UV-Vis spectra of HI-PCN-222(H;), Hf-PCN-222(Mn) and Hf-PCN-222(Co).
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3.6. Scanning electron microscopy — energy dispersive X-ray spectroscopy

Cameot+

Figure S8. SEM image and overlapped EDS mapping image of Hf-PCN-222(Mn).

SEM-EDS was used to confirm the full metalation efficiency of Hf-PCN-222(Co) (Table S3).
Table S3. EDS results of Hf-PCN-222(Co).

Hf-PCN-222(Co)

= Tum
Co atom% Hf atom%
Point 1 0.34 1.00
Point 2 0.34 0.97
Point 3 0.35 0.99
Point 4 0.43 1.30
Point 5 0.50 1.22
Point 6 0.65 1.97
Point 7 0.30 0.80
Point 8 0.55 1.61
Point 9 0.36 0.98
Point 10 0.40 1.24
Average Co/Hf 0.3521
Y%Metalation 106%
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Figure S9. EDS spectra of 10 different points on Hf-PCN-222(Co).

3.7. Inductively coupled plasma optical emission spectroscopy
ICP—OES was used to confirm the metalation efficiency of Hf-PCN-222(Mn) (Table S4). The experimental Mn/Hf
= (0.3144 compared to the theoretical (100% metalation) Mn/Hf = 0.3333 indicates the metalation efficiency of
95%.

Table S4. ICP-OES report and metalation efficiency of Hf-PCN-222(Mn).

Element ratio N Cl Hf Mn Mn/Hf Mn/Cl
wt% 3.23 1.57 27.65 2.68 - -
mol% 0.2302 0.0441 0.1559 0.0487 0.3144 1.1030
Theoretical mol% 0.2584 0.0646 0.1940 0.0646 0.3333 1.0000
% Metalation 95%

3.8. Chemical stability test
The aim of this test is to confirm the high stability of Hf-PCN-222(H,) in various types of solvent at high
temperature in comparison with its counterpart, Zr-PCN-222(H;). Zr-PCN-222(H>) was synthesized following a

reported procedure.®

To an 8-mL scintillation vial was added 15 mg as-synthesized Hf-PCN-222(H,) or Zr-PCN-222(H>), following by
addition of 4 mL solvent. The mixture was sealed and heated up at 100 °C for 24 h. Afterwards, the solid was
collected by centrifugation at 14000 rpm and washed with the solvent used (3 times x 4 mL each time) then EtOH
(3 times x 4 mL each time). The final solid was dried at 100 °C overnight and checked with PXRD analysis.
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Figure S10. PXRD patterns of as-synthesized MOF treated with different solvents at 100 °C for 24 h. a) Hf-
PCN-222(H»). b) Zr-PCN-222(H>).
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4. Synthesis of cyclic carbonates from epoxides
4.1. Reaction optimization

Table S5. Optimization and control experiments for the insertion of CO; into epoxides.
Sy
Hf-PCN-222 (1 mol%) o’{ ! $ *

TBAB (6 mol%) o) 1 e v
, 25°C,8h s 3 i’ %

Hf-PCN-222(Mn)

Hfg oxo-cluster

MeTCPP(Mn)
Entry Deviation from standard conditions” 3a yield (%)"
1 None 85 (85)°
2 Hf-PCN-222(H>) 2 mol % 27
3 as-synthesized Hf-PCN-222(H2) 2 mol % 16
4 MeTCPP(Mn) 2 mol % n.d.
5 Hfs oxo-cluster 2 mol % n.d.
6 Hfs oxo-cluster and MeTCPP(Mn) 2 mol % n.d.
7 24 h 93
8 No CO» n.d.
9 No TBAB 6
10 No Hf-PCN-222(Mn) n.d.

“Reaction conditions: 2a (0.20 mmol), PhIO (1.5 equiv), TBAB (12 mol %), and Hf-PCN-222(Mn) (6.2 mg, 2 mol
% based on Mn) for 24 h at 40 °C. "Yields were calculated by "H NMR analysis using trimethoxybenzene as internal

standard from the crude mixture. “Isolated yield on 0.20 mmol scale. Abbreviations: n.d., not detected.

4.2. Synthesis of epoxides
Epoxides 2a-2k, 2m, 20-2u are commercially available. Epoxide 2l was synthesized from the corresponding
commercially available compounds, according to the literature procedure.”™ Diepoxide 2n was synthesized from

1aj by epoxidation using mCPBA.
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Figure S11. List of epoxides used in this project.

Oxiran-2-ylmethyl 4-(oxiran-2-yl)benzoate (2n)

T~_o

0]

To a stirred solution of allyl 4-vinylbenzoate 1aj (110 mg, 0.58 mmol, 1.0 equiv.) in anhydrous CH>Cl, (9 mL) at
0 °C, m-chloroperoxybenzoic acid (70-75% balance 3-chlorobenzoic acid and water, 293.6 mg, 1.28 mmol, 2.2
equiv.) was added and stirred for 24 h at room temperature. After that, another equivalent of m-
chloroperoxybenzoic acid (70-75% balance 3-chlorobenzoic acid and water, 133.4 mg, 0.58 mmol, 1.0 equiv.) was
added to the reaction mixture at 0 °C and stirred for an additional 24 h at room temperature. When no starting
material or monoepoxide product was observed the reaction mixture was filtrated through celite and washed with
Et,0 (5 mL x 2). The solvent in the filtrate solution was removed under vacuum and resulted crude mixture was
purified by flash column chromatography on silica gel using n-pentane:EtOAc:NEt; 90:10:0.1 as eluents. The

desired diepoxide product 2n was isolated as a colorless oil (85 mg, 0.39 mmol, 67%).

'H NMR (400 MHz, CDCls), § (ppm) = 8.00 (d, J = 8.3 Hz, 2H), 7.31 (d, J = 8.3 Hz, 2H), 4.62 (dd, J = 12.3, 3.0
Hz, 1H), 4.12 (dd, J = 12.3, 6.3 Hz, 1H), 3.86 (dd, J = 4.1, 2.5 Hz, 1H), 3.30 (m, 1H), 3.14 (dd, J= 5.6, 4.1 Hz,
1H), 2.85 (t, J= 4.5 Hz, 1H), 2.74 (dd, J = 5.6, 2.5 Hz, 1H), 2.69 (dd, J = 4.9, 2.6 Hz, 1H).

BC NMR (101 MHz, CDCl3), § (ppm) = 165.8, 143.3, 129.9 (2C), 129.4, 125.4 (2C), 65.5, 51.8, 51.4, 49.4, 44.6.

HRMS (ESI) m/z: 243.0572 [M+Na'], C12H1,04Na+ requires 243.0628.
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4.3. General Procedure A

Sl

Hf-PCN-222 (1 mol%) 7 !
TBAB (6 mol%) O’( L e i
/QO CO, (1 bar) /K/o LTS @, \& )
R 25 °C, 24 h R :

2 3 1
Hf-PCN-222(Mn)

Figure S12. CO; cycloaddition to epoxides.

To a 2 mL conical bottom microwave vial equipped with a triangle shape magnetic stir bar was added epoxide 2
(0.20 mmol, 1.0 equiv., if it is solid), TBAB (4.0 mg, 6.0 mol%) and Hf-PCN-222(Mn) (3.1 mg, 1 mol%, calculated
based on porphyrin linker). The vial was capped with a rubber septum and the inside atmosphere was purged with
COa,. At this point, epoxide 2 (0.20 mmol, 1.0 equiv.) was added via syringe if it is a liquid, and the mixture was
stirred at 25 °C for 24 hours under CO; atmosphere. To ensure the CO, atmosphere, a balloon of CO, was used.
The reaction was monitored by TLC analysis and quenched once the epoxide 2 was totally consumed. Upon
completion, the solid was washed with CH>Cl, (2 mL), and the suspension was centrifuged, keeping the solution.
The remain solid was washed 3 times with CH>Cl, (2 mL), and all the organic solutions were combined. The
volatiles were removed under reduced pressure. The crude mixture was subjected to purification by flash column

chromatography.
4.4. Characterization Data

4-Phenyl-1,3-dioxolan-2-one (3a)

=

(o}

Prepared according to General Procedure A using 2-phenyloxirane (2a, 24 mg, 0.20 mmol, 1.0 equiv.). After
chromatographic purification (10 — 40% EtOAc in n-pentane), the title compound 3a was obtained as a white solid

(28 mg, 0.17 mmol, 85%).

'H NMR (400 MHz, CDCL), § (ppm) = 7.49 — 7.41 (m, 3H), 7.39 — 7.33 (m, 2H), 5.67 (t, J = 8.0 Hz, 1H), 4.80 (t,
J=8.4Hz, 1H),4.34 (t, J = 8.2 Hz, 1H).

13C NMR (101 MHz, CDCLs), § (ppm) = 155.0, 135.9, 129.8, 129.3 (2C), 126.0, (2C) 78.1, 71.3.

Spectroscopic data are in agreement with those in the literature.!
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4-(Chloromethyl)-1,3-dioxolan-2-one (3b)

C'\/OK’/{)

Prepared according to General Procedure A using 2-(chloromethyl)oxirane (2b, 19 mg, 0.20 mmol, 1.0 equiv.).
After chromatographic purification (10 — 40% EtOAc in n-pentane), the title compound 3b was obtained as a
colorless oil (22 mg, 0.16 mmol, 80%).

'H NMR (400 MHz, CDCls), § (ppm) = 5.02 — 4.89 (m, 1H), 4.59 (dd, J= 8.8, 8.2 Hz, 1H), 4.41 (dd, J= 8.9, 5.7
Hz, 1H), 3.78 (dd, J = 12.0, 5.6 Hz, 1H), 3.73 (dd, J = 12.1, 3.8 Hz, 1H).

13C NMR (101 MHz, CDCls), § (ppm) = 154.2, 74.4, 67.1, 43.7.

Spectroscopic data are in agreement with those in the literature.!'"
4-(Bromomethyl)-1,3-dioxolan-2-one (3¢)

Br\/&i{’

Prepared according to General Procedure A using 2-(bromomethyl)oxirane (2¢, 27 mg, 0.20 mmol, 1.0 equiv).
After chromatographic purification (10 — 40% EtOAc in n-pentane), the title compound 3¢ was obtained as a
colorless oil (23 mg, 0.13 mmol, 64%).

'"H NMR (400 MHz, CDCls), § (ppm) = 5.01 —4.89 (m, 1H), 4.64 —4.55 (m, 1H), 4.38 —4.33 (m, 1H), 3.62 - 3.52
(m, 2H).

13C NMR (101 MHz, CDCLy), § (ppm) = 154.2, 74.1, 68.3, 31.3.

Spectroscopic data are in agreement with those in the literature.!'!

4-(Methoxymethyl)-1,3-dioxolan-2-one (3d)

Prepared according to General Procedure A using 2-(methoxymethyl)oxirane (2d, 18 mg, 0.20 mmol, 1.0 equiv.).
After chromatographic purification (10 — 40% EtOAc in n-pentane), the title compound 3d was obtained as a
colorless oil (21 mg, 0.16 mmol, 78%).

'H NMR (400 MHz, CDCl), 8 (ppm) = 4.85 — 4.75 (m, 1H), 4.49 (t, J = 8.4 Hz, 1H), 4.37 (dd, J= 8.3, 6.1 Hz,
1H), 3.64 (dd, J=11.0, 3.8 Hz, 1H), 3.56 (dd, J = 11.0, 3.8 Hz, 1H), 3.42 (s, 3H).
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13C NMR (101 MHz, CDCl3), 8 (ppm) = 155.0, 75.1, 71.6, 66.3, 59.8.

Spectroscopic data are in agreement with those in the literature.!'”
4-(Butoxymethyl)-1,3-dioxolan-2-one (3e)

o
Me\/\/o\ﬂ

Prepared according to General Procedure A using 2-(butoxymethyl)oxirane (2e, 26 mg, 0.20 mmol, 1.0 equiv.).
After chromatographic purification (10 —40% EtOAc in n-pentane), the title compound 3e was obtained as a yellow

oil (27 mg, 0.16 mmol, 84%)).

"H NMR (400 MHz, CDCl3), § (ppm) = 4.84 — 4.74 (m, 1H), 4.48 (t, J = 8.3 Hz, 1H), 4.38 (dd, J= 8.3, 6.1 Hz,
1H), 3.66 (dd, J = 11.0, 4.0 Hz, 1H), 3.59 (dd, J=11.0, 3.7 Hz, 1H), 3.50 (t, J= 6.5 Hz, 2H), 1.59 — 1.50 (m, 2H),
1.42 — 1.28 (m, 2H), 0.90 (t, J = 7.4 Hz, 3H).

BC NMR (101 MHz, CDCl3), § (ppm) = 155.1, 75.2, 72.0, 69.8, 66.4, 31.6, 19.3, 13.9.

Spectroscopic data are in agreement with those in the literature.!'*

4-(Phenoxymethyl)-1,3-dioxolan-2-one (3f)

Prepared according to General Procedure A using 2-(phenoxymethyl)oxirane (2f, 30 mg, 0.20 mmol, 1.0 equiv).
After chromatographic purification (10 — 40% EtOAc in pentane), the title compound 3f was obtained as a white
solid (30 mg, 0.16 mmol, 89%)).

'H NMR (400 MHz, CDCl3), § (ppm) = 7.31 (t, J = 8.0 Hz, 1H, 2H), 7.01 (t, J= 7.4 Hz, 1H), 6.91 (d, J= 7.8 Hz,
2H), 5.07 — 4.97 (m, 1H), 4.60 (t, J= 8.5 Hz, 1H), 4.52 (dd, J = 8.6, 5.9 Hz, 1H), 4.23 (dd, J = 10.6, 4.1 Hz, 1H),
4.13 (dd, J= 10.6, 3.6 Hz, 1H).

13C NMR (101 MHz, CDCls), 8 (ppm) = 157.9, 154.8, 129.8 (2C), 122.1, 114.7 (2C), 74.3, 67.0, 66.3.

Spectroscopic data are in agreement with those in the literature.!'"
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4-Methyl-1,3-dioxolan-2-one (3g)

Prepared according to General Procedure A from propylene oxide (2g, 12 mg, 0.20 mmol, 1.0 equiv.). After
chromatographic purification (10 — 40% EtOAc in pentane), the title compound 3g was obtained as a colorless oil

(15 mg, 0.15 mmol, 74%).

'H NMR (400 MHz, CDCls), § (ppm) = 4.92 — 4.79 (m, 1H), 4.55 (dd, J = 8.4, 7.6 Hz, 1H), 4.02 (dd, J= 8.4, 7.2
Hz, 1H), 1.50 (d, J = 6.2 Hz, 3H).

13C NMR (101 MHz, CDCLy), § (ppm) = 155.1, 73.6, 70.8, 19.6.

Spectroscopic data are in agreement with those in the literature.!

4-Ethyl-1,3-dioxolan-2-one (2h)

Prepared according to General Procedure A using 2-ethyloxirane (2h, 14 mg, 0.20 mmol, 1.0 equiv.). After
chromatographic purification (10 — 40% EtOAc in pentane), the title compound 3h was obtained as a colorless oil

(18 mg, 0.15 mmol, 76%).

'H NMR (400 MHz, CDCL), 5 (ppm) = 4.74 — 4.64 (m, 1H), 4.54 (t, J= 8.1 Hz, 1H), 4.10 (dd, J = 8.4, 7.0 Hz,
1H), 1.92 — 1.72 (m, 2H), 1.06 (t, J = 7.5 Hz, 3H).

13C NMR (101 MHz, CDCLs), 8 (ppm) = 155.2, 78.1, 69.1, 27.1, 8.7.

Spectroscopic data are in agreement with those in the literature.!

4-Butyl-1,3-dioxolan-2-one (3i)

Prepared according to General Procedure A using 2-butyloxirane (2i, 20 mg, 0.20 mmol, 1.0 equiv.). After
chromatographic purification (10 — 40% EtOAc in n-pentane), the title compound 3i was obtained as a white foam

(19 mg, 0.13 mmol, 66%).

'H NMR (400 MHz, CDCls), § (ppm) = 4.70 (qd, J = 7.5, 5.5 Hz, 1H), 4.56 — 4.49 (m, 1H), 4.06 (dd, J= 8.4, 7.2
Hz, 1H), 1.88 — 1.74 (m, 1H), 1.73 — 1.63 (m, 1H), 1.51 — 1.32 (m, 4H), 0.92 (t, /= 7.1 Hz, 3H).
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3C NMR (101 MHz, CDCl), § (ppm) = 155.2, 77.2, 69.5, 33.7, 26.6, 22.4, 13.9.

Spectroscopic data are in agreement with those in the literature.!

4-Octyl-1,3-dioxolan-2-one (3j)

Prepared according to General Procedure A using 2-octyloxirane (2j, 31 mg, 0.20 mmol, 1.0 equiv.). After
chromatographic purification (10 — 40% EtOAc in n-pentane), the title compound 3j was obtained as a colorless

oil (30 mg, 0.15 mmol, 75%).

"H NMR (400 MHz, CDCl3), § (ppm) = 4.74 — 4.63 (m, 1H), 4.51 (t, J= 8.1 Hz, 1H), 4.05 (t,J = 7.8 Hz, 1H), 1.84
~ 1.74 (m, 1H), 1.70 — 1.63 (m, 1H), 1.52 — 1.40 (m, 1H), 1.39 — 1.20 (m, 11H), 0.87 (t, J = 6.7 Hz, 3H).

13C NMR (101 MHz, CDCls), § (ppm) = 155.2, 77.2, 69.5, 34.0, 31.9, 29.4, 29.2 (2C), 24.5, 22.7, 14.2.

Spectroscopic data are in agreement with those in the literature.!'¥

4-(But-3-en-1-yl)-1,3-ioxolan-2-one (3k)

Prepared according to General Procedure A using 2-(but-3-en-1-yl)oxirane (2k, 20 mg, 0.20 mmol, 1.0 equiv.).
After chromatographic purification (10 — 40% EtOAc in n-pentane), the title compound 3k was obtained as a
colorless oil (24 mg, 0.17 mmol, 84%).

'H NMR (400 MHz, CDCls), § (ppm) = 5.85 — 5.71 (m, 1H), 5.14 — 5.01 (m, 2H), 4.78 — 4.66 (m, 1H), 4.52 (t, J
=8.1 Hz, 1H), 4.08 (dd, J=8.5, 7.2 Hz, 1H), 2.32 — 2.11 (m, 2H), 1.99 — 1.86 (m, 1H), 1.82 — 1.72 (m, 1H).

13C NMR (101 MHz, CDCls), § (ppm) = 155.1, 136.2, 116.6, 76.4, 69.4, 33.2, 28.8.

Spectroscopic data are in agreement with those in the literature.!'"

(2-Ox0-1,3-dioxolan-4-yl)methyl cinnamate (31)
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Prepared according to General Procedure A using oxiran-2-ylmethyl cinnamate (21, 41 mg, 0.20 mmol, 1.0 equiv.).
After chromatographic purification (10 — 40% EtOAc in n-pentane), the title compound 31 was obtained as a
colorless oil (20 mg, 0.08 mmol, 40%).

'H NMR (400 MHz, CDCls), § (ppm) = 7.74 (d, J = 16.0 Hz, 1H), 7.58 — 7.49 (m, 2H), 7.44 — 7.36 (m, 3H), 6.45
(d, J = 16.0 Hz, 1H), 5.04 — 4.96 (m, 1H), 4.60 (t, J = 8.6 Hz, 1H), 4.48 (dd, J = 12.6, 3.4 Hz, 1H), 4.41 (dd, J =
12.3,4.2 Hz, 1H), 4.37 (dd, J = 8.7, 5.9 Hz, 1H).

13C NMR (101 MHz, CDCL), § (ppm) = 166.4, 154.6, 146.9, 134.0, 131.0, 129.1 (2C), 128.5 (2C), 116.5, 74.0,
66.2, 63.2.

Spectroscopic data are in agreement with those in the literature.!'”)

4-(7-Oxabicyclo[4.1.0]heptan-3-yl)-1,3-dioxolan-2-one (3m)

Prepared according to General Procedure A using 3-(oxiran-2-yl)-7-oxabicyclo[4.1.0]heptane (2m, 28.0 mg, 0.2
mmol, 1.0 equiv.) in 24 h. After chromatographic purification (10 — 40% EtOAc in n-pentane), the title compound

3m was obtained as a colorless oil (24.7 mg, 0.13 mmol, 67%)

"H NMR (400 MHz, CDCl;), § (ppm) = 4.53 — 4.33 (m, 2H), 4.21 — 4.08 (m, 1H), 3.30 — 3.12 (m, 2H), 2.41 — 2.00
(m, 2H), 1.97 — 1.81 (m, 1H), 1.73 — 1.51 (m, 2H), 1.43 — 1.01 (m, 2H).

BC NMR (101 MHz, CDCl3), § (ppm) = 154.91 (d, J = 5.0 Hz), 80.43 — 79.16 (m), 68.44 — 66.93 (m), 53.13 —
49.51 (m), 36.39 (d, /= 37.2 Hz), 34.10 (d, J = 23.0 Hz), 27.35 — 23.62 (m), 23.16 — 21.24 (m), 19.09 (d, J = 84.9
Hz).

(2-Oxo0-1,3-dioxolan-4-yl)methyl 4-(2-0x0-1,3-dioxolan-4-yl)benzoate (3n)

0]

Prepared according to General Procedure B using oxiran-2-ylmethyl 4-(oxiran-2-yl)benzoate (2n, 44.0 mg, 0.2
mmol, 1.0 equiv.) in 24 h. After chromatographic purification (50% EtOAc in n-pentane), the title compound 3n

was obtained as a colorless oil (28.3 mg, 0.09 mmol, 46%)

'H NMR (400 MHz, CDCls), § (ppm) = 8.08 (d, J = 8.2 Hz, 2H), 7.46 (d, J = 8.1 Hz, 2H), 5.75 (t, J = 8.0 Hz, 1H),
5.08 (ddt, J = 8.5, 5.3, 3.6 Hz, 1H), 4.85 (t, J = 8.5 Hz, 1H), 4.68 — 4.58 (m, 2H), 4.52 (dd, J = 12.7, 4.0 Hz, 1H),

4.42 (dd, J= 8.8, 5.5 Hz, 1H), 4.30 (t, /= 8.2 Hz, 1H).
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3C NMR (101 MHz, CDCL), & (ppm) = 165.1, 154.4, 154.4, 141.5, 130.7 (2C), 130.0, 125.9 (2C), 77.0, 73.8,
70.8, 66.1, 64.0.

HRMS (ESI) m/z: 331.0451 [M+Na"], CisH20sNa+ requires 331.0424.

(2-Oxo0-1,3-dioxolan-4-yl)methyl 4-(oxiran-2-yl)benzoate (3n’)

Prepared according to General Procedure A using oxiran-2-ylmethyl 4-(oxiran-2-yl)benzoate (2n, 44 mg, 0.2
mmol, 1.0 equiv.) in 24 h. After chromatographic purification (50% EtOAc in n-pentane), the title compound 3n’

was obtained as a colorless oil (27.5 mg, 0.10 mmol, 52%)

'"H NMR (400 MHz, CDCls), § (ppm) = 8.01 (d, J = 8.4 Hz, 2H), 7.39 (d, J = 8.4 Hz, 2H), 5.08 (dddd, J= 8.6, 5.7,
4.0, 3.1 Hz, 1H), 4.71 — 4.58 (m, 2H), 4.52 (ddd, J = 12.6, 5.2, 4.0 Hz, 1H), 4.43 (ddd, J = 8.8, 5.6, 2.4 Hz, 1H),
3.93 (dd, J=4.1, 2.5 Hz, 1H), 3.21 (dd, J= 5.6, 4.1 Hz, 1H), 2.80 (dd, J = 5.6, 2.5 Hz, 1H).

BC NMR (101 MHz, CDCls), § (ppm) = 165.6, 154.4, 143.9, 130.0, 128.6 (2C), 128.4, 125.7 (2C), 73.9, 66.1,
63.7, 51.6.

HRMS (ESI) m/z: 287.0540 [M+Na'], Ci3H120¢Na+ requires 287.0526.

(R)-4-Phenyl-1,3-dioxolan-2-one ((R)-3a)

=

(0)

Prepared according to General Procedure B using (R)-2-phenyloxirane ((R)-2a, 24 mg, 0.20 mmol, 1.0 equiv.).
After chromatographic purification (10 — 40% EtOAc in n-pentane), the title compound (R)-3a was obtained as a
white solid (28 mg, 0.17 mmol, 84%).

'H NMR (400 MHz, CDCL), § (ppm) = 7.49 — 7.41 (m, 3H), 7.39 — 7.33 (m, 2H), 5.67 (t, J = 8.0 Hz, 1H), 4.80 (t,
J=8.4Hz, 1H),4.34 (t, J = 8.2 Hz, 1H).

13C NMR (101 MHz, CDCls), § (ppm) = 155.0, 135.9, 129.8, 129.3 (2C), 126.0, (2C) 78.1, 71.3.

[16]

Spectroscopic data are in agreement with those in the literature.

Chiral HPLC: Daicel Chiralpack OD-H, n-hexane/isopropanol, 90/10, flow rate 1 mL/min, A =210 nm, tg = 23.72

min, temperature = 20 °C, ee > 99%.
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Figure S13. HPLC diagrams of (R)-3a and 3a.
(8)-4-Phenyl-1,3-dioxolan-2-one (($)-3a)

(o]

C

Prepared according to General Procedure A using (S)-2-phenyloxirane ((S)-2a, 24 mg, 0.20 mmol, 1.0 equiv.).
After chromatographic purification (10 — 40% EtOAc in n-pentane), the title compound (S)-3a was obtained as a
white solid (30.8 mg, 0.19 mmol, 94%).

'H NMR (400 MHz, CDCL), § (ppm) = 7.49 — 7.41 (m, 3H), 7.39 — 7.33 (m, 2H), 5.67 (t, J = 8.0 Hz, 1H), 4.80 (t,
J=8.4Hz, 1H),4.34 (t, J = 8.2 Hz, 1H).

BC NMR (101 MHz, CDCl3), § (ppm) = 155.0, 135.9, 129.8, 129.3 (2C), 126.0, (2C) 78.1, 71.3.
Spectroscopic data are in agreement with those in the literature.!'

Chiral HPLC: Daicel Chiralpack OD-H, n-hexane/isopropanol, 90/10, flow rate 1 mL/min, A =210 nm, tgr = 28.22

min, temperature = 20 °C, ee > 99%.
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(R)-4-((Benzyloxy)methyl)-1,3-dioxolan-2-one ((R)-30)

IS

Prepared according to General Procedure B using (S)-2-((benzyloxy)methyl)oxirane ((S)-20, 33 mg, 0.20 mmol,
1.0 equiv.). After chromatographic purification (10 — 40% EtOAc in n-pentane), the title compound (R)-30 was
obtained as a white solid (39 mg, 0.19 mmol, 94%).

'H NMR (400 MHz, CDCls), § (ppm) = 7.40 — 7.27 (m, SH), 4.86 — 4.76 (m, 1H), 4.62 (d, J = 12.0 Hz, 1H), 4.56
(d, J=12.0 Hz, 1H), 4.47 (t, J = 8.4 Hz, 1H), 4.38 (dd, J = 8.4, 6.1 Hz, 1H), 3.71 (dd, J = 10.9, 3.9 Hz, 1H), 3.62
(dd, J=10.9, 3.7 Hz, 1H).

3C NMR (101 MHz, CDCL3), 8 (ppm) = 155.1, 137.2, 128.7 (2C), 128.2, 127.9 (2C), 75.1, 73.8, 68.9, 66.4.

Spectroscopic data are in agreement with those in the literature.!'

Chiral HPLC: Daicel Chiralpack OD-H, n-hexane/isopropanol, 90/10, flow rate 1 mL/min, A =210 nm, tr = 38.41

min, temperature = 20 °C, ee > 99%.
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Figure S15. HPLC diagrams of (R)-30 and 3o.

(8)-4-((Benzyloxy)methyl)-1,3-dioxolan-2-one (($)-30)

Prepared according to General Procedure B using (R)-2-((benzyloxy)methyl)oxirane ((R)-20, 33 mg, 0.20 mmol,
1.0 equiv.). After chromatographic purification (10 — 40% EtOAc in n-pentane), the title compound (S)-30 was
obtained as a white solid (40 mg, 0.19 mmol, 96%).

'H NMR (400 MHz, CDCls), § (ppm) = 7.40 — 7.27 (m, SH), 4.86 — 4.76 (m, 1H), 4.62 (d, J = 12.0 Hz, 1H), 4.56
(d, J=12.0 Hz, 1H), 4.47 (t, J = 8.4 Hz, 1H), 4.38 (dd, J = 8.4, 6.1 Hz, 1H), 3.71 (dd, J = 10.9, 3.9 Hz, 1H), 3.62
(dd, J=10.9, 3.7 Hz, 1H).

3C NMR (101 MHz, CDCL3), 8 (ppm) = 155.1, 137.2, 128.7 (2C), 128.2, 127.9 (2C), 75.1, 73.8, 68.9, 66.4.

Spectroscopic data are in agreement with those in the literature.['

Chiral HPLC: Daicel Chiralpack OD-H, n-hexane/isopropanol, 90/10, flow rate 1 mL/min, A =210 nm, tg = 53.17

min, temperature = 20 °C, ee > 99%.
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Figure S16. HPLC diagrams of (S)-30 and 3o.

4.5. Recyclability
The recyclability test was performed using styrene oxide, as model substrate, and following General Procedure A.

The resulted crude mixture was analyzed by '"H-HMR using 1,3,5-trimethoxybenzenee as internal standard. Hf-

PCN-222(Mn) was washed with CH>Cl, (4 mL x 3 times), collected by centrifugation (14000 rpm, 2 min), dried

under high vacuum, and reused for the next cycle.
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Figure S17. Study of recyclability of Hf-PCN-222(Mn) for the cycloaddition of CO, using styrene oxide
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Figure S18. SEM images of fresh (A) and recycled Hf-PCN-222(Mn) after 5 runs (B) and 10 runs (C and D). Th

e reaction time for each run is 24 h.

5. Synthesis of cyclic carbonates from alkenes
5.1. Reaction optimization:

Table S6. Optimization and control experiments for oxidative carboxylation of alkenes.

Hf-PCN-222 (2 mol%)

TBAB (12 mol%) (o]
PhlO 1.5 (equiv.)
/@/\ CO, (1 bar) /©/<J
_wF2N U
cl 40 °C,24 h cl
1a 2v

Hf-PCN-222(Mn)

Entry Deviation from standard conditions®  Yield 2v (%)”  Yield 3s (%)"  Yield 4a (%)"

1 None 2 75 (75)° n.d.
2 CO:s (1 bar, 2 equiv.) n.d. 39 <1
3 No TBAB 3 n.d. 15
4 TBAB (6 mol %) 10 37 n.d.
5 No Hf-PCN-222(Mn) 7 2 4

6 Hf-PCN-222(Mn) (1 mol %) 6 57 n.d.
7 PhI(OAc): (1.5 equiv.), H2O (1.5 equiv.) n.d. n.d. n.d.
8 No PhIO n.d. n.d. n.d.
9 PhIO 1.0 equiv n.d. 54 n.d.
10 Hf-PCN-222(Co) (2 mol %) n.d. 8 1

“Reaction conditions: 1a (0.20 mmol), PhIO (1.5 equiv), TBAB (12 mol %), and Hf-PCN-222(Mn) (2
mol % based on Mn) for 24 h at 40 °C.

"Yields were calculated by '"H NMR analysis using trimethoxybenzene as internal standard from the crude
mixture.

“Isolated yield on 0.20 mmol scale. Abbreviations: std, standard; n.d., not detected.
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5.2. Synthesis of iodosobenzene

AcO—I|—OAc —O0—1—09, D;CO—I—O0CD3

Phi(OAc), PhIO PhI(OCD3),

Scheme S2. Synthesis of PhlO and reaction of PhIO with CD;OD.

Iodosobenzene (PhIO) was synthesized from commercially available (diacetoxyiodo)benzene following a reported
procedure.!"! To a 250-mL round-bottom flask containing (diacetoxyiodo)benzene (16.1 g, 0.05 mol) was slowly
added 3 M aqueous NaOH solution (150 mL), and stirred at room temperature 1 h. The solid formed was collected
by filtration on a Biichner funnel, re-dispersed in deionized H,O (200 mL), and re-collected by filtration. This
process was repeated 5 times to remove the excess amount of NaOH. Finally, the white solid was washed uith
chloroform (100 mL) and dried under reduced pressure overnight at room temperature. The resulting solid was
ground to obtain a fine white powder (PhlO). The resulting PhIO was kept in freezer at —20 °C and used up within
2 months from the date of synthesis. The NMR analysis of the polymer was done in CD;0D, after complete reaction
of PhIO with the CD;OD to form PhI(OCDs)..

"H NMR (400 MHz, CD;0D), & (ppm) = 8.09 — 7.98 (m, 2H), 7.62 — 7.52 (m, 3H).
3C NMR (101 MHz, CD;0D), § (ppm) = 133.3 (2C), 132.2, 132.0 (2C).
Spectroscopic data are in agreement with those in the literature.!"!

Caution! This compound explodes if heated to 210°.

Note: PhIO is unstable and tend to decompose slowly at room temperature. Hence, storing PhIO in a freezer could
slow down this process. To check the actual amount of PhIO in the resulting solid, PhlO (44 mg, 0.2 mmol), 1,3,5-
trimethoxybenzene (internal standard, 16.8 mg, 0.1 mmol), and CD3OD (1 mL) were added to a small vial. The

mixture is sonicated for 15 min and the '"H NMR spectrum of the above mixture was obtained.

Freshly made PhIO reacts with CD;OD within 5 min giving a transparent solution. "H NMR spectrum showed that
the actual PhIO is 100%. On the contrary, PhIO sample which has been stored at room temperature for 1 month is
not fully soluble in CD3OD even after 1 week and the actual PhlIO is 86% (Figure S19). The spoiled PhIO gave
very bad yields when used for the epoxidation — cycloaddition of CO..

04
02
59
57
56
54

6.08

3.73

OMe

D;CO—I—OCD;
@ MeO OMe

o ]1.00-5==
1.50-5=——
0750

L

o
N
4

10.0 95 9.0 8.5 7.0 6.5 5.5 4.5 4.0 3.5 3.0 25 2.0 1.5 1.0 0.5 0.0

o
=}

5.0
f1 (ppm)

S27



L7
K

805
803
7.59
757
7.55
7.54
6.08
373
1.89

* c—

I

ITe
N
o

T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
0O 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00
1 (ppm)
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PhIO) and PhIO stored at room temperature for 1 month (bottom, 86% actual PhIO).

5.3. Synthesis of alkenes
Alkenes 1a-1q, 1s-lai are commercially available. Alkenes 1r'*! and 1aj-1al®*! were synthesized from the

corresponding commercially available compounds, according to the literature procedure.

oS oot o o o oo o
¢]] Br F FsC NC OzN Me
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E
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Figure S20. List of alkenes used in this project.
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Dec-9-en-1-yl 4-vinylbenzoate (1am)

W\/\/\/O
O

To a stirred solution of 4-vinylbenzoic acid (444 mg, 3.0 mmol, 1.0 equiv.) in anhydrous DMF (4 mL) was added
4-dimethylaminepyridine (DMAP, 20 mg, 0.16 mmol, 5 mol%) and 9-decen-1-0l (1070 uL, 6.0 mmol, 2.0 equiv.).
Then, dicyclohexylcarbodiimide (DCC, 680 mg, 3.3 mmol, 1.1 equiv.) was added to the reaction mixture at 0 °C,
which was then stirred for 5 min at 0 °C and overnight at 25 °C. Afterwards, the precipitated urea was filtered off
and the filtrate was concentrated in vacuo. The residue is taken up in CH,Cl, and CH>Cl solution was washed
twice with 0.5 N HCI and with saturated NaHCOs solution, and then dried over MgSOs. Purification by flash
column chromatography (n-pentane: EtOAc = 100:0 to 95:5, v/v) afforded the desired ester product 1am as a
colorless oil (720 mg, 2.52 mmol, 84%).

'H NMR (400 MHz, CDCL), § (ppm) = 8.00 (d, J = 8.4 Hz, 2H), 7.45 (d, J = 8.4 Hz, 2H), 6.75 (dd, J= 17.6, 10.9
Hz, 1H), 5.85 (d, J= 17.6 Hz, 1H), 5.86 — 5.74 (m, 1H), 5.37 (d, /= 10.9 Hz, 1H), 5.05 — 4.94 (m, 1H), 4.97 — 4.89
(m, 1H), 4.31 (t, J= 6.7 Hz, 2H), 2.04 (q, J= 6.8 Hz, 2H), 1.80 — 1.73 (m, 2H), 1.47 — 1.30 (m, 10H).

13C NMR (101 MHz, CDCL), § (ppm) = 166.5, 141.9, 139.2, 136.2, 129.9 (2C), 129.8, 126.2 (2C), 116.4, 114.3,
65.2,33.9,29.5,29.3, 29.1, 29.0, 28.8, 26.1.

HRMS (ESI) m/z: 309.1778 [M+Na'], C19H260-Na+ requires 309.1825.

\/\O)Kij/\

A solution of 3-vinylbenzoic acid (445 mg, 3.0 mmol, 1.0 equiv.) and K,COj3 (830 g, 6 mmol, 2.0 equiv.) in DMF

Allyl 3-vinylbenzoate (1a0)

(6.0 mL) was added allyl bromide (312 pL, 3.6 mmol, 1.2 equiv.) slowly at room temperature. Then, the resulting
solution was stirred for 12 h at 60 °C. H,O (20 mL) was added to the reaction and the solution was extracted with
EtOAc (20 mL x 3 times). The combined EtOAc layer was washed with brine (20 mL x 3 times), dried over Na;SO4
and concentrated in vacuo. Purification by flash column chromatography (n-pentane: EtOAc = 100:0 to 95:5, v/v)

afforded the desired ester product 1ao as a colorless oil (536 mg, 2.85 mmol, 95%).

'H NMR (400 MHz, CDCL), § (ppm) = 8.10 (s, 1H), 7.95 (d, J= 7.8 Hz, 1H), 7.60 (d, J= 7.8 Hz, 1H), 7.41 (t, J
= 7.7 Hz, 1H), 6.76 (dd, J = 17.6, 10.9 Hz, 1H), 6.12 — 5.98 (m, 1H), 5.83 (d, J= 17.6 Hz, 1H), 5.42 (dq, J = 17.2,
1.5 Hz, 1H), 5.35 — 5.28 (m, 2H), 4.84 (dt, J = 5.7, 1.4 Hz, 2H).

BC NMR (101 MHz, CDCl3), § (ppm) = 166.3, 138.0, 136.1, 132.4, 130.7, 130.6, 129.0, 128.7, 127.6, 118.5,
115.3, 65.8.
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HRMS (ESI) m/z: 211.0666 [M+Na'], C12H1,0:Na+ requires 211.0730.

1-(Pent-4-en-1-yloxy)-4-vinylbenzene (1an)

o
WO

Compound 1an was synthesized following a reported procedure.” 4-Vinylphenol 10 wt% in propylene glycol (2400
mg, 2.0 mmol, 1.0 equiv.), MeCN (10 mL), K»COs (829 mg, 6 mmol, 3.0 equiv) and 5-bromo-1-pentene (355 puL,
3.0 mmol, 1.5 equiv.) were added to a 20-mL Biotage® vial and the vial was sealed. The reaction mixture was
heated at 90 °C for 10 h. After cooling to room temperature, the solution was filtered, washed with acetone, and
the volatiles were removed under reduced pressure. After chromatographic purification (10% EtOAc in n-pentane),

the title compound 1an was obtained as colorless oil (282 mg, 1.5 mmol, 75%).

'H NMR (400 MHz, CDCL), § (ppm) = 7.34 (d, J = 8.3 Hz, 2H), 6.86 (d, J = 8.3 Hz, 2H), 6.66 (dd, J= 17.6, 10.9
Hz, 1H), 5.93 — 5.79 (m, 1H), 5.61 (d, J = 17.6 Hz, 1H), 5.12 (d, J = 10.9 Hz, 1H), 5.04 (dd, J = 24.4, 13.7 Hz,
2H), 3.98 (t, J= 6.4 Hz, 2H), 2.25 (q, J = 7.0 Hz, 2H), 1.95 — 1.83 (m, 2H).

BC NMR (101 MHz, CDCls), § (ppm) = 159.0, 137.9, 136.4, 130.5, 127.5 (2C), 115.3, 114.6 (2C), 111.6, 67.3,
30.2, 28.6.

HRMS (ESI) m/z: 211.0687 [M+Na'], C13H1s0ONa+ requires 211.0730.

Oct-1-en-3-yl 4-vinylbenzoate (1aq)

Me o
\/\/)/ I
To a stirred solution of 4-vinylbenzoic acid (444 mg, 3.0 mmol, 1.0 equiv.) in anhydrous DMF (4 mL) was added
4-dimethylaminepyridine (DMAP, 20 mg, 0.16 mmol, 5 mol%) and oct-1-en-3-ol (mushroom alcohol, 927 puL, 6.0
mmol, 2.0 equiv.). Then, dicyclohexylcarbodiimide (DCC, 680 mg, 3.3 mmol, 1.1 equiv.) was added to the reaction
mixture at 0 °C, which is then stirred for 5 min at 0 °C and overnight at 25 °C. Afterwards, the precipitated urea
was filtered off and the filtrate was concentrated in vacuo. The residue is taken up in CH,Cl, and CH>Cl, solution
was washed twice with 0.5 N HCI and with saturated NaHCOj3 solution, and then dried over MgSOs. Purification

by flash column chromatography (n-pentane: EtOAc = 100:0 to 95:5, v/v) afforded the desired ester product 1laq
as a colorless oil (419 mg, 1.62 mmol, 54%).

'H NMR (400 MHz, CDCL), § (ppm) = 8.02 (d, J = 8.4 Hz, 2H), 7.46 (d, J = 8.4 Hz, 2H), 6.76 (dd, J= 17.6, 10.9
Hz, 1H), 5.96 — 5.83 (m, 1H), 5.86 (dd, J= 17.6, 0.6 Hz, 1H), 5.53 — 5.43 (m, 1H), 5.38 (dd, J=10.9, 0.7 Hz, 1H),
5.32 (dt, J = 17.3, 1.3 Hz, 1H), 5.20 (dt, J = 10.5, 1.3 Hz, 1H), 1.81 — 1.66 (m, 2H), 1.45 — 1.37 (m, 2H), 1.34 —
1.30 (m, 4H), 0.92 — 0.84 (t, J = 7.0 Hz, 3H).

S30



3C NMR (101 MHz, CDCls), § (ppm) = 165.8, 142.0, 136.8, 136.2, 130.0 (2C), 129.9, 126.2 (2C), 116.7, 116.6,
75.5,34.4,31.7,24.9,22.7, 14.1.

HRMS (ESI) m/z: 281.1512 [M+Na"], Ci7H20,Na+ requires 281.1512.

5.4. General Procedure B

Hf-PCN-222 (2 mol%) 0 : %ﬁ’g
TBAB (12 mol%) 04 ! -* @1
PhIO 1.5 (equiv.) | ﬂh: e,
~ o g
SN R ! oy *l,. .
40°C,24-72h | I %
1 3 l

Hf-PCN-222(Mn)

Scheme S3. Oxidative carboxylation of alkenes

PhIO is taken out from freezer and allowed to warm up slowly to room temperature. To a 2 mL conical-bottom
microwave vial equipped with a triangle-shape magnetic stir bar was added alkene 1 (0.20 mmol, 1.0 equiv., if it
is solid), PhIO (66.0 mg, 0.30 mmol, 1.5 equiv.), tetrabutylammonium bromide (TBAB, 8.0 mg, 12.0 mol%) and
Hf-PCN-222(Mn) (6.2 mg, 2 mol%, calculated based on porphyrin linker). The vial was capped with a rubber
septum and the vial was purged with CO,. The solid mixture is mixed well on a magnetic stirrer at 0 °C. At this
point, alkene 1 (0.20 mmol, 1.0 equiv.) was added via syringe if it is a liquid, and the mixture was stirred at 40 °C
for 24 — 72 hours under CO; atmosphere. To ensure the CO, atmosphere, a balloon of CO, was used. The reaction
was monitored by TLC analysis and quenched once the alkene 1 or/and the corresponding intermediate epoxide
were totally consumed. Upon completion, the solid was washed with CH,Cl, (2 mL), and the suspension was
centrifuged, keeping the solution. The remaining solid was washed 3 times with CH»Cl, (2 mL), and all the organic
solutions were combined. The volatiles were removed under reduced pressure, and the crude mixture was subjected
to purification by flash column chromatography on silica gel using n-pentane:EtOAc (90:10 to 50:50, v/v) as

eluents.
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Figure S21. Unsuccessful substrates. Abbreviations: n.d., not detected. '"H NMR yields are given.
5.5. Characterization data

4-(4-Chlorophenyl)-1,3-dioxolan-2-one (3s)

(o)
o4
(o}
Cl

Prepared according to General Procedure B using 4-chlorostyrene (1a, 28 mg, 0.20 mmol, 1.0 equiv.) in 24 h.
After chromatographic purification (10 — 50% EtOAc in n-pentane), the title compound 3s was obtained as a white

solid (24 mg, 0.12 mmol, 60%).
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'H NMR (400 MHz, CDCL), § (ppm) = 7.42 (d, J= 8.6 Hz, 2H), 7.30 (d, J= 8.5 Hz, 2H), 5.66 (t, J = 8.0 Hz, 1H),
4.80 (t, J= 8.4 Hz, 1H), 4.30 (dd, J= 8.7, 7.8 Hz, 1H).

13C NMR (101 MHz, CDCLs), § (ppm) = 154.6, 135.9, 134.4, 129.6 (2C), 127.4 (2C), 77.4, 71.1.

Spectroscopic data are in agreement with those in the literature.!
4-(4-Bromophenyl)-1,3-dioxolan-2-one (3t)

(0)

=

/@/K/O
Br

Prepared according to General Procedure B using 4-bromostyrene (1b, 37 mg, 0.20 mmol, 1.0 equiv.) in 24 h.
After chromatographic purification (10 — 50% EtOAc in n-pentane), the title compound 3t was obtained as a brown

solid (32 mg, 0.13 mmol, 65%).

'H NMR (400 MHz, CDCls), § (ppm) = 7.58 (d, J = 8.4 Hz, 2H), 7.24 (d, J = 8.5 Hz, 2H), 5.64 (t, J = 8.0 Hz, 1H),
4.80 (t, J= 8.4 Hz, 1H), 4.30 (dd, J= 8.7, 7.8 Hz, 1H).

13C NMR (101 MHz, CDCLs), § (ppm) = 154.6, 134.9, 132.6 (2C), 127.6 (2C), 124.0, 77.4, 71.0.

Spectroscopic data are in agreement with those in the literature.!'”)

4-(4-Fluorophenyl)-1,3-dioxolan-2-one (3u)

Prepared according to General Procedure B using 4-fluorostyrene (1c¢, 24 mg, 0.20 mmol, 1.0 equiv.) in 24 h. After
chromatographic purification (10 — 50% EtOAc in n-pentane), the title compound 3u was obtained as a white solid

23 mg, 0.13 mmol, 63%).
( g, , )

'H NMR (400 MHz, CDCls), § (ppm) = 7.39 — 7.32 (m, 2H), 7.13 (t, J = 8.6 Hz, 2H), 5.66 (t, J = 8.0 Hz, 1H), 4.80
(t, J= 8.4 Hz, 1H), 4.32 (dd, J = 8.7, 7.8 Hz, 1H).

13C NMR (101 MHz, CDCls), § (ppm) = 163.5 (d, Jer = 249.5 Hz), 154.7, 131.7 (d, Jer = 3.3 Hz), 128.1 (d, Jor =
8.6 Hz, 2C), 116.5 (d, Jer = 22.1 Hz, 2C), 77.5, 71.2.

F NMR (377 MHz, CDCl;), § (ppm) =—110.93.

Spectroscopic data are in agreement with those in the literature.!
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4-(4-(Trifluoromethyl)phenyl)-1,3-dioxolan-2-one (3v)

Prepared according to General Procedure B using 1-(trifluoromethyl)-4-vinylbenzene (1d, 34 mg, 0.20 mmol, 1.0
equiv.) in 48 h. After chromatographic purification (10 — 50% EtOAc in n-pentane), the title compound 3v was
obtained as a pale-yellow oil (29 mg, 0.13 mmol, 66%).

'H NMR (400 MHz, CDCls), § (ppm) = 7.72 (d, J = 8.2 Hz, 2H), 7.50 (d, J = 8.1 Hz, 2H), 5.75 (t, J= 7.9 Hz, 1H),
4.86 (t, J= 8.5 Hz, 1H), 4.32 (dd, J= 8.6, 7.7 Hz, 1H).

13C NMR (101 MHz, CDCls), § (ppm) = 154.5, 140.0, 132.0 (q, Jer = 32.8 Hz), 126.5 (q, Jer = 3.8 Hz, 2C), 126.2
(2C), 123.8 (q, Jer = 272.3 Hz), 77.0, 71.0.

F NMR (377 MHz, CDCl;), § (ppm) = —62.88.

Spectroscopic data are in agreement with those in the literature.!

4-(4-Isocyanophenyl)-1,3-dioxolan-2-one (3w)

=

(0}
NC

Prepared according to General Procedure B using 1-isocyano-4-vinylbenzene (1e, 26 mg, 0.20 mmol, 1.0 equiv.)
in 48 h. After chromatographic purification (10 — 20% EtOAc in n-pentane), the title compound 3w was obtained

as a colorless oil (20 mg, 0.11 mmol, 53%).

'H NMR (400 MHz, CDCls), § (ppm) = 7.75 (d, J = 8.4 Hz, 2H), 7.49 (d, J = 8.4 Hz, 2H), 5.75 (t, J= 7.9 Hz, 1H),
4.87 (t, J= 8.5 Hz, 1H), 4.29 (dd, J= 8.7, 7.6 Hz, 1H).

13C NMR (101 MHz, CDCls), § (ppm) = 154.3, 141.1, 133.2 (2C), 126.4 (2C), 118.0, 113.7, 76.7, 70.8.

Spectroscopic data are in agreement with those in the literature.!'®]
4-(4-Nitrophenyl)-1,3-dioxolan-2-one (3x)

o

(0}
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Prepared according to General Procedure B using 4-nitrostyrene (1f, 30 mg, 0.20 mmol, 1.0 equiv.) in 48 h. After
chromatographic purification (10 — 20% EtOAc in n-pentane), the title compound 3x was obtained yellow solid

(23 mg, 0.11 mmol, 54%).

'H NMR (400 MHz, CDCL), § (ppm) = 8.31 (d, J= 8.7 Hz, 2H), 7.57 (d, J= 8.8 Hz, 2H), 5.81 (t, J= 7.9 Hz, 1H),
4.90 (t, J= 8.5 Hz, 1H), 4.32 (dd, J= 8.7, 7.5 Hz, 1H).

13C NMR (101 MHz, CDCls), § (ppm) = 154.2, 148.7, 142.9, 126.7 (2C), 124.7 (2C), 76.5, 70.8.

Spectroscopic data are in agreement with those in the literature.!'"

4-Phenyl-1,3-dioxolan-2-one (3a)

Prepared according to General Procedure B using styrene (1g, 21 mg, 0.20 mmol, 1.0 equiv.) in 24 h. After
chromatographic purification (10 — 40% EtOAc in n-pentane), the title compound 3a was obtained as a white solid

(19 mg, 0.11 mmol, 57%).

'H NMR (400 MHz, CDCL), § (ppm) = 7.49 — 7.41 (m, 3H), 7.39 — 7.33 (m, 2H), 5.67 (t, J = 8.0 Hz, 1H), 4.80 (t,
J=8.4Hz, 1H),4.34 (t, J = 8.2 Hz, 1H).

13C NMR (101 MHz, CDCLs), § (ppm) = 155.0, 135.9, 129.8, 129.3 (2C), 126.0, (2C) 78.1, 71.3.

Spectroscopic data are in agreement with those in the literature.!

4-(p-Tolyl)-1,3-dioxolan-2-one (3y)

Prepared according to General Procedure B using 4-methylstyrene (1h, 24 mg, 0.20 mmol, 1.0 equiv.) in 24 h.
After chromatographic purification (10 — 40% EtOAc in n-pentane), the title compound 3y was obtained as a white
solid (20 mg, 0.11 mmol, 55%).

"H NMR (400 MHz, CDCLs), § (ppm) = 7.26 — 7.22 (m, 4H), 5.64 (t, /= 8.0 Hz, 1H), 4.77 (t,J = 8.4 Hz, 1H), 4.33
(dd, J=8.7, 7.9 Hz, 1H), 2.38 (s, 3H).

13C NMR (101 MHz, CDCL), § (ppm) = 155.0, 140.0, 132.8, 130.0 (2C), 126.1 (2C), 78.2, 71.3, 21.4.

Spectroscopic data are in agreement with those in the literature.!'”)
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4-(4-(tert-Butyl)phenyl)-1,3-dioxolan-2-one (3z)

=

o
tBu

Prepared according to General Procedure B using 1-(tert-butyl)-4-vinylbenzene (1i, 32 mg, 0.20 mmol, 1.0 equiv.)
in 24 h. After chromatographic purification (10 — 40% EtOAc in n-pentane), the title compound 3z was obtained
as a white solid (20 mg, 0.09 mmol, 46%).

'H NMR (400 MHz, CDCL), § (ppm) = 7.46 (d, J= 8.5 Hz, 2H), 7.30 (d, J= 8.3 Hz, 2H), 5.65 (t, J= 8.0 Hz, 1H),
477 (t, J= 8.4 Hz, 1H), 4.36 (dd, J= 8.7, 8.0 Hz, 1H), 1.33 (s, 9H).

BC NMR (101 MHz, CDCl3), § (ppm) = 155.0, 153.2, 132.8, 126.3 (2C), 126.0 (2C), 78.2, 71.2, 34.9, 31.3 (3C).
Spectroscopic data are in agreement with those in the literature.!'”)

4-(4-Methoxyphenyl)-1,3-dioxolan-2-one (3aa)

(0}

o

(0]
MeO

Prepared according to General Procedure B using 1-methoxy-4-vinylbenzene (1j, 27 mg, 0.20 mmol, 1.0 equiv.)
in 24 h. After chromatographic purification (10 — 50% EtOAc in n-pentane), the title compound 3aa was obtained
as a yellow solid (12 mg, 0.06 mmol, 31%).

'H NMR (400 MHz, CDCL), § (ppm) = 7.30 (d, J= 8.5 Hz, 2H), 6.95 (d, J= 8.5 Hz, 2H), 5.62 (t, J= 8.1 Hz, 1H),
475 (t, J= 8.4 Hz, 1H), 4.35 (t, J = 8.4 Hz, 1H), 3.83 (s, 3H).

13C NMR (101 MHz, CDCls), § (ppm) = 160.9, 155.0, 127.9 (2C), 127.5, 114.7 (2C), 78.3, 71.2, 55.5.

Spectroscopic data are in agreement with those in the literature.!'”)

4-(m-Tolyl)-1,3-dioxolan-2-one (3ab)

=
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Prepared according to General Procedure B using 1-methyl-3-vinylbenzene (1k, 24 mg, 0.20 mmol, 1.0 equiv.).
After chromatographic purification (10 —40% EtOAc in n-pentane), the title compound 3ab was obtained as a pale-
yellow oil (17 mg, 0.09 mmol, 47%) in 24 h.

'H NMR (400 MHz, CDCL;), § (ppm) = 7.33 (t, J = 7.5 Hz, 1H), 7.23 (d, J = 7.7 Hz, 1H), 7.19 — 7.13 (m, 2H),
5.64 (t, J=8.0 Hz, 1H), 4.78 (t, J = 8.4 Hz, 1H), 4.34 (t, J = 8.2 Hz, 1H), 2.39 (s, 3H).

BC NMR (101 MHz, CDCl3), § (ppm) = 155.0, 139.3, 135.9, 130.6, 129.2, 126.6, 123.1, 78.2, 71.3, 21.5.

Spectroscopic data are in agreement with those in the literature.!'”)

4-(3-Methoxyphenyl)-1,3-dioxolan-2-one (31)

o

MeO 0

Prepared according to General Procedure B using 1-methoxy-3-vinylbenzene (11, 27 mg, 0.20 mmol, 1.0 equiv) in
24 h. After chromatographic purification (10 — 50% EtOAc in n-pentane), the title compound 3ac was obtained as
a yellow oil (15 mg, 0.08 mmol, 39%).

'H NMR (400 MHz, CDCls), 8 (ppm) = 7.35 (t, J = 7.9 Hz, 1H), 6.96 — 6.87 (m, 3H), 5.64 (t, J = 8.0 Hz, 1H), 4.79
(t, J= 8.4 Hz, 1H), 4.33 (dd, J = 8.6, 7.9 Hz, 1H), 3.83 (s, 3H).

BC NMR (101 MHz, CDCl3), § (ppm) = 160.4, 154.9, 137.5, 130.6, 117.9, 115.3, 111.4, 77.9, 71.3, 55.5.

Spectroscopic data are in agreement with those in the literature.!'”)

4-(3-Nitrophenyl)-1,3-dioxolan-2-one (3ad)

Prepared according to General Procedure B using 1-nitro-3-vinylbenzene (1m, 30 mg, 0.20 mmol, 1.0 equiv) in
24 h. After chromatographic purification (10 — 50% EtOAc in n-pentane), the title compound 3ad was obtained as
a yellow solid (20.5 mg, 0.10 mmol, 49%).

'H NMR (400 MHz, CDCL), 5 (ppm) = 8.29 (d, J = 8.1 Hz, 1H), 8.24 (s, 1H), 7.75 (dt, J= 7.8, 1.5 Hz, 1H), 7.68
(t,J=7.9 Hz, 1H), 5.82 (t, J= 7.9 Hz, 1H), 4.91 (t, J= 8.5 Hz, 1H), 4.36 (dd, J = 8.8, 7.6 Hz, 1H).

BC NMR (101 MHz, CDCl3), § (ppm) = 154.20, 148.75, 138.19, 131.68, 130.76, 124.70, 121.08, 76.58, 70.87.

Spectroscopic data are in agreement with those in the literature.!
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4-(0-Tolyl)-1,3-dioxolan-2-one (3ae)

Me 0‘4

(0)

Prepared according to General Procedure B using 1-methyl-2-vinylbenzene (1n, 24 mg, 0.20 mmol, 1.0 equiv.) in
24 h. After chromatographic purification (10 — 40% EtOAc in n-pentane), the title compound 3ae was obtained as
a colorless oil (18 mg, 0.10 mmol, 51%).

'H NMR (400 MHz, CDCL), § (ppm) = 7.45 — 7.40 (m, 1H), 7.33 — 7.27 (m, 2H), 7.24 — 7.20 (m, 1H), 5.90 (t, J
= 8.0 Hz, 1H), 4.83 (t, J = 8.3 Hz, 1H), 4.28 (dd, J = 8.4, 7.8 Hz, 1H), 2.32 (s, 3H).

BC NMR (101 MHz, CDCl3), § (ppm) = 155.0, 134.7, 134.2, 131.1, 129.4, 127.0, 124.8, 75.7, 70.5, 19.1.

Spectroscopic data are in agreement with those in the literature.!'”)
4-(2-Nitrophenyl)-1,3-dioxolan-2-one (3af)

(o}

NO, 04

(0}

Prepared according to General Procedure B using 1-nitro-2-vinylbenzene (10, 28 mg, 0.20 mmol, 1.0 equiv.) in
24 h. After chromatographic purification (10 — 20% EtOAc in n-pentane), the title compound 3af was obtained as
a yellow solid (13 mg, 0.06 mmol, 31%).

'H NMR (400 MHz, CDCL), § (ppm) = 8.28 (d, J = 8.3 Hz, 1H), 7.87 — 7.78 (m, 2H), 7.68 — 7.57 (m, 1H), 6.28
(dd, J = 8.6, 6.1 Hz, 1H), 5.17 (t, J = 8.9 Hz, 1H), 4.28 (dd, J=9.1, 6.1 Hz, 1H).

BC NMR (101 MHz, CDCl3), § (ppm) = 154.6, 146.0, 135.4, 134.2, 130.2, 126.4, 125.9, 74.6, 71.5.

Spectroscopic data are in agreement with those in the literature.!

4-(Perfluorophenyl)-1,3-dioxolan-2-one (3ag)

o
ok

E o

F F
F
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Prepared according to General Procedure B using 1,2,3,4,5-pentafluoro-6-vinylbenzene (1p, 39 mg, 0.20 mmol,
1.0 equiv.) in 24 h. After chromatographic purification (10 — 50% EtOAc in n-pentane), the title compound 3ag
was obtained as a white solid (19 mg, 0.07 mmol, 36%).

'H NMR (400 MHz, CDCls), § (ppm) = 6.02 (dd, J = 9.2, 6.8 Hz, 1H), 4.86 (t, J= 9.0 Hz, 1H), 4.53 (dd, J = 8.8,
6.8 Hz, 1H).

13C NMR (101 MHz, CDCls), § (ppm) = 153.7, 148.8 — 145.5 (m), 144.9 — 143.5 (m), 142.3 — 140.9 (m), 140.1 —
138.8 (m), 137.8 — 136.0 (m), 111.7 — 108.6 (m), 68.4, 67.8.

F NMR (377 MHz, CDCl5), & (ppm) = -142.06 — -142.30 (m, 2F), -148.96 —-149.28 (m, 1F), -159.34 —-159.63
(m, 2F).

HRMS (ESI) m/z: 276.9795 [M+Na'], CoH3FsO3Na+ requires 276.9895.

4-(Pyridin-2-yl)-1,3-dioxolan-2-one (3ah)

(o]

o~

N (0]
‘\
=

Prepared according to General Procedure B using 2-vinylpyridine (1q, 21 mg, 0.20 mmol, 1.0 equiv.) in 72 h.
After chromatographic purification (10 — 50% EtOAc in n-pentane), the title compound 3ah was obtained was a

yellow oil (17 mg, 0.10 mmol, 51%).

'H NMR (400 MHz, CDCL;),  (ppm) = 8.68 — 8.57 (m, 1H), 7.79 (td, J = 7.7, 1.8 Hz, 1H), 7.50 (dd, J = 7.8, 1.0
Hz, 1H), 7.33 (ddd, J= 7.7, 4.8, 1.1 Hz, 1H), 5.74 (dd, J = 8.4, 6.5 Hz, 1H), 4.87 (t, J = 8.5 Hz, 1H), 4.69 (dd, J =
8.6, 6.5 Hz, 1H).

BC NMR (101 MHz, CDCl3), § (ppm) = 155.7, 154.9, 150.1, 137.5, 124.2, 120.8, 77.0, 69.8.

HRMS (ESI) m/z: 188.0266 [M+Na'], CsH;NOs;Na+ requires 188.0318.

4-(Benzofuran-2-yl)-1,3-dioxolan-2-one (3ai)

Prepared according to General Procedure B using 2-vinylbenzofuran (1r, 29 mg, 0.20 mmol, 1.0 equiv.) in 48 h.
After chromatographic purification (10 — 50% EtOAc in n-pentane), the title compound 3ai was obtained as a white

solid (14 mg, 0.07 mmol, 35%).
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'H NMR (400 MHz, CDCL), § (ppm) = 7.61 (d, J = 7.7 Hz, 1H), 7.53 — 7.49 (m, 1H), 7.40 — 7.35 (m, 1H), 7.31 —
7.26 (m, 1H), 6.94 (s, 1H), 5.81 (t, J= 7.7 Hz, 1H), 4.82 — 4.71 (m, 2H).

13C NMR (101 MHz, CDCls), § (ppm) = 155.6, 154.3, 149.6, 127.2, 126.1, 123.7, 122.0, 111.9, 108.3, 71.5, 67.6.
HRMS (ESI) m/z: 227.0177 [M+Na'], C1;HsO4Na+ requires 227.0315.

(E)-4-Styryl-1,3-dioxolan-2-one (3aj)

=

(o}

Prepared according to General Procedure B using (F)-buta-1,3-dien-1-ylbenzene (1s, 26 mg, 0.20 mmol, 1.0
equiv.) in 48 h. After chromatographic purification (10 — 50% EtOAc in n-pentane), the title compound 3aj was
obtained as a white solid (16 mg, 0.08 mmol, 41%).

'H NMR (400 MHz, CDCL), § (ppm) = 7.43 — 7.33 (m, 5H), 6.79 (d, J = 15.8 Hz, 1H), 6.18 (dd, /= 15.8, 7.8 Hz,
1H), 5.33 —5.27 (m, 1H), 4.65 (t, J= 8.3 Hz, 1H), 4.24 (dd, J= 8.7, 7.7 Hz, 1H).

13C NMR (101 MHz, CDCl3), 8 (ppm) = 154.9, 137.0, 134.9, 129.3, 129.0 (2C), 127.1 (2C), 122.5, 77.9, 69.5.

Spectroscopic data are in agreement with those in the literature.!

4-((Perfluorophenyl)methyl)-1,3-dioxolan-2-one (3ak)

Prepared according to General Procedure B using 1-allyl-2,3,4,5,6-pentafluorobenzene (1t, 42 mg, 0.20 mmol, 1.0
equiv.) in 72 h. After chromatographic purification (10 — 40% EtOAc in n-pentane), the title compound 3ak was
obtained as a white solid (14 mg, 0.05 mmol, 26%).

'H NMR (400 MHz, CDCL;), § (ppm) = 4.98 — 4.87 (m, 1H), 4.63 — 4.56 (m, 1H), 4.22 (dd, J = 8.8, 6.3 Hz, 1H),
3.26 — 3.08 (m, 2H).

13C NMR (101 MHz, CDCL), § (ppm) = 154.0, 147.3 — 146.1 (m), 144.8 — 143.9 (m), 140.2 — 139.5 (m), 139.5 —
138.7 (m), 136.9 — 136.3 (m), 108.4 — 107.6 (m), 74.6, 68.7, 27.0.

YF NMR (377 MHz, CDCl5), § (ppm) = -141.88 —-142.01 (m, 2F), -153.62 (t, J = 20.8 Hz, 1F), -160.72 — -160.94
(m, 2F).

Spectroscopic data are in agreement with those in the literature.!"”’
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6. Chemoselective synthesis of en-cyclic-carbonates from dienes

Reaction optimization
Table S7. Optimization of chemoselective oxidative carboxylation reaction.

o
Hf-PCN-222(Mn) (2 mol%

) 04
o
TBAB (12 mol%) o
~N PhlO(1.5 equiv.)
o CO, (1 bar, balloon) o + o
N 40°C, 24-72h T N
(0] (0] 2w (e} 3aq

Entry Time (h) Yield 2w (%) Yield 3aq (%)
1 24 41 26
2 48 21 46
3 72 4 68

To a 2 mL conical bottom microwave vial equipped with a triangle shape magnetic stir bar was added allyl 4-
vinylbenzoate (1aj, 38 mg, 0.20 mmol, 1.0 equiv.), PhIO (66.0 mg, 0.30 mmol, 1.5 equiv.), tetrabutylammonium
bromide (TBAB, 8.0 mg, 12.0 mol%) and Hf-PCN-222(Mn) (6.2 mg, 2 mol%, calculated based on porphyrin
linker). The vial was capped with a rubber septum and vial was purged with CO,, and the mixture was stirred at 40
°C under CO; atmosphere for the time indicated in the table above. To ensure the CO, atmosphere, a balloon of
CO; was used. The solid was washed with CH>Cl, (2 mL), and the suspension was centrifuged (14000 rpm, 2 min),
keeping the solution. The remaining solid was washed 3 times with CH,Cl, (2 mL), and all the organic solutions
were combined. The volatiles were removed under reduced pressure, and the crude mixture was subjected to
purification by flash column chromatography (0 — 10% EtOAc in n-pentane), obtaining the cyclic organic carbonate

3aq and/or epoxide 2w. Data for cyclic organic carbonate 3aq:

'H NMR (400 MHz, CDCls), & (ppm) = 8.13 (d, J = 8.1 Hz, 2H), 7.44 (d, J = 8.0 Hz, 2H), 6.10 — 5.98 (m, 1H),
5.74 (t, J = 8.0 Hz, 1H), 5.41 (d, J= 16.9 Hz, 1H), 5.30 (d, /= 10.4 Hz, 1H), 4.87 — 4.81 (m, 3H), 4.31 (t, J=8.2
Hz, 1H).

BC NMR (101 MHz, CDCls), § (ppm) = 165.5, 154.6, 140.8, 132.0, 131.5, 130.7 (2C), 125.7 (2C), 118.7, 77.3,
71.0, 66.0.

HRMS (ESI) m/z: 271.0622 [M+Na'], C13H1,0sNa+ requires 271.0577.
Data for epoxide 2w:

'H NMR (400 MHz, CDCL), 5 (ppm) = 8.04 (d, J = 8.0 Hz, 2H), 7.35 (d, J = 8.0 Hz, 2H), 6.11 — 5.97 (m, 1H),
5.41(d, J=17.2 Hz, 1H), 5.29 (d, J = 10.4 Hz, 1H), 4.82 (d, J = 5.6 Hz, 2H), 3.91 (t, J = 3.2 Hz, 1H), 3.19 (dd, J
=5.6,4.2 Hz, 1H), 2.79 (dd, J = 5.7, 2.4 Hz, 1H).

BC NMR (101 MHz, CDCls), § (ppm) = 166.0, 143.1, 132.3, 130.1, 130.0 (2C), 125.5 (2C), 118.5, 65.8, 52.1,
51.6.

HRMS (ESI) m/z: 226.9409 [M+Na'], C1,H1,0sNa+ requires 227.0679.
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Allyl 4-(2-0x0-1,3-dioxolan-4-yl)benzoate (3aq)

/\/O

Prepared according to General Procedure Busing allyl 4-vinylbenzoate (1aj, 38 mg, 0.20 mmol, 1.0 equiv.) in 72
h. After chromatographic purification (10 — 30% EtOAc in n-pentane), the title compound 3aq was obtained as a
colorless oil (30 mg, 0.12 mmol, 61%).

'H NMR (400 MHz, CDCls), & (ppm) = 8.13 (d, J = 8.1 Hz, 2H), 7.44 (d, J = 8.0 Hz, 2H), 6.10 — 5.98 (m, 1H),
5.74 (t, J = 8.0 Hz, 1H), 5.41 (d, J= 16.9 Hz, 1H), 5.30 (d, /= 10.4 Hz, 1H), 4.87 — 4.81 (m, 3H), 4.31 (t, J=8.2
Hz, 1H).

BC NMR (101 MHz, CDCls), § (ppm) = 165.5, 154.6, 140.8, 132.0, 131.5, 130.7 (2C), 125.7 (2C), 118.7, 77.3,
71.0, 66.0.

HRMS (ESI) m/z: 271.0622 [M+Na'], Ci3H1,0sNa+ requires 271.0577.

Allyl 4-(oxiran-2-yl)benzoate (2w)

/\/O

Prepared according to General Procedure B using allyl 4-vinylbenzoate (1aj, 38 mg, 0.20 mmol, 1.0 equiv.) in 48
h. After chromatographic purification (10 — 30% EtOAc in n-pentane), the title compound 2w was obtained as a
colorless oil (5.7 mg, 0.03 mmol, 14%).

'H NMR (400 MHz, CDCLs), § (ppm) = 8.04 (d, J = 7.9 Hz, 2H), 7.35 (d, J = 8.0 Hz, 2H), 6.04 (ddt, J= 16.4, 10.8,
5.5 Hz, 1H), 5.41 (dt, J=17.2, 1.5 Hz, 1H), 5.29 (dd, J= 10.5, 1.8 Hz, 1H), 4.82 (dd, J= 5.7, 1.5 Hz, 2H), 3.91 (t,
J=23.2Hz, 1H),3.19 (dd, J = 5.6, 4.2 Hz, 1H), 2.79 (dd, J= 5.7, 2.3 Hz, 1H).

BC NMR (101 MHz, CDCls), § (ppm) = 166.0, 143.1, 132.3, 130.1, 130.0 (2C), 125.5 (2C), 118.5, 65.8, 52.1,
51.6.

HRMS (ESI) m/z: 226.9409 [M+Na'], C12H1,0sNa+ requires 227.0679.
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But-3-en-1-yl 4-(2-0x0-1,3-dioxolan-4-yl)benzoate (3ar)

Prepared according to General Procedure B using but-3-en-1-yl 4-vinylbenzoate (1ak, 41 mg, 0.20 mmol, 1.0
equiv.) in 72 h. After chromatographic purification (10 — 30% EtOAc in n-pentane), the title compound 3ar was

obtained as a colorless o0il (27 mg, 0.10 mmol, 52%).

'H NMR (400 MHz, CDCls), 3 (ppm) = 8.10 (d, J = 8.5 Hz, 2H), 7.43 (d, J = 8.0 Hz, 2H), 5.93 — 5.80 (m, 1H),
5.74 (t,J = 8.0 Hz, 1H), 5.14 (dd, J = 23.5, 13.7 Hz, 2H), 4.84 (t, J = 8.4 Hz, 1H), 4.39 (t, J = 6.7 Hz, 2H), 4.31 (t,
J=8.2 Hz, 1H), 2.53 (q, J = 6.6 Hz, 2H).

BC NMR (101 MHz, CDCls), § (ppm) = 165.8, 154.6, 140.7, 134.0, 131.8, 130.6 (2C), 125.7 (2C), 117.6, 77.3,
71.0, 64.4,33.2.

HRMS (ESI) m/z: 285.0715 [M+Na'], C14H140sNa+ requires 285.0733.

Pent-4-en-1-yl 4-(2-0x0-1,3-dioxolan-4-yl)benzoate (3as)

o
o
0

MO

Prepared according to General Procedure B using pent-4-en-1-yl 4-vinylbenzoate (1al, 43 mg, 0.20 mmol, 1.0
equiv.) in 72 h. After chromatographic purification (10 — 30% EtOAc in n-pentane), the title compound 3as was

obtained as a colorless oil (20 mg, 0.07 mmol, 36%)).

"H NMR (400 MHz, CDCl3), & (ppm) = 8.11 (d, J = 8.0 Hz, 2H), 7.44 (d, J = 7.9 Hz, 2H), 5.92 — 5.77 (m, 1H),
5.74 (t, J = 8.0 Hz, 1H), 5.11 — 4.98 (m, 2H), 4.84 (t, J = 8.4 Hz, 1H), 4.39 — 4.27 (m, 3H), 2.22 (¢, J = 7.2 Hz,
2H), 1.94 — 1.83 (m, 2H).

BC NMR (101 MHz, CDCls), § (ppm) = 165.8, 154.6, 140.7, 137.5, 131.9, 130.6 (2C), 125.7 (2C), 115.6, 77.3,
71.1, 64.9, 30.3, 28.0.

HRMS (ESI) m/z: 299.0853 [M+Na'], CisHi60sNa+ requires 299.0890.
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Dec-9-en-1-yl 4-(2-0x0-1,3-dioxolan-4-yl)benzoate (3at)

Prepared according to General Procedure B using dec-9-en-1-yl 4-vinylbenzoate (1am, 57 mg, 0.20 mmol, 1.0
equiv.) in 72 h. After chromatographic purification (10 — 30% EtOAc in n-pentane), the title compound 3at was

obtained as a colorless oil (6.0 mg, 0.02 mmol, 9%).

'H NMR (400 MHz, CDCls), & (ppm) = 8.12 (d, J = 8.4 Hz, 2H), 7.44 (d, J = 8.4 Hz, 2H), 5.87 — 5.77 (m, 1H),
5.74 (t, J = 7.9 Hz, 1H), 5.04 — 4.90 (m, 2H), 4.84 (t, J = 8.4 Hz, 1H), 4.37 — 4.27 (m, 3H), 2.04 (g, J = 6.9 Hz,
2H), 1.83 — 1.71 (m, 2H), 1.50 — 1.32 (m, 10H).

BC NMR (101 MHz, CDCls), § (ppm) = 165.9, 154.6, 140.6, 139.3, 132.0, 130.6 (2C), 125.7 (2C), 114.3, 77.3,
71.1,65.7,33.9,29.5,29.4,29.2, 29.0, 28.8, 26.1.

HRMS (ESI) m/z: 369.1594 [M+Na'], C20H260sNa+ requires 369.1672.

4-(4-(Pent-4-en-1-yloxy)phenyl)-1,3-dioxolan-2-one (3au)

(o]
o
(0]

\/\/\o/@/K/

Prepared according to General Procedure B using 1-(hex-5-en-1-yloxy)-4-vinylbenzene (1an, 38 mg, 0.20 mmol,
1.0 equiv.) in 72 h. After chromatographic purification (10 — 30% EtOAc in n-pentane), the title compound 3au

was obtained as a colorless oil (20 mg, 0.08 mmol, 40%).

'H NMR (400 MHz, CDCls), & (ppm) = 7.29 (d, J = 8.7 Hz, 2H), 6.94 (d, J = 8.7 Hz, 2H), 5.90 — 5.80 (m, 1H),
5.61 (t, J = 8.1 Hz, 1H), 5.06 (dq, J= 17.1, 1.7 Hz, 1H), 5.03 —4.99 (m, 1H), 4.74 (dd, J= 8.7, 8.1 Hz, 1H), 4.35
(dd, J=8.7, 8.1 Hz, 1H), 3.99 (t, J = 6.4 Hz, 2H), 2.29 — 2.19 (m, 2H), 1.95 — 1.85 (m, 2H).

BC NMR (101 MHz, CDCls), § (ppm) = 160.4, 155.0, 137.8, 127.9 (2C), 127.4, 115.5, 115.3 (2C), 78.3, 71.2,
67.5,30.2, 28.4.

HRMS (ESI) m/z: 271.0921 [M+Na"], CisH1s0sNa+ requires 271.0941.
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Allyl 3-(2-0x0-1,3-dioxolan-4-yl)benzoate (3av)

(0]
o oA
(o)

\/\O

Prepared according to General Procedure B using allyl 3-vinylbenzoate (1ao, 38 mg, 0.20 mmol, 1.0 equiv) in 72
h. After chromatographic purification (10 — 30% EtOAc in n-pentane), the title compound 3av was obtained as a

colorless oil (22 mg, 0.09 mmol, 44%).

'H NMR (400 MHz, CDCls), § (ppm) = 8.11 (d, J = 7.5 Hz, 1H), 8.04 (s, 1H), 7.62 — 7.50 (m, 2H), 6.11 — 5.97
(m, 1H), 5.74 (t, J= 8.0 Hz, 1H), 5.41 (dd, J= 17.2, 1.5 Hz, 1H), 5.31 (dd, J= 10.4, 1.3 Hz, 1H), 4.88 — 4.80 (m,
3H), 4.39 — 4.30 (m, 1H).

BC NMR (101 MHz, CDCl3), § (ppm) = 165.5, 154.6, 136.5, 132.0, 131.4, 131.0, 130.3, 129.7, 127.2, 118.9, 77.5,
71.1, 66.1.

HRMS (ESI) m/z: 271.0243 [M+Na'], C13H1,0sNa+ requires 271.0755.

Oct-1-en-3-yl 4-(2-0x0-1,3-dioxolan-4-yl)benzoate (3ax)
o

(0]
\/\/)/ I
Prepared according to General Procedure B using oct-1-en-3-yl 4-vinylbenzoate (1aq, 52 mg, 0.20 mmol, 1.0

equiv.) in 72 h. After chromatographic purification (10 — 30% EtOAc in n-pentane), the title compound 3ax was

obtained as a colorless oil (8 mg, 0.03 mmol, 13%).

'H NMR (400 MHz, CDCls), & (ppm) = 8.13 (d, J = 8.4 Hz, 2H), 7.44 (d, J = 8.3 Hz, 2H), 5.95 — 5.82 (m, 1H),
5.74 (t, J = 8.0 Hz, 1H), 5.52 — 5.45 (m, 1H), 5.31 (dt, J= 17.2, 1.3 Hz, 1H), 5.21 (dt, J = 10.5, 1.2 Hz, 1H), 4.84
(t, J= 8.4 Hz, 1H), 4.31 (dd, J= 8.6, 7.7 Hz, 1H), 1.83 — 1.68 (m, 2H), 1.44 — 1.36 (m, 2H), 1.35 — 1.26 (m, 4H),
0.91 — 0.84 (m, 3H).

BC NMR (101 MHz, CDCls), § (ppm) = 165.1, 154.6, 140.7, 136.5, 132.1, 130.6 (2C), 125.7 (2C), 117.1, 77.3,
76.1,71.1,34.4,31.7,24.9, 22.6, 14.1.

HRMS (ESI) m/z: 341.1345 [M+Na'], CisH2,OsNa+ requires 341.1359.
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7. Substrate-size selectivity

Table S8. Control experiment on size-selective oxidative carboxylation.
] é

o)
X
(o] 1aj 0. 2w 0. 3aq
P Hf-PCN-222(Mn) (2 mol%) P P S [o)
TBAB (12 mol%) ! 04

[e] cgh;? L1A5 Eq::iv.) ) o (o} 0
N 240 °C,Y72 h >
MO 1am MO 2x /\%O 3at
o (o} [¢]
Conditions’ Diene (%) Epoxide (%) Cyclic carbonate (%)
Entry

PhIO CO; 1aj lam 2w 2x 3aq 3al
1 Yes No 17 38 32 17 n.d. n.d.
2 Yes Yes 22 44 9 8 36 9

“Conditions: 11a (0.2 mmol), 11d (0.2 mmol), TBAB (12 mol%), Hf-PCN-222(Mn) (4 mol%), CO: (1 bar, balloon, 100 equiv.) or in N> atmosphere, neat,
40°C, 72 h. '"HNMR yields were obtained using 1,3,5-trimethoxybenzene as an internal standard combined with GC-FID using calibration curve.
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Figure 22. Relative size of dienes 1aj and 1am in comparison to the pore size of Hf-PCN-222(Mn).
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Figure S23. Isotherm curves (A-B) and pore size distribution (C—F) of Hf~-PCN-222(Mn) and 1aj or lam
adsorbed Hf-PCN-222(Mn).
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8. Recyclability

The recyclability test was performed using 4-chlorostyrene, as model substrate, and following General Procedure
B. Internal standard 1,3,5-trimethoxybenzene (16.8 mg, 0.1 mmol) was added to the reaction mixture at the end,
following by addition of CDCI; (1 mL). The mixture was mixed well and then transferred to a 2-mL Eppendorf
tube. The solid catalyst was separated from the liquid phase by centrifugation at 14000 rpm for 2 min. The liquid
phase was taken for '"H NMR analysis. The solid Hf-PCN-222(Mn) was re-dispersed in EtOAc (1.5 mL) and
collected by centrifugation, this process was repeated 3 times to wash the solid Hf-PCN-222(Mn) thoroughly. Then,

the collected catalyst was washed with MeOH (1.5 mL % 3 times) before being dried under high vacuum at room

temperature and reused for the next cycle without any further treatment.

The reused catalyst was examined with PXRD showing the MOF crystallinity is maintained

SEM-EDS analysis shows that the Mn/Hf ratio remains unchanged, indicating now significant leaching of the

Intensity (a.u.)

Hf-PCN-222(Mn) after 5 runs

Hf-PCN-222(Mn) after 1 run

Fresh Hf-PCN-222(Mn)

20 (deg.)

16

Figure S24. PXRD pattern of Hf-PCN-222(Mn) fresh, after 1 run and after 5 runs.

metal during catalysis.

Table S9. EDS results of Hf-PCN-222(Mn) fresh, after 1 run and after 5 runs.

Fresh Hf-PCN-222(Mn)

- 1um

Hf-PCN-222(Mn)
After 1 run

- Tum

Hf-PCN-222(Mn)
After 5 runs

- Tum

Mn atom%

Hf atom%

Mn atom%

Hf atom%

Mn atom%

Hf atom%

Point 1

0.44

1.62

0.31

1.03

0.04

0.18
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Point 2

0.48

1.80

0.34

1.14

0.11

0.40

Point 3 0.62 2.30 0.43 1.44 0.35 1.25
Point 4 0.39 1.52 0.39 1.51 0.50 1.75
Point 5 0.41 1.71 0.46 1.65 0.41 1.39
Point 6 0.46 1.72 0.6 1.89 0.22 0.79
Point 7 0.26 1.04 0.13 0.44 0.30 1.10
Point 8 0.63 2.30 0.21 0.68 0.06 0.22
Point 9 0.27 0.94 0.18 0.73 0.29 1.03

Point 10

0.77

2.93

0.37

1.32

0.37

1.38

Average Mn/Hf

0.2646

0.2884

0.2732

%Metalation

79%

86%

82%

Intensity [Counts]

C T -

Figure S25. Hf-PCN-222(Mn) fresh (left), after 1 run (middle) and after 5 runs (right).

d.p
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Figure S26. EDS spectra of Hf-PCN-222(Mn) before catalysis (A), after 1 run (B) and after 5 runs (C)
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9. Comparison of MOF systems for the auto-tandem oxidative cycloaddition
Table S10. Comparison table of MOF-catalyzed oxidative carboxylation of alkenes to cyclic organic carbonates.
Co- q Pressure Temperature COC Alkene
Catalyst catalyst Oxidant Solvent ) ©C) yield (%) scope Reference
1 Cr-MIL-101 TBAB TBHP*  none 8 25 19 Styrene J. Energy Chem. 2013, 22, 1, 130-135.12%
2 ZnW-PYI2 TBAB TBHP®  none 50 50 90 4 alkenes Nat. Commun. 2015, 6, 10007.2!
3 MOF-590 TBAB  TBHP® none 1 80 87 Styrene Inorg. Chem. 2018, 57, 21, 13772-13782.2%
4  MOF892  TBAB TBHP' none 1 80 80 Styrene ~ ~XCS Appl. Mater. Interfaces 2018, 10, 1,
733-744.
ImBr-MOF- c Appl. Catal. B: Environ. 2020, 273,
5 545(Mn) none  Ou/IBA none 5 70 98 7 alkenes 119059 (241
6 Co-NDPhTZ TBAB  TBHP® none 3 110 78 Styrene J. CO2 Util. 2023, 67, 102298.23
7 NiBDC NS TBAB  TBHP® none 1 80 87 6 alkenes Chem. Eng. Sci. 2023, 278, 118898.12¢]
8 Zr-BTB/PA-Co none THBP®  none 1 80 93 8 alkenes AIChE J. 2024, 70, 2 ¢18290.27
IL-Au@UiO- b ACS Appl. Mater. Interfaces 2024, 16, 6,
9 66-NH,/CMC TBAB TBHP none 1 80 80 8 alkenes 73647373 12
10 Fe@MOF1 TBAB PhIO DCM 8 50 90 3 alkenes Chem. Eur. J. 2018, 24, 16662.1"!
11 TiMMM-E TBAB TBHP®  nonc 8 70 70 Galkenes APl Catal BiEoviron, 2016, 181, 363~
12 Fe-IPOP1 None PhIO DCM 1 80 96 10 alkenes  Inorg. Chem. Front., 2023,10, 2088-2099.5!
13 Zr-CPB-Cu TBAB  TBHP® none 1 80 92 8 alkenes New J. Chem., 2024,48, 5300-531052!
Up to
Mn@Hf- 75% .
14 PCN222 TBAB PhIO none 1 40 Isolated 27 alkenes This study
yield

2Aqueous solution. *In decane. °5 bar of O».
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11. NMR spectra
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Figure S27. "H NMR (400 MHz, Methanol-ds) spectrum of bis(methyl-d3)(phenyl)- A*-iodane.
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Figure S28. °C NMR (101 MHz, Methanol-ds) spectrum of bis(methyl-d3)(phenyl)- A*-iodane.
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Figure S40. °C NMR (101 MHz, CDCls) spectrum of 4-(4-chlorophenyl)-1,3-dioxolan-2-one (3s).
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Figure S42. °C NMR (101 MHz, CDCls) spectrum of 4-(4-bromophenyl)-1,3-dioxolan-2-one (3t).
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Figure S44. *C NMR (101 MHz, CDCls) spectrum of 4-(4-fluorophenyl)-1,3-dioxolan-2-one (3u).
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Figure S47. *C NMR (101 MHz, CDCl5) spectrum of 4-(4-(trifluoromethyl)phenyl)-1,3-dioxolan-2-one (3v).
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Figure S48. ""F NMR (377 MHz, CDCl;) spectrum of 4-(4-(trifluoromethyl)phenyl)-1,3-dioxolan-2-one (3v).
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Figure S54. °C NMR (101 MHz, CDCls) spectrum of 4-phenyl-1,3-dioxolan-2-one (3a).
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Figure S58. °C NMR (101 MHz, CDCls) spectrum of 4-(4-(tert-butyl)phenyl)-1,3-dioxolan-2-one (3z).
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Figure S71. "H NMR (400 MHz, CDCl;) spectrum of 4-(perfluorophenyl)-1,3-dioxolan-2-one (3ag).
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Figure S75. *C NMR (101 MHz, CDCl;) spectrum of 4-(pyridin-2-yl)-1,3-dioxolan-2-one (3ah).
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Figure S77. °C NMR (101 MHz, CDCl;) spectrum of 4-(benzofuran-2-yl)-1,3-dioxolan-2-one (3ai).
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Figure S82. "’F NMR (377 MHz, CDCls) spectrum of 4-((perfluorophenyl)methyl)-1,3-dioxolan-2-one (3ak).
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Figure S83. "H NMR (400 MHz, CDCl;) spectrum of allyl 4-(2-oxo-1,3-dioxolan-4-yl)benzoate (3aq).
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Figure S84. *C NMR (101 MHz, CDCl5) spectrum of allyl 4-(2-oxo-1,3-dioxolan-4-yl)benzoate (3aq).
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Figure S108. '*C NMR (101 MHz, CDCl;) spectrum of 4-(bromomethyl)-1,3-dioxolan-2-one (3¢).
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Figure S109. '"H NMR (400 MHz, CDCls) spectrum of 4-(methoxymethyl)-1,3-dioxolan-2-one (3d).

)
Q
a
™ O
o O WO~
w0 = Qo mnmN
n NN —=0VoQ
— NINNWOLWN
A N
0]
o4
0]
MeO\/K/
3d
|
J | Il
T T T T T T T T T T T T T T T T T T T
200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20

1 (ppm)

Figure S110. *C NMR (400 MHz, CDCl;) spectrum of 4-(methoxymethyl)-1,3-dioxolan-2-one (3d).
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Figure S112. 'H NMR (400 MHz, CDCI;) spectrum of 4-(butoxymethyl)-1,3-dioxolan-2-one (3e).
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Figure S115. 'H NMR (400 MHz, CDCl;) spectrum of 4-methyl-1,3-dioxolan-2-one (3g).
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Figure S116. *C NMR (101 MHz, CDCl;) spectrum of 4-methyl-1,3-dioxolan-2-one (3g).
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Figure S117. '"H NMR (400 MHz, CDCl;) spectrum of 4-ethyl-1,3-dioxolan-2-one (3h).
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Figure S118. *C NMR (101 MHz, CDCls) spectrum of 4-ethyl-1,3-dioxolan-2-one (3h).
S98



ﬂm.og
Nm.og
¥6°0 1
mm.Hg
PET
SE'T
9€'T
9€'T A

LETN

8€'T
6€'T
ov'T

1
&1 ]
2%
SH'T ]
9T
9T
1]
1]
81 ]
$9'T |
S9'T
99'T 1
(9T
89'T 1
69°T 1
0,1
LT
€471
9T
8,11
8,11
64T
08T
08'T1
18T
18'T 1
7811
€8T 1
€8T 1
+8'T 1
0" 1
90 1
90°b 1
80" 1
0S'b 1
75 1
b5 |
99 1
191
89" 1
69
0L'Y ]
L0
U
€L

—

|
:

—

€10ad 9L

T

/
—

~—
~—

Me

3i

Feoe

Feoy
Pp0'T
reo't

1.0 0.5 0.0

1.5

4.5 4.0 3.5 3.0 25 2.0

5.0
f1 (ppm)

6.5 6.0 55
Figure S119. 'H NMR (400 MHz, CDCl;) spectrum of 4-butyl-1,3-dioxolan-2-one (3i).

7.0

7.5

9.5 9.0 8.5 8.0

10.0

16°€T —

8€'¢c —
95°9¢ —

04'€€ —

0569 —

ST'LL
€10ad 91°LL

61°SST —

Me

3i

100
1 (ppm)

190 180 170 160 150 140 130 120 110
Figure S120. *C NMR (101 MHz, CDCl;) spectrum of 4-butyl-1,3-dioxolan-2-one (3i).

200

S99



S8°0
480
880

9T'T
mN.ﬂ/
1T

1k
LE°T
6T F
T
b1 ]
SH'T
9T ]
8b°T ]
6T 1
291
$9'T |
moi
99'1

[9°T1
89'T 1
69'T
T
st
1
LT
8L°T
64T 1
Z8'T
€8'T1
€0'b
S0'b
L0°b
6v°b
1S
€5t
S9'b 1
1971
69" 1
69' 1

e ————

Eo00¢

TL'P
LY

€10ad 9¢°L

s

3

Fo1r
Fvo1
¥ 00T
®oo1

EooT

\\k Fe660

3.0

2.0 1.5 1.0 0.5 0.0

2.5

3.5

4.0

4.5

5.0
1 (ppm)

9.0 8.5 8.0 7.5 7.0 6.5 6.0 55
Figure S121. '"H NMR (400 MHz, CDCls) spectrum of 4-octyl-1,3-dioxolan-2-one (3j).

9.5

10.0

LTPT —
cLee
VA 44
0c'6¢ N
yT6c

ot'6¢
88'T€
66'€E \

1569 —
€10ad 9T°LL

81°LL

TC'SST —

3

T T T T T T T T
170 140 110

100
1 (ppm)

120
Figure S122. '"H NMR (400 MHz, CDCls) spectrum of 4-octyl-1,3-dioxolan-2-one (3j).

130

150

160

190 180

200

S100



€10ad 9L -

3k

T T T T T T T
3.0 0.5

4.0

T T T T T
8.5 7.5

9.5

0.0

1.0

1.5

2.0

25

3.5

8.0

9.0

10.0

Figure S123. '"H NMR (400 MHz, CDCl;) spectrum of 4-(but-3-en-1-yl)-1,3-dioxolan-2-one (3k).

LL8C—
8T'¢€ —

€469 —
€P°9L~\

€10ad 91°LL

9S'9TT —

8T'9€T —

90°SST —

3k

T
100
1 (ppm)

Figure S124. *C NMR (101 MHz, CDCl;) spectrum of 4-(but-3-en-1-yl)-1,3-dioxolan-2-one (3K).

190 180 170 160 150 140 130 120 110

200

S101



SEP
LEY
LY
6% |
Ob't |
Ty |
£h'p |
9"t |
aa
6b'p 1
0S'v 1
85'v
09 7
97
L6'0\E
86 |t
664
664
00°'S \V.
00°'S -}
005 ]
105 4
10°S
70°S 1
€0'5-
59~
97
€10ad mN.J

mm.n/

mm.n/
0b'L
5L ]
527
L
AW
€52
vS°L ]
¥S'L
S5 ]
sz
9572 1
2]
ors )

———r

3l

0T
=== = 01
0T

&
0T

koot

— 300'€
) 200
oot

T T T T T T T T T
3.5 2.5 1.0 0.0

T
5.0
1 (ppm)

50 85 80 75 70 65 60 5
Figure S125. '"H NMR (400 MHz, CDCls) spectrum of 2-oxo-1,3-dioxolan-4-yl)methyl cinnamate (31).

10.0

0.5

15

2.0

3.0

4.0

4.5

5.5

6.0

7.0

8.0

8.5

9.5

€069 ~
8199 —

€0'vL —

3l

€10Aad 91°LL

LPITT —

AN
Zr62T —
96'0€T 7.
20bET

S8°9pT —

9§bST —

0v'99T —

T T T T T T T T
180 160 140 120

200

100
1 (ppm)
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Figure S133. '"H NMR (400 MHz, CDCls) spectrum of (R)-4-((benzyloxy)methyl)-1,3-dioxolan-2-one ((R)-30).

7.0 6.5

75

9.0

9.5

6£799\
€689 ~
6LELN
r'ss—
epad ot s’

§8°LCT \

(R)-30

81°8¢T 7+
89'8¢1T

8TLET —

S0'SST —

190 180 170 160 150 140 130 120 110 100
1 (ppm)

200

Figure S134. °C NMR (101 MHz, CDCls) spectrum of (R)-4-((benzyloxy)methyl)-1,3-dioxolan-2-one ((R)-30).
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Figure S136. '°C NMR (101 MHz, CDCls) spectrum of (S)-4-((benzyloxy)methyl)-1,3-dioxolan-2-one ((S)-30).
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