Electronic Supplementary Information

Comparative Analysis of Chitin Isolation Techniques from Mushrooms: Toward Sustainable Production of High-Purity Biopolymer

Akhiri Zannat,^a Isaac Eason,^b Benjamin Wylie,^b Robin D. Rogers,^c Paula Berton,^{*d} Julia L. Shamshina^{*a,b}

- a. Fiber and Biopolymer Research Institute, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, USA.
- b. Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA.
- c. 525 Solutions, Inc., PO Box 2206, Tuscaloosa, AL 35403
- d. Chemical and Petroleum Engineering Department, University of Calgary, Calgary, AB, Canada.

*Corresponding authors: PB: paula.berton@ucalgary.ca; JLS: jshamshi@ttu.edu.

Figure S1. Process flow of pulping method with NaOH.

igure S2. Process flow of extraction using the [C₂mim][OAc] microwave method.

Mushroom Biomass (White)

Wh/Chitin_{NaOH-24}

Wh/Chitin_{[C2mim][OAc]} Thermal

Wh/Chitin_{[C4mim][HSO4]} Figure S5. Appearance of biomass and isolates.

Wh/Chitin_{NaOH-2}

Wh/Chitin_[C2mim][OAc] Microwave

Wh/Chitin_{DES}

Figure S6. FTIR spectra (4000 – 600 cm⁻¹) of biomass (red), commercial chitin (pink), commercial chitosan (grey), and isolated materials by four different methods: pulping with NaOH–2 h (purple), pulping with NaOH–24 h (dark green), extraction with [C₂mim][OAc]–microwave (cyan), extraction with [C₂mim][OAc]–thermal (olive line), pulping with [C₄mim][HSO₄] (light green), and pulping with 2:1 Lactic Acid:[Cho]Cl (blue).

Figure S7. FTIR spectra (expanded in the region of $1200 - 850 \text{ cm}^{-1}$) of biomass (red), commercial chitin (pink), commercial chitosan (grey), and isolated materials by four different methods: pulping with NaOH–2 h (purple), pulping with NaOH–24 h (dark green), extraction with [C₂mim][OAc]–microwave (cyan), extraction with [C₂mim][OAc]–thermal (olive line), pulping with [C₄mim][HSO₄] (light green), and pulping with 2:1 Lactic Acid:[Cho]Cl (blue).

Source	Type of Glucans	¹³ C chemical shift (δ _C , ppm)						D C
		C-1	C-2	C-3	C-4	C-5	C-6	Ket
Pleurotus ostreatus	β-glucan	103.3–103.6	74.1–74.4	86.6-85.4		76.0	68.9–69.1 & 62.0– 62.3ª	1
Pleurotus ostreatus	α-1,3-glucan	100.9–101.0	71.5	84.5-82.2			60.5	1
Pleurotus ostreatus	$(1 \rightarrow 3, 1 \rightarrow 6)$ - β -D-glucan	103.6	65–79	86.1 ^b	80	65–79	62.4 and 69.3 for (1 \rightarrow 3)- and (1 \rightarrow 6)- linkage, respectively	2
Pleurotus tuber-regium (Fr.) Sing	β-D-glucan	102.6	72.8	85.9	68.1	75.6	69.4, & 60.3ª	3
Penicillium chrysogenum	(1→3)-α-D- glucan	101.2	71.95	83.66	71.46	73.63	62.03	4
Aspergillus fumigatus	$(1\rightarrow 3)$ - α -glucan	101.0	71.9	84.6	69.5	71.7	60.5	5
Aspergillus fumigatus	$(1\rightarrow 3)$ - β -glucan	103.6	74.4	86.4	68.7	77.1	61.2	5
Aspergillus niger	(1→3)-α-D- glucan	100.0	72.7	73.9	79.8	71.4	60.9	6
Aspergillus niger	$(1\rightarrow 4)$ - α -D- glucan	101.0	71.4	83.2	70.3	73.5	61.3	6
Flammulina velutipes	Linear (1→4)-α- D-glucan	102.8	74.0	76.1	79.8	73.2	63.4	7
Flammulina velutipes	Branched $(1 \rightarrow 4, 1 \rightarrow 6)$ - α -D-glucan	102.4	74.2	76.1	79.8	73.2	72.2	7
Termitomyces eurhizus	$(1 \rightarrow 3)$ - β -D-glucan	103.3	73.9	86.3	68.7	76.2	61.1	8
Agaricus bitorquis	$(1\rightarrow 6)$ - β -D-glucan	103.4	73.5	76.0	69.9	75.3	69.2	9
Ganoderma lucidum	Branched $(1 \rightarrow 3, 1 \rightarrow 6)$ - β -D-glucan	103.0	73.0	85.8	68.7	75.0	68.7	10

Table S1. Chemical Shift in the ¹³C CP-MAS NMR spectrum of various mushroom glucans.

^a referring to *O*-substituted units and unsubstituted units, respectively. ^b corresponding to $(1\rightarrow 3)$ -linked residues of C-3

Figure S8. Solid-state ¹³C CP-MAS NMR spectrum of crustacean chitin (extracted with [C₂mim][OAc]).

Figure S9. Solid-state ¹³C CP-MAS NMR spectrum of White Mushroom biomass.

Figure S10. Solid-state ¹³C CP-MAS NMR spectrum of Wh/Chitin_{NaOH-24.}

Figure S11. Solid-state ¹³C CP-MAS NMR spectrum of Wh/Chitin_{[C2mim][OAc] Thermal}.

Figure S12. Solid-state ¹³C CP-MAS NMR spectrum of Wh/Chitin_{[C2mim][OAc] Microwave}.

Figure S13. Solid-state ¹³C CP-MAS NMR spectrum of Wh/Chitin_{[C4mim][HSO4]}.

Figure S14. Solid-state ¹³C CP-MAS NMR spectrum of Wh/Chitin_{DES}.

Figure S15. 1D ¹³C–Cross Polarization NMR spectrum of rigid polysaccharides of *A*. *fumigatus* cell walls. Abbreviations are used for resonance assignments. For example, A1 denotes α -1,3-glucan carbon 1. Ch and B represent chitin and β -1,3-glucan, respectively. Adapted from Ref [11].

Figure S16. TGA weight loss (%) thermograms of isolated materials by different methods: pulping with NaOH–2 h (purple), pulping with NaOH–24 h (dark green), extraction with $[C_2mim][OAc]$ –microwave (cyan), extraction with $[C_2mim][OAc]$ –thermal (olive line), pulping with $[C_4mim][HSO_4]$ (light green), and pulping with 2:1 Lactic Acid:[Cho]Cl (blue).

Temperature (°C)

Figure S17. DTG_{max} thermograms of isolated materials by four different methods: (purple) pulping with NaOH–2 h, (dark green) pulping with NaOH–24 h, (cyan) extraction with [C₂mim][OAc]–microwave, (olive line) extraction with [C₂mim][OAc]– thermal, (light green) pulping with [C₄mim][HSO₄], and (blue) pulping with 2:1 Lactic Acid:[Cho]Cl.

Figure S18. PXRD diffractograms of of biomass (red) and isolated materials by four different methods: pulping with NaOH–2 h(purple), pulping with NaOH–24 h (dark green), extraction with $[C_2mim][OAc]$ –microwave (cyan), extraction with $[C_2mim][OAc]$ –thermal (olive line), pulping with $[C_4mim][HSO_4]$ (light green), and pulping with 2:1 Lactic Acid:[Cho]Cl (blue).

Figure S19. SEM images (x 250 magnification) of the surface of chitin fiber obtained from Wh/Chitin $_{\rm NaOH-24}$

Figure S20. SEM images (x 500 magnification) of the surface of chitin fiber obtained from Wh/Chitin_{[C2mim][OAc]}

Figure S21. Stress-strain curves of chitin fibers prepared from chitin (dark green) pulped from mushroom biomass with NaOH–24 h, (olive) extracted from mushroom biomass with $[C_2mim][OAc]$ -thermal, (pink) pulped from crustacean biomass with $[C_2mim][OAc]$.

References

- Synytsya, A.; Míčková, K.; Synytsya, A.; Jablonský, I.; Spěváček, J.; Erban, V.; Kováříková, E.; Čopíková, J. Glucans from fruit bodies of cultivated mushrooms *Pleurotus Ostreatus* and *Pleurotus Eryngii*: Structure and potential prebiotic activity. *Carbohydr. Polym.* 2009, 76 (4), 548-556. <u>https://doi.org/10.1016/j.carbpol.2008.11.021</u>.
- (2) Fričová, O.; Koval'aková, M. Solid-state 13C CP MAS NMR spectroscopy as a tool for detection of (1→3, 1→6)-β-D-glucan in products prepared from *Pleurotus Ostreatus*. *International Scholarly Research Notices* **2013**, *2013* (1), 248164. https://doi.org/10.1155/2013/248164.
- (3) Chenghua, D.; Xiangliang, Y.; Xiaoman, G.; Yan, W.; Jingyan, Z.; Huibi, X. A β-D-glucan from the sclerotia of *Pleurotus Tuber-Regium* (fr.) sing. *Carbohydr. Polym.* 2000, 328 (4), 629-633. <u>https://doi.org/10.1016/S0008-6215(00)00140-3</u>.
- (4) Wang, T.; Deng, L.; Li, S.; Tan, T. Structural characterization of a water-insoluble (1→3)-α-D-glucan isolated from the *Penicillium Chrysogenum*. *Carbohydr. Polym*. 2007, 67 (1), 133-137. <u>https://doi.org/10.1016/j.carbpol.2006.05.001</u>.
- (5) Chakraborty, A.; Fernando, L. D.; Fang, W.; Dickwella Widanage, M. C.; Wei, P.; Jin, C.; Fontaine, T.; Latgé, J.-P.; Wang, T. A molecular vision of fungal cell wall organization by functional genomics and solid-state NMR. *Nature Commun.* 2021, *12* (1), 6346. <u>https://doi.org/10.1038/s41467-021-26749-z</u>.
- (6) Bock, K.; Gagnaire, D.; Vignon, M.; Vincendon, M. High resolution nuclear magnetic resonance studies of Nigeran. *Carbohydr. Polym.* **1983**, *3* (1), 13-22. https://doi.org/10.1016/0144-8617(83)90009-7.
- Pang, X.; Yao, W.; Yang, X.; Xie, C.; Liu, D.; Zhang, J.; Gao, X. Purification, characterization and biological activity on hepatocytes of a polysaccharide from *Flammulina Velutipes* mycelium. *Carbohydr. Polym.* 2007, *70* (3), 291-297. https://doi.org/10.1016/j.carbpol.2007.04.010.
- (8) Chakraborty, I.; Mondal, S.; Rout, D.; Islam, S. S. A water-insoluble (1→3)-β-D-glucan from the alkaline extract of an edible mushroom *Termitomyces Eurhizus*. *Carbohydr. Polym.* 2006, 341 (18), 2990-2993. https://doi.org/10.1016/j.carres.2006.09.009.
- (9) Nandan, C. K.; Patra, P.; Bhanja, S. K.; Adhikari, B.; Sarkar, R.; Mandal, S.; Islam, S. S. Structural characterization of a water-soluble β-(1→6)-linked D-glucan isolated from the hot water extract of an edible mushroom, *Agaricus Bitorquis. Carbohydr. Polym.* 2008, 343 (18), 3120-3122. <u>https://doi.org/10.1016/j.carres.2008.09.019</u>.
- (10) Chang, Y.-W.; Lu, T.-J. Molecular characterization of polysaccharides in hot-water extracts of *Ganoderma Lucidum* fruiting bodies. J. Food Drug Analysis 2004, 12 (1), 59-67. <u>https://doi.org/10.38212/2224-6614.2662</u>.
- (11) A. Chakraborty, L. D Fernando, W. Fang, M. C. D. Widanage, P. Wei, C. Jin, T. Fontaine, J. P. Latgé, and T. Wang, (2021). *Nat. Commun.*, 2021, **12**, 6346. https://doi.org/10.1038/s41467-021-26749-z