Electronic Supplementary Information for Boosting the Hydrodeoxygenation of PET Waste to Cycloalkanes by Electron Transfer and Hydrogen Spillover in H_xWO_{3-y} Incorporated Dendritic Fibrous Nanosilica Supported Ni Catalysts

Wenfeng Zhong,^{a, b, d} Jiayi Wang,^{b, d} Xuecheng Li,^{b, d} Suhua Wang,^{c,d} Hua Tan,^{*,} ^{b, d} Xinping Ouyang,^{*, a}

a. School of Chemistry & Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China.

b. College of Chemistry, Guangdong University of Petrochemical Technology,
 Maoming 525000, P. R. China

c. School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, P. R. China

d. Guangdong Provincial Key Laboratory for Green Agricultural Production and Intelligent Equipment, Maoming 525000, P. R. China

Corresponding Authors: Xinping Ouyang: <u>ceouyang@scut.edu.cn</u>; Hua Tan: <u>huatan@gdupt.edu.cn</u>

Chemicals	Calibration data	R ²	GC response factor
Cyclohexane	y=2.10399×10 ⁷ x-36941.46	0.98	2.10399×10 ⁷
Methylcyclohexane	y=3.27475×10 ⁷ x-57539.21	0.99	3.27475×107
1,4-Dimethylcyclohexane	y=3.51508×10 ⁷ x-32490.56	1.00	3.51508×10 ⁷
Benzene	y=1.95320×10 ⁷ x-12530.75	0.98	1.95320×10 ⁷
Toluene	y=2.78540×10 ⁷ x+4875.62	0.99	2.78540×107
Xylene	y=3.17429×10 ⁷ x+17844.23	1.00	3.17429×10 ⁷
Cyclohexanedicarboxylic acid	y=1.18650×10 ⁷ x-8235.91	0.97	1.18650×10^{7}
<i>p</i> -Toluic acid	y=1.50230×107x+2150.84	0.98	1.50230×107
Cyclohexanecarboxylic acid	y=1.79460×10 ⁷ x-15320.35	0.98	1.79460×10 ⁷
4-Methyl cyclohexane methanol	y=2.30210×10 ⁷ x+9875.43	0.99	2.30210×107
Cyclohexane methanol	y=2.09875×10 ⁷ x-5120.68	1.00	2.09875×107
4-Hydroxymethyl-cyclohexane- 1-carboxylic acid	y=1.64280×10 ⁷ x-9245.31	0.98	1.64280×10 ⁷
4-(ethoxycarbonyl)cyclohexane- 1-carboxylic acid	y=1.60345×10 ⁷ x+8325.11	0.97	1.60345×10 ⁷
Ethyl 4-methylbenzoate	y=2.18760×10 ⁷ x+6543.27	0.99	2.18760×10 ⁷
Diethylterephthalate	y=2.41230×10 ⁷ x-19875.50	0.99	2.41230×107

 Table S1 Calibration data of all products obtained from the HDO of PET.

*y = peak area of species 'i'; x = mol of species 'i'.

Fig. S1 SEM images and particle size distributions of (a) DFNS, (b) WO₃-DFNS (0.05),

(c) WO₃-DFNS (0.1).

Fig. S2 TEM images of (a) DFNS, (b) WO₃-DFNS (0.05) and (c) WO₃-DFNS (0.1).

	Composition(wt%) ^a		S _{BET} ^b	D_p^c	V_p^d	d _{Ni} e
Catalyst	Ni	W	$(m^{2} \bullet g^{-1})$	(nm)	$(\mathrm{cm}^{3} \cdot \mathrm{g}^{-1})$	(nm)
DFNS	-	-	520.9	10.1	1.9	-
WO ₃ -DFNS (0.05)	-	-	304.0	5.8	0.6	-
WO ₃ -DFNS (0.1)	-	-	184.7	6.4	0.4	-
Ni/DFNS	9.34	-	437.9	10.4	1.5	9.8
Ni/H _x WO _{3-y} -DFNS (0.05)	12.72	14.68	228.7	5.7	0.4	6.9
Ni/H _x WO _{3-y} -DFNS (0.1)	11.15	32.39	105.6	7.1	0.2	7.7

 Table S2 The physical and chemical properties of the catalysts.

^a Measured by ICP-AES;

^b Surface areas of the catalysts based on the BET equation;

° Pore volumes of the catalysts derived from the volume of N_2 adsorbed at p/p₀ = 0.99;

^d Average pore sizes calculated by the BJH method using the desorption branch;

^e Ni nanoparticle size estimated from Ni (111) plane using the Debye-Scherrer equation.

Fig. S3 TEM images of (a) Ni/DFNS and (b) Ni/H_xWO_{3-y}-DFNS (0.1).

Fig. S4 (a) N_2 adsorption/desorption isotherms of catalysts and (b) pore size distribution

of catalysts.

Fig. S5 (a) N_2 adsorption/desorption isotherms of catalysts, (b) pore size distribution of catalysts.

Fig. S6 XPS survey spectra of Ni/DFNS, Ni/H_xWO_{3-y}-DFNS (0.05) and Ni/H_xWO_{3-y}-DFNS (0.1).

Table S3 H₂-TPR results over Ni/DFNS, Ni/H_xWO_{3-y}-DFNS (0.05) and Ni/H_xWO_{3-y}-DFNS (0.1).

		Ni amount/	H ₂ -TPR		
Entry	Catalyst	mmol g ⁻¹	H_2 consumption/	Valance of Ni	
		minor g _{cat}	mmol g _{cat} ⁻¹	valence of M	
1	Ni/DFNS	1.60	1.56	0.05	
2	Ni/H _x WO _{3-y} -DFNS (0.05)	2.16	1.99	0.10	
3	Ni/H _x WO _{3-y} -DFNS (0.1)	1.90	1.82	0.08	

	Peak Pos	ition (°C)	H ₂ desorp	H_2 desorption amount (µmol/g _{cat})			
Sample	Peak 1 ^a	Peak 2 ^a	Peak 1 ^a	Peak 2ª	Total		
Ni/DFNS	145	592	7.3	0	7.3		
Ni/H _x WO _{3-y} -DFNS (0.05)	138	624	14.7	15.0	29.7		
Ni/H _x WO _{3-y} -DFNS (0.1)	137	606	19.5	6.7	26.2		

Table S4 H₂-TPD results over Ni/DFNS, Ni/H_xWO_{3-y}-DFNS (0.05) and Ni/H_xWO_{3-y}-DFNS (0.1).

^a Peak 1 was the desorption peak of H species adsorbed on Ni sites.

^b Peak 2 was the desorption peak of H species migrated to support.

Fig. S7 NH₃-TPD spectra of Ni/DFNS, Ni/H_xWO_{3-y}-DFNS (0.05) and Ni/H_xWO_{3-y}-DFNS (0.1). WA.: Weak Acid, MSA.: Medium Strong Acid, SA.: Strong Acid.

Catalysts	WA. (umol/g)	MSA. (umol/g)	SA. (umol/g)	Total acid sites (µmol/g)
Ni/DFNS	13	1	0	14
Ni/H _x WO _{3-y} -DFNS (0.05)	14	1	2	18
Ni/H _x WO _{3-y} -DFNS (0.1)	16	2	3	21

Table S5 Quantified acid sites based on NH₃-TPD of Ni/DFNS, Ni/H_xWO_{3-y}-DFNS (0.05) and Ni/H_xWO_{3-y}-DFNS (0.1).

WA.: Weak Acid, MSA.: Medium Strong Acid, SA.: Strong Acid.

Table S6 Comparison of reported heterogeneous catalysts for HDO of PET with this

wor	k.

Catalysts	Tem p (°C)	P (MPa)	T (h)	Products	Yield of aromatics or C_6 - C_8 cycloalkanes (%)	Energy economy (ε) (°C ⁻¹ *min ⁻¹)	Ref.
Co/TiO ₂	320	3.0	24	Aromatics	75.2	1.36E-04	1
Ru/Nb ₂ O ₅	320	0.5	16	Aromatics	83.6	2.72E-04	2
Ru/ZrO_2	200	0.3	12	Aromatics	36.8	2.56E-04	2
Ru/Nb_2O_5	220	2.0	12	Aromatics	92.4	5.83E-04	3
Pt/NiAl ₂ O ₃	220	2.0	12	Aromatics	3.6	2.27E-05	3
Pd/NiAl ₂ O ₃	220	2.0	12	Aromatics	21	1.33E-04	3
Ru/TiO_2	230	0.3	12	Aromatics	77.0	4.65E-04	4
Ru - Cu / SiO_2	400	6.0	22	Cycloalkanes	98.4	1.86E-04	5
Ru-280/Fe- N-C-800	350	5.0	4	Aromatics	82.6	9.83E-04	6
Ru/TiO ₂	220	5.0	12	Cycloalkanes	87.9	5.55E-04	7
Ru/TiO ₂	180	6.0	10	Cycloalkanes	72.9	6.75E-04	8
Ni/HZSM-5	240	4.0	4	Cycloalkanes	99.9	1.73E-03	9
Ru-							
ReO _x /SiO ₂	190	3.0	20	Cycloalkanes	90.0	3.95E-04	10
+ HZSM-5							
Ir-							
ReO_x/SiO_2	190	3.0	4	Cycloalkanes	98.4	2.16E-03	11
+ HZSM-5							
Ni/H _x WO ₃₋							This
y-DFNS	280	5.0	16	Cycloalkanes	98.2	3.65E-04	work
(0.05)							WOIK

= 3

 $[\]frac{1}{T \times t}$, where Y is yield of the main monomer, T is temperature of the reaction in degrees Celsius and *t* is reaction time (in minutes).

Fig. S8 TEM image of Ni-WO_x/SiO₂.

The initial depolymerization products were analyzed using an LC-Orbitrap-MS system (Q Extract Focus, Thermo Fisher Scientific) equipped with an Electrospray Ionization (ESI) detector. After the reaction, the solid and liquid phases in the reaction mixture were separated by centrifugation, and the solid phase was retained. Tetrahydrofuran (THF) was added to the solid phase to dissolve the initial PET depolymerization products, followed by another centrifugation step. The resulting liquid was filtered with 0.22 μ m organic membrane filters and injected into a 100 × 2.1 mm ACQUITY UPLC BEH C₁₈ column at a column temperature of 35 °C. The mobile phase consisted of a mixture of methanol (MeOH) and water. The flow rate was 0.3 mL min⁻¹. The products were eluted by the following gradients: 1 min isocratic at 10:90 (V/V) MeOH/H₂O, followed by a linear gradient to 100% (V/V) MeOH from 1 to 5 min, and finally held at 100% (V/V) MeOH from 5 to 30 min. The injection volume was 10 μ L.

Fig. S9 The structures of the intermediates from HDO of PET over the Ni/ H_xWO_{3-y} -DFNS (0.05) catalyst based on the LC-MS. Reaction condition: 0.05 g catalyst, 0.15 g reactant, 10 mL n-dodecane, 280 °C, 5.0 MPa H₂.

Table S7 Gas compositions obtained from HDO of dodecane and PET in n-dodecane

Derv	Gas concentration (mol%)				
Kun	СО	CH_4	CO ₂	C_2H_6	
n-dodecane	0	2.9	0	0.70	
PET in n-dodecane	0.3	3.8	2.5	1.5	

Reaction condition: 280 °C, 5.0 MPa $\rm H_2$ for 16 h.

Fig. S10 Reaction pathway for HDO of TPA over the Ni/ H_xWO_{3-y} -DFNS (0.05) catalyst. Reaction condition: 0.05 g catalyst, 0.15 g reactants, 10 mL n-dodecane, 260 °C, 5.0 MPa H₂.

(0.05) catalyst .						
Entry	Substrate	Rate				
Entry	Substrate	/ mmol g _{cat} -1 min ⁻¹				
1	TPA	4.65				
2	C ₈ -COOH	2.43				
3	C ₈ -OH	0.75				

Table S8 Reaction rates of different model compounds over Ni/H_xWO_{3-y} -DFNS (0.05) catalyst^a.

^a Reaction conditions: 0.05 g catalyst, 0.15 g reactants, 10 mL n-dodecane, 260 °C, 5.0 MPa H₂.

Fig. S11 XRD patterns of different catalysts.

Fig. S12 H₂-TPD profiles of different catalysts.

Fig. S13 XRD patterns of Ni/ H_xWO_{3-y} -DFNS (0.05) and recovered catalyst after 2 and 4 cycles.

Supplementary references

1. S. Hongkailers, Y. Jing, Y. Wang, N. Hinchiranan and N. Yan, *ChemSusChem*, 2021, 14, 4330-4339.

2. Y. Jing, Y. Wang, S. Furukawa, J. Xia, C. Sun, M. J. Hülsey, H. Wang, Y. Guo, X. Liu and N. Yan, *Angew. Chem. Int. Ed.*, 2021, **60**, 5527-5535.

3. S. Lu, Y. Jing, B. Feng, Y. Guo, X. Liu and Y. Wang, *ChemSusChem*, 2021, 14, 4242-4250.

4. M. Ye, Y. Li, Z. Yang, C. Yao, W. Sun, X. Zhang, W. Chen, G. Qian, X. Duan and Y. Cao, *Angew. Chem.*, 2023, **135**, e202301024.

5. H. Tang, N. Li, G. Li, A. Wang, Y. Cong, G. Xu, X. Wang and T. Zhang, *Green Chem.*, 2019, **21**, 2709-2719.

6. J. Li, Z. An, Y. Kong, L. Zhang, J. Yang, X. Wang, J. Wang, D. Duan, Q. Zhang, R. Long, D. G. Vlachos and Z. Li, *Appl. Catal. B: Environ.*, 2024, **357**, 124307.

7. V. Murali, J. R. Kim, Y.-K. Park, J.-M. Ha and J. Jae, *Green Chem.*, 2023, 25, 8570-8583.

8. R. Li, W. Zeng, R. Zhao, Y. Zhao, Y. Wang, F. Zhang, M. Tang, Y. Wang, X. Chang and F. Wu, *Nano Res.*, 2023, **16**, 12223-12229.

9. J. Liu, N. Wang, S. Liu and G. Liu, JACS Au, 2024, 4, 4361-4373.

10. J. Wei, M. Zhu, B. Liu, N. Wang, J. Liu, K. Tomishige, S. Liu and G. Liu, *Angew. Chem. Int. Ed.*, 2023, **62**, e202310505.

11. N. Wang, J. Liu, J. Wei, S. Liu and G. Liu, Sci. China Chem., 2024, 1-13.