1	Supp	orting	Inform	ation	for:

2

7

11

12

13

- 3 Biomass-formic acid-hydrogen conversion process: Sustainable
- 4 production of formic acid from biomass using greenhouse gas[†]
- 5 Ju-Hyoung Park,^a Young-Hoon Noh,^a Jin Sung Kim,^a Gyu-Seob Song,^a Se-Joon Park,^b Jong Won
- 6 Choi,^c Young-Chan Choi^a and Young-Joo Lee*^a
- ^a Clean Air Research Department, ^b Technology commercialization Team, ^c Energy
- 9 Convergence System Research Department, Korea Institute of Energy Research
- 10 (KIER), 71-2, Jang-dong, Yuseong-gu, Daejeon 305-343, Republic of Korea

14 The supporting information file consists of 30 pages, 7 references, 8 figures and 4 Tables.

15 Table S1. Results of hydrolysis-oxidation hydrothermal treatment (HOHT) of biomass via various parameters obtained by HPLC

16 with RI detector.

				Acetic	Levulinic			Formic
	Glucose	XMG ^a	Arabinose			5-HMF	Furfural	
Entry				acid	acid			acid
	(g/L)	(g/L)	(g/L)	(g/L)	(g/L)	(g/L)	(g/L)	(g/L)
1 b	-	-	-	-	-	-	-	-
	0.31	0.89	0.24	2.44		0.04	0.37	0.56
2 ^c					_			
	±0.01	±0.03	±0.01	±0.20		±0.01	±0.02	±0.31
3 ^d	0.21	0.17	0.26	10.61	1.03	0.56	0.07	16.32
5"	±0.01	±0.02	±0.02	±0.42	±0.01	±0.07	±0.01	±0.29
40	1.15	2.41		5.28		0.61	2.85	1.73
4 ^e	±0.25	±0.17	-	±0.39	_	±0.02	±0.16	±0.08
5 ^f	3.41	0.66		11.67	0.98	2.11	0.78	34.40
5'	±0.68	±0.02	-	±1.26	±0.06	±0.03	±0.01	±0.98

6 g	4.52	2.05	0.99	12.14	4.21	1.99	0.80	39.16
09	±0.57	±0.24	±0.03	±1.60	±0.62	±0.10	±0.03	±1.26
7 ^h	3.13	1.94	0.79	12.46	4.20	1.45	0.69	42.63
7	±0.05	±0.13	±0.05	±0.19	±0.83	±0.02	±0.01	±0.30
8 ⁱ	1.30	0.45	0.47	15.00	0.82	1.64	1.02	29.25
0,	±0.53	±0.09	±0.07	±0.93	±0.01	±0.17	±0.35	±1.13
Oi	1.82	0.60	0.59	15.06	0.79	2.47	1.26	31.58
9 j	±0.28	±0.03	±0.21	±1.56	±0.01	±0.54	±0.06	±0.86
10 ^k	1.07	0.44	0.48	15.25	0.99	1.36	0.91	30.04
10*	±0.04	±0.01	±0.02	±0.62	±0.09	±0.07	±0.02	±0.01
11 ¹	5.15	1.05	0.79	10.95	0.74	2.86	1.07	25.03
11'	±2.01	±0.08	±0.03	±0.57	±0.01	±0.29	±0.34	±1.08
12 ^m	1.42	0.40	0.40	10.82	0.79	1.60	0.83	18.97
12""	±0.32	±0.03	±0.01	±1.38	±0.02	±0.50	±0.08	±0.28
13 ⁿ	7.60	4.87	0.94	8.24	0.33	0.66	1.82	13.72
15	±0.01	±0.81	±0.02	±0.74	±0.03	±0.02	±0.27	±0.99
1.40			0.21	13.00	0.58	0.54	0.39	18.30
14°	-	_	±0.01	±0.35	±0.22	±0.35	±0.01	±0.06
1 En	0.31	0.89		2.37	0.10	0.13	0.81	1.55
15 ^p	±0.03	±0.17	_	±0.59	±0.07	±0.02	±0.06	±0.19

		0.44	0.29	6.43	0.28	0.22	0.15	6.45
16 9	-	±0.40	±0.38	±0.82	±0.01	±0.02	±0.08	±0.17
	0.52	2.12	0.56	3.50		0.24	2.18	1.89
17 ^r	±0.24	±0.17	±0.04	±0.22	-	±0.06	±0.28	±0.38
					0.46			
18s	2.33	1.12	0.75	9.52	0.46	0.74	1.22	14.34
. 0	±0.71	±0.24	±0.02	±0.57	±0.33	±0.04	±0.24	±0.98
19 ^t	2.92	1.54	0.38	5.47	0.17	0.22	0.10	15.41
194	±0.06	±0.21	±0.09	±0.38	±0.02	±0.01	±0.01	±0.26
2011	2.97	2.23	0.73	8.46	0.38	1.10	1.56	14.23
20 ^u	±0.39	±0.10	±0.07	±0.08	±0.03	±0.10	±0.82	±0.37
217	0.66	2.08	1.55	2.25	0.06	0.16	0.80	0.64
21 ^v	±0.01	±0.46	±0.15	±0.67	±0.01	±0.08	±0.23	±0.01
2.2	1.78	0.66	0.61	8.05	0.40	0.93	1.57	11.79
22 ^w	±0.29	±0.04	±0.03	±1.02	±0.03	±0.58	±0.37	±0.54
22v	0.62	2.39	0.47	3.79		0.60	4.24	2.43
23 ^x	±0.07	±0.39	±0.03	±0.07	-	±0.20	±0.36	±0.05
2.4	3.90	1.63	0.92	9.28	0.37	0.84	1.91	18.22
24 ^y	±0.73	±0.69	±0.05	±0.64	±0.03	±0.01	±0.05	±0.67
257	2.91	1.15		4.89	2.32	0.25	0.37	18.75
25 ^z	±0.17	±0.20	_	±0.59	±1.02	±0.08	±0.03	±0.39

- 18 a: Xylose + Mannose + Galactose
- $^{19}\,$ b: Reaction condition: carbon dioxide 30 bar, and 78.96 g moisture for 3 h at 170 $^{\circ}\text{C}\,$
- ²⁰ c: Reaction condition: 10 g of raw red pine, and 78.96 g moisture for 3 h at 170 °C
- 21 d: Reaction condition: 10 g of raw red pine, and H₂O₂ 11 wt% 78.96 g solution for 3 h at 170 °C
- e: Reaction condition: 10 g of raw red pine, carbon dioxide 10 bar, and 78.96 g moisture for 3 h at 170 °C
- ^f: Reaction condition: 10 g of raw red pine, carbon dioxide 10 bar, and H₂O₂ 11 wt% 78.96 g solution for 3 h at 170 °C
- ⁹: Reaction condition: 10 g of raw red pine, carbon dioxide 20 bar, and H₂O₂ 11 wt% 78.96 g solution for 3 h at 170 °C
- 25 h: Reaction condition: 10 g of raw red pine, carbon dioxide 30 bar, and H₂O₂ 11 wt% 78.96 g solution for 3 h at 170 °C
- ¹: Reaction condition: 10 g of raw red pine, and carbon dioxide 30 bar, H₂O₂ 11 wt% 78.96 g solution for 1 h at 170 °C

- j : Reaction condition: 10 g of raw red pine, carbon dioxide 30 bar, and H_2O_2 11 wt% 78.96 g solution for 2 h at 170 $^{\circ}C$
- 28 k: Reaction condition: 10 g of raw red pine, carbon dioxide 30 bar, and H₂O₂ 11 wt% 78.96 g solution for 4 h at 170 °C
- ¹: Reaction condition: 10 g of raw red pine, carbon dioxide 30 bar, and H₂O₂ 11 wt% 78.96 g solution for 3 h at 150 °C
- 30 ^m: Reaction condition: 10 g of raw red pine, carbon dioxide 30 bar, and H₂O₂ 11 wt% 78.96 g solution for 3 h at 190 °C
- ⁿ: Reaction condition: 10 g of raw red pine, carbon dioxide 30 bar, and H₂O₂ 5.6 wt% 78.96 g solution for 3 h at 170 °C
- 32 °: Reaction condition: 10 g of raw red pine, carbon dioxide 30 bar, and H₂O₂ 16.8 wt% 78.96 g solution for 3 h at 170 °C
- ⁹ P: Reaction condition: 10 g of raw corn stover, and 78.96 g moisture for 3 h at 170 °C
- $^{\rm q}$: Reaction condition: 10 g of raw corn stover, and H_2O_2 11 wt% 78.96 g solution for 3 h at 170 $^{\rm o}C$
- 35 r: Reaction condition: 10 g of raw corn stover, carbon dioxide 10 bar, and 78.96 g moisture for 3 h at 170 °C

- 36 s: Reaction condition: 10 g of raw corn stover, carbon dioxide 30 bar, and H₂O₂ 11 wt% 78.96 g solution for 3 h at 170 °C
- 37 t: Reaction condition: 10 g of raw corn stover, sulfuric acid 2 wt%, and H₂O₂ 11 wt% 78.96 g solution for 3 h at 170 °C
- ³⁸ ": Reaction condition: 10 g of ash extracted corn stover, carbon dioxide 30 bar, and H₂O₂ 11 wt% 78.96 g solution for 3 h at
- 39 170 °C
- 40 V: Reaction condition: 10 g of raw wheat stover, and 78.96 g moisture for 3 h at 170 °C
- ⁴¹ w: Reaction condition: 10 g of raw wheat stover, and H₂O₂ 11 wt% 78.96 g solution for 3 h at 170 °C
- 42 ×: Reaction condition: 10 g of raw wheat stover, carbon dioxide 30 bar, and 78.96 g moisture for 3 h at 170 °C
- ⁴³ У: Reaction condition: 10 g of raw wheat stover, carbon dioxide 30 bar, and H₂O₂ 11 wt% 78.96 g solution for 3 h at 170 °C
- ² Reaction condition: 10 g of raw wheat stover, sulfuric acid 2 wt%, and H₂O₂ 11 wt% 78.96 g solution for 3 h at 170 °C

Table S2. Results of Pd content of Pd catalyst supported on hydroxylated and amine-functionalized mesoporous silica by inductively coupled plasma (ICP)-atomic

	Pd content
Sample	(wt%)
9 wt% Pd/ NH ₂ -OH-KIE-6 catalysts	9.65

47 emission spectroscopy.

48

- 49 The elemental composition analysis in Table S2 confirms the successful synthesis
- $\,$ 50 $\,$ of the 9 wt% Pd/NH2-OH-KIE-6 catalyst.

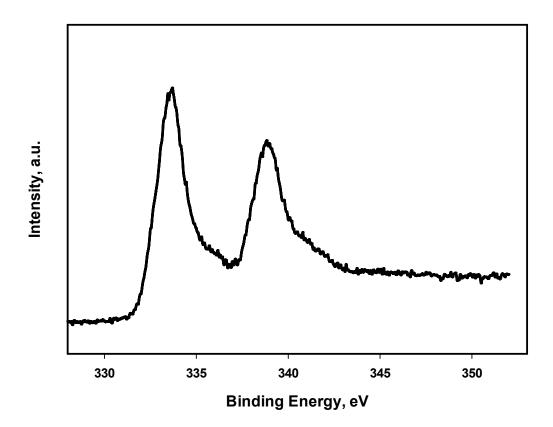
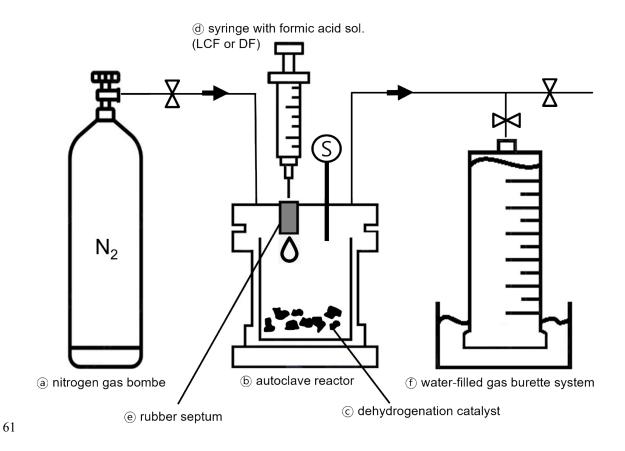



Figure S1. XPS spectra of 9 wt% Pd/NH₂-OH-KIE-6 catalysts.

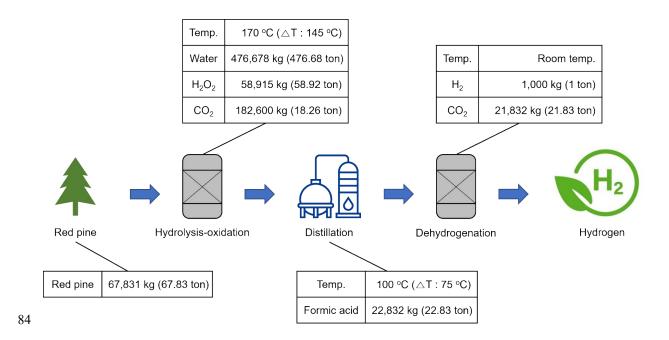
52

The XPS spectra of Pd 3d exhibit binding energy peaks at ~335.1 eV (3d₅/₂) and ~340.3 eV (3d₃/₂), corresponding to metallic Pd(0), confirming the successful reduction of Pd species. No peaks associated with Pd(II) species are observed, indicating that the catalyst remains unoxidized. Additionally, the N 1s XPS spectrum shows a peak at ~399.8 eV, suggesting strong interactions between Pd nanoparticles and the NH₂-functionalized KIE-6 support. This confirms the effective immobilization of Pd on the support material.

62 Figure S2. Formic acid dehydrogenation measurement system.

	RetTime [min]	Type	Area [25 uV*s]	Amt/Area	Amount [%mol/mol]	Grp	Name
	2.171	BB	1185.37061	3.14246e-3	3.72498	Н2	
	3.181	VB	3101.89307	2.72899e-2	84.65041	N2	
	4.765		-	-	-	CO	
	5.271		-	-	_	CH	4
64	8.307	BV	98.02250	3.14704e-2	3.08481	CO	2

65 Figure S3. GC analysis of dehydrogenation gas.


Solid image	3340			\$ 367		(302
Acid (bar, CO ₂)	-	-	10	10	20	30
Oxidant (wt%, H ₂ O ₂)	-	11	-	11	11	11
Temperature (oC)	170	170	170	170	170	170
Reaction time (h)	3	3	3	3	3	3

68 Figure S4. Recovery solid image.

72 Calculation of net CO₂ reduction from Biomass-Formic acid-73 Hydrogen process using CO₂

74 **1. Mass balance for producing 1 ton hydrogen**

In this study, carbon dioxide emissions were calculated based on using red pine, which had the highest formic acid conversion yield. Red pine requires 67,831 kg, and the chemicals required for the reaction are 476,678 kg of water, 58,915 kg of hydrogen peroxide, and 182,600 kg of carbon dioxide. After the reaction at 170 °C, 22,832 kg of formic acid was produced in the solution. It was assumed that 100 % of formic acid was recovered after distillation. Formic acid was converted into 1,000 kg of hydrogen and 21,832 kg of carbon dioxide by the dehydrogenation catalytic reaction. At this time, the reactions of other organic acids were not considered.

85 Figure S5. Mass balance of the Biomass-Formic acid-Hydrogen process using CO₂.

88 2. Calculation of CO₂ emission by hydrolysis-oxidation process

- 89 The amount of energy required for the hydrolysis-oxidation process of biomass
- 90 was calculated. The amount of energy required for each component to reach 170
- 91 °C was calculated.

92

- 93 1) Biomass = 67,831 kg x 0.359 kcal/kg $^{\circ}$ C x 145 $^{\circ}$ C = 3,530,941 kcal
- 94 red pine specific heat = 0.359 kcal/kg°C [1]

95

- 96 2) water = 476,678 kg x 1 kcal/kg°C x 75 °C + 476,678 kg x 539.7 kcal/kg =
- 97 293,013,975 kcal
- 98 water specific heat = 1 kcal/kg°C
- 99 water latent heat = 539.7 kcal/kg

100

```
102 3) H_2O_2 = 58,915 \text{ kg x } 0.626 \text{ kcal/kg} ^{\circ}\text{C x } 145 ^{\circ}\text{C} = 5,347,738 \text{ kcal}
```

$$H_2O_2$$
 specific heat = 0.626 kcal/kg°C [2]

104

105 4) H_2O_2 decomposition heat = 58,915 kg x -689.41 kcal/kg = -40,616,890 kcal

 H_2O_2 decomposition heat = -689.41 kcal/kg [3]

107 Since hydrogen peroxide decomposes during the reaction and releases heat, the

108 heat amount for this was taken into consideration.

109

110 5)
$$CO_2 = 182,600 \text{ kg x } 0.199 \text{ kcal/kg} ^{\circ}\text{C x } 145 ^{\circ}\text{C} = 5,268,931 \text{ kcal}$$

111 CO_2 specific heat = 0.199 kcal/kg°C [4]

112

113 6) Total 266,544,695 kcal

114

- 116 7) Use LNG for process energy
- 117 LNG Gross calorific value = 13,080 kcal/kg
- 118 LNG usage = 266,544,695 kcal / 13,080 kcal/kg = 20,378 kg

119

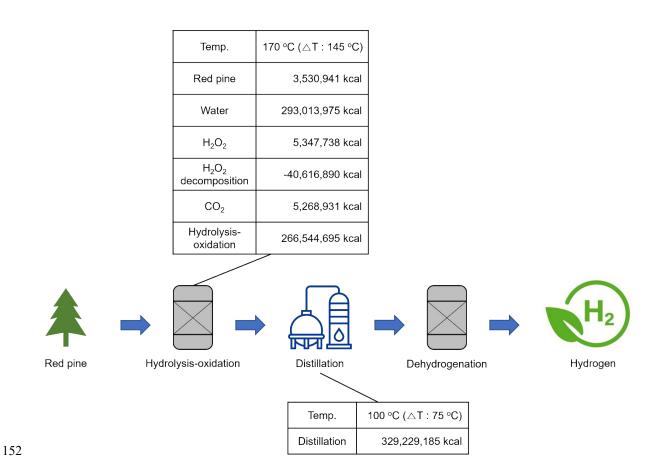
- 120 8) CO₂ emission calculation
- 121 Total calorific value = 20,378 kg (LNG usage) X 49.4 MJ/kg (net calorific value) =
- 122 1,006,673.2 MJ
- 123 Carbon emission = Calorific value x Carbon emission factors / 1,000,000 =
- 124 1,006,673.2 MJ x 15.281 tC/TJ / 1,000,000 = 15.38297 tC/TJ
- 125 CO_2 emission = Carbon emission x 44/12 = 15.38297 tC/TJ x 44 / 12 = 56.40
- 126 tonCO₂

127

3. Calculation of CO₂ emission by distillation process

Since the specific heat of 5-HMF is not known, it is not accurate to calculate the amount of heat required to heat each component. Therefore, the total liquid produced was assumed to be water and the amount of heat required for distillation was calculated conservatively. The volume of liquid was calculated as 535,593 kg, which is the sum of water and hydrogen peroxide.

135


136 1) water distillation = 535,593 kg x 1 kcal/kg°C x 75 °C + 535,593 kg x 539.7 kcal/kg 137 = 329,229,186 kcal

138

- 139 2) Use LNG for process energy
- 140 LNG Gross calorific value = 13,080 kcal/kg
- 141 LNG usage = 329,229,186 kcal / 13,080 kcal/kg = 25,170 kg

142

- 144 3) CO₂ emission calculation
- 145 Total calorific value = 25,170 kg (LNG usage) X 49.4 MJ/kg (net calorific value) =
- 146 1,243,398 MJ
- Carbon emission = Calorific value x Carbon emission factors / 1,000,000 = 1,243,398
- 148 MJ x 15.281 tC/TJ / 1,000,000 = 19.00036 tC/TJ
- 149 CO_2 emission = Carbon emission x 44/12 = 19.00036 tC/TJ x 44 / 12 = 69.67
- 150 tonCO₂

153 Figure S6. Calculation of the energy requirement for each unit process.

156 4. Calculation of CO₂ reduction by red pine growing

157 Growth rate of red pine = $20 \text{ m}^3/\text{ha}$ [5]

158 Density of red pine = 510 kg/m^3 [6]

Weight red pine per ha = $20 \text{ m}^3 \text{ x } 150 \text{ kg/m}^3 = 10,200 \text{ kgRed pine/ha} = 10.2$

160 tonRed pine/ha

161 CO_2 adsorption of red pine = 23 ton CO_2 /ha [5]

162 CO₂ adsorption per 1 ton red pine = 23 ton CO₂ CO₂/ha / 10.2 tonRed pine/ha=

163 2.25 tonCO₂/tonRed pine

164 CO₂ adsorption of used red pine for Biomass-Formic acid-Hydrogen process =

165 67.83 ton x 2.25 tonCO₂/tonRed pine = 152.95 tonCO₂

166

5. Calculation of CO₂ reduction by hydrolysis-oxidation process using CO₂

169 Solubility of $CO_2 = 1.45gCO_2/L = 0.00000145$ ton CO_2/L [7]

170 Dissolution amount of CO₂ for Biomass-Formic acid-Hydrogen process =

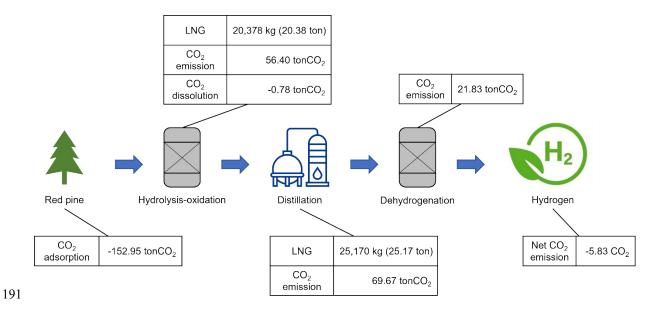
171 $0.00000145 \text{ ton } CO_2/L \times 67.83 \text{ ton} = 0.78 \text{ ton} CO_2$

173 6. Calculation of CO₂ reduction from Biomass-Formic acid-Hydrogen process

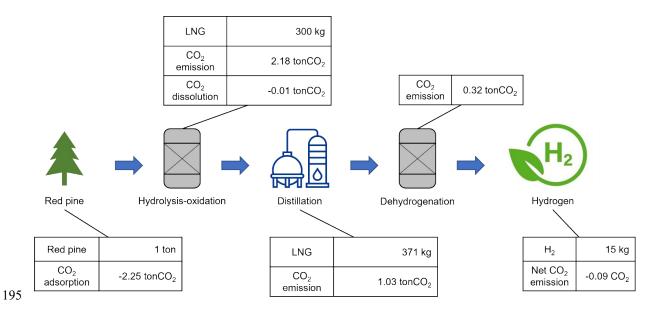
174 using CO₂ process per ton of hydrogen production

- 175 1) CO₂ emission
- 176 Hydrolysis-oxidation process 56.4 tonCO₂
- 177 Distillation process 69.67 tonCO₂
- 178 Dehydrogenation process 21.83 tonCO₂
- 179 Total 147.90 tonCO₂

180


- 181 2) CO₂ reduction
- 182 Red pine growing 152.95 tonCO₂
- 183 Hydrolysis-oxidation process 0.78 tonCO₂
- 184 Total 153.73 tonCO₂

185


187 3) Net CO₂ reduction

 $188 \text{ CO}_2 \text{ emission} - \text{CO}_2 \text{ reduction} = -5.83 \text{ tonCO}_2/\text{tonH}_2$

189

- 192 Figure S7. Calculation of carbon dioxide emission per 1 ton of hydrogen production
- by Biomass-Formic acid-Hydrogen process using CO₂.

196 Figure S8. Calculation of carbon dioxide emission per 1 ton of red pine feedstock

197 by Biomass-Formic acid-Hydrogen process using CO₂.

199 Formic acid empirical correlation

We established the empirical correlation of Equation 3 using ChatGPT 40 version. We input all data related to biomass composition (Table 1), formic acid conversion 201 conditions (carbon dioxide 30 bar, and H₂O₂ 11 wt% solution for 3 h at 170 °C conditions), formic acid concentration (red pine: 42.63 g/L (Table 2 entry 7), corn 204 stover: 14.34 g/L (Table 3 entry 4), wheat stover: 18.22 g/L (Table 4 entry 4), and formic acid production yield (red pine: 36.18 % (Table 2 entry 7), corn stover: 17.43 % (Table 3 entry 4), wheat stover: 20.45 % (Table 4 entry 4). Based on this data, we 206 requested an empirical correlation that predicts formic acid yield according to 207 biomass composition. ChatGPT defined the formic acid yield empirical correlation 208 using linear regression analysis. The initial empirical correlation included a formula 210 with the lignin content variable. However, according to our study, formic acid cannot be produced from lignin, so we requested a revised empirical correlation excluding lignin. Finally, the Equation 3 presented in the manuscript was proposed. We reviewed the formic acid yield calculations for all biomass compositions by 214 applying the respective X values to this formula.

215 Table S3. Comparison of empirical correlation value with experimental data for

216 formic acid yield

	Experimental data (FA yield, %)	Empirical correlation value (%)	Relative error (%)
Red pine	36.18	36.36	0.50
Corn stover	17.43	17.58	0.84
Wheat stover	20.45	20.62	0.81

218 Information of reagents

219 Table S4. Information of reagents

Reagents	Brand	Purity
Sulfuric acid	Sigma Aldrich	98 %
CO ₂ gas	Jaeil Gas Industry	99.9%
Hydrogen peroxide	SAMCHUN	34.5 %
Tetraethyl orthosilicate (TEOS)	Sigma Aldrich	98 %
Ethanol	EMSURE ACS, ISO, Reag. Ph Eur,	99.9 %
Ammonia	JUNSEI	28 %
Glycerol	DUKSAN	99 %
Hydrochloric acid	Sigma Aldrich	37 %
3-aminopropyl trimethoxysilane (APTMS)	Sigma Aldrich	97 %
Palladium nitrate hydrate	Sigma Aldrich	-
Sodium borohydride	SAMCHUN	98 %
Sodium formate	Sigma Aldrich	99 %
Cellulose	Sigma Aldrich	95 %
Xylan from beechwood	Sigma Aldrich	90%

- 221 [1] https://www.engineeringtoolbox.com/specific-heat-capacity-d_391.html
- 222 [2] https://en.wikipedia.org/wiki/Hydrogen_peroxide
- 223 [3] https://en.wikipedia.org/wiki/Hydrogen_peroxide
- 224 [4] https://en.wikipedia.org/wiki/Carbon_dioxide_(data_page)
- 225 [5] J. Pojola, L. Valsta, K. Mononen: Costs of carbon sequestration in Scots pine
- stands in Finland. Scandinavian Forest Economics. 2004, 40, 81-90.
- 227 [6] https://www.engineeringtoolbox.com/wood-density-d_40.html
- 228 [7]
- 229 https://ko.wikipedia.org/wiki/%EC%9D%B4%EC%82%B0%ED%99%94_%ED%83%84%E
- 230 C%86%8C